

First-principles Electronic Structure Calculation Program

PHASE/0 2014

User’s Manual

0.10.2.01 (2014/04/24)

https://azuma.nims.go.jp

 2

PHASE System

COPYRIGHT of the program codes

 Copyright (C) of the original version: Hideki Katagiri, Koichi Kato, Tsuyoshi Miyazaki, Yoshitada Morikawa,

Hideaki Sawada, Toshihiro Uchiyama, Tsuyoshi Uda, Takahiro Yamasaki.

 Copyright (C) of the developed version by the national projects FSIS, RSS21, and RISS has been managed

by the Institute of Industrial Science (IIS), the University of Tokyo.

The Institute of Industrial Science (IIS) has a right to distribute the program set developed from the original

version as a free software.

HISTORY

 The original version of this set of the computer programs "PHASE" was developed by the members of the

Theory Group of Joint Research Center for Atom Technology (JRCAT), based in Tsukuba, in the period

1993-2001. The names of the contributors to the original version are Hideki Katagiri, K. Kato, T. Miyazaki, Y.

Morikawa, H. Sawada, T. Uchiyama, T. Uda and T. Yamasaki. These contributors has agreed with that the

Institute of Industrial Science (IIS), the University of Tokyo, distributes this program as a free software.

 Since 2002, this program set had been intensively developed as a part of the following national projects

supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan;

"Frontier Simulation Software for Industrial Science (FSIS)" from 2002 to 2005, "Revolutionary Simulation

Software (RSS21)" from 2006 to 2008. "Research and Development of Innovative Simulation Software

(RISS)" from 2008 to 2013. These projects is lead by the Center for Research on Innovative Simulation

Software (CISS), the Institute of Industrial Science (IIS), the University of Tokyo.

 Since 2013, this program set has been further developed centering on PHASE System Consortium.

 The activity of development of this program set has been supervised by Takahisa Ohno.

CONTACT ADDRESS

PHASE System Consortium

E-mail: phase_system@nims.go.jp URL https://azuma.nims.go.jp

* When distributing the software "PHASE" duplications, the user must attach the full text in this file.

 3

Contents

1. INTRODUCTION ... 9

1.1 OVERVIEW OF PHASE-SYSTEM ... 9

1.2 WHAT IS PHASE? .. 10

1.2.1 Calculation functions of PHASE .. 10

1.2.2 Contents of program package PHASE ... 11

1.2.3 Platforms to use PHASE ... 12

1.3 OUTLINE OF THIS MANUAL .. 13

1.4 UPGRADE HISTORY OF PHASE ... 14

2. DIRECTIONS FOR THE BASIC USE OF PHASE ... 16

2.1 OUTLINE OF THE CALCULATION PROCEDURES OF PHASE ... 16

2.2 PREPARATION OF INPUT FILES... 17

2.2.1 Minimum set of input files .. 17

2.2.2 Input parameter file: nfinp.data (simplified version) .. 18

2.2.2.1 Example of an input parameter file ... 18

2.2.2.2 Control block ... 20

2.2.2.3 Accuracy block ... 20

2.2.2.4 Structure block .. 21

2.2.2.5 Wavefunction_solver block .. 22

2.2.2.6 Charge_mixing block.. 22

2.2.2.7 Postprocessing block ... 22

2.2.2.8 Minimum set of input parameters ... 23

2.2.3 Pseudopotential files .. 26

2.2.3.1 Types of pseudopotentials .. 26

2.2.3.2 How to get pseudopotential files? ... 26

2.2.3.3 How to indicate pseudopotential files? ... 26

2.2.4 file_names.data ... 28

2.3 HOW TO CALCULATE WITH PHASE? .. 30

2.3.1 Execution of program PHASE .. 30

2.3.2 How to check the calculation status? ... 31

2.3.3 Continuation calculation ... 31

2.3.4 Ekcal program for the calculation of the DOS and band structure ... 31

2.3.4.1 How to calculate the DOS by ekcal? ... 32

2.3.4.2 How to calculate the band structure by ekcal? ... 32

2.4 HOW TO CHECK THE COMPLETION OF THE CALCULATION? ... 34

2.4.1 Status of the PHASE calculation, causes, and options.. 34

2.4.2 How to check successful completion or abnormal termination? .. 34

2.4.3 Check the convergence of an SCF calculation and structure optimization .. 35

2.4.4 Calculation status during a calculation (logfile: output000 and jobstatus000) .. 35

2.4.4.1 Sampling k- points ... 36

2.4.4.2 Total energy ... 36

2.4.4.3 Spin freedom ... 36

2.4.4.4 Eigenvalues and their occupations ... 36

2.4.4.5 Elapsed time for each SCF calculation .. 37

2.4.4.6 Progress situation of the calculation (jobstatus000) ... 37

2.5 ANALYSIS OF CALCULATION RESULTS AND VISUALIZATION ... 38

2.5.1 Total energy and force (recorded in nfefn.data) .. 38

 4

2.5.1.1 Structure optimization ... 38

2.5.1.2 MD simulation .. 38

2.5.2 Atomic geometry (recorded in nfdynm.data) .. 39

2.5.3 Charge density (recorded in nfchr.cube) .. 40

2.5.4 Density of states (recorded in dos.data) ... 40

2.5.5 Band structure (recorded in nfenergy.data) .. 41

2.6 REFERENCES .. 42

3. INPUT PARAMETER FILE: NFINP.DATA (F_INP FILE) ... 43

3.1 FORMAT OF INPUT PARAMETER FILE ... 43

3.1.1 Description of parameters ... 43

3.1.2 Specification of units .. 44

3.1.3 Comment lines .. 44

3.1.4 Example of input parameter file... 45

3.2 LIST OF TAG KEYWORDS ... 47

3.3 CONTROL BLOCK .. 55

3.4 ACCURACY BLOCK .. 56

3.4.1 Cutoff energy ... 56

3.4.2 Number of bands .. 56

3.4.3 k-point sampling and smearing .. 56

3.4.4 Exchange-correlation energy .. 57

3.4.5 Convergence criteria .. 58

3.4.6 Initial wavefunctions and initial charge density .. 58

3.5 STRUCTURE BLOCK .. 59

3.5.1 Unit cell .. 59

3.5.2 Atomic coordinates ... 60

3.5.3 Atomic species ... 61

3.5.4 Symmetry .. 61

3.6 WAVEFUNCTION_SOLVER BLOCK .. 63

3.6.1 Calculation flow of PHASE ... 63

3.6.2 Wavefunction solver ... 63

3.7 CHARGE_MIXING BLOCK ... 65

3.7.1 Charge mixing method .. 65

3.7.2 Technics to accelerate the convergence .. 66

3.8 STRUCTURE_EVOLUTION BLOCK .. 69

3.8.1 Structure optimization ... 69

3.8.2 Molecular dynamics ... 70

3.8.3 Stress tensor .. 70

3.9 POSTPROCCESING .. 71

3.9.1 Density of states (DOS) .. 71

3.9.2 Charge density .. 71

3.10 PRINT LEVEL .. 72

4. EXAMPLES FOR BASIC FUNCTIONS .. 73

4.1 TOTAL ENERGY CALCULATION ... 73

4.1.1 Input parameters .. 73

4.1.2 Execution of calculations ... 75

4.1.3 Output of calculation results ... 76

4.2 CALCULATIONS USING SYMMETRY PROPERTIES .. 77

4.2.1 Input parameters .. 77

4.2.1.1 Specifying the unit cell ... 77

 5

4.2.1.2 Specifying symmetry .. 79

4.2.1.3 Using inversion symmetry .. 81

4.2.2 Example: Silicon crystal (Si2) ... 82

4.3 SPIN-POLARIZED CALCULATION .. 87

4.3.1 Calculations for a ferromagnetic substance .. 87

4.3.1.1 Input parameters ... 87

4.3.1.2 Output .. 88

4.3.2 Calculation for an antiferromagnetic substance .. 89

4.3.2.1 Input parameters ... 89

4.4 GEOMETRY OPTIMIZATION ... 91

4.4.1 Input parameter ... 91

4.4.2 Output .. 92

4.4.3 Example: geometry optimization of a silicon crystal ... 92

4.5 CALCULATION OF SURFACE ... 94

4.5.1 How to calculate surface .. 94

4.5.2 Surface calculation using inversion symmetry... 96

4.5.3 Example: generation energy of metallic surfaces ... 98

4.6 CALCULATION OF ATOMS AND MOLECULES .. 100

4.6.1 Input parameters .. 100

4.7 OUTPUT OF CHARGE DENSITY ... 102

4.8 DENSITY OF STATES ... 104

4.9 CALCULATION OF BAND STRUCTURE .. 106

4.9.1 Generating k-point data .. 106

4.9.2 Calculation with fixed charge ... 108

4.9.2.1 Input parameters ... 108

4.9.3 Plotting band structure ...110

4.10 LATTICE CONSTANT...112

4.10.1 Calculation method ...112

4.10.2 Example: Si crystal..112

5. ADVANCED FUNCTIONS .. 114

5.1 ANALYSIS FUNCTIONS ...114

5.1.1 Stress tensor ...114

5.1.1.1 Overview ...114

5.1.1.2 Input parameters ..114

5.1.1.3 Elastic constant ..115

5.1.2 Local density of states and energy-dependent charge density ..118

5.1.2.1 General features..118

5.1.2.2 Atom-divided local density of states ..119

5.1.2.3 Layer-divided local density of states .. 120

5.1.2.4 Energy-dependent charge density .. 122

5.1.3 Projected density of states ... 125

5.1.3.1 Input parameters ... 125

5.1.3.2 Output .. 126

5.1.3.3 Example: PDOS of BaTiO3 crystal .. 126

5.1.4 Positron lifetime .. 129

5.1.4.1 Functions ... 129

5.1.4.2 Input file .. 130

5.1.4.3 Output file ... 131

5.1.4.4 Notes on calculation of positron lifetimes .. 132

 6

5.2 ATOMIC DYNAMICS ... 134

5.2.2 Molecular dynamics simulation ... 134

5.2.2.1 Overview .. 134

5.2.2.2 Input parameters ... 134

5.2.2.3 Output .. 134

5.2.2.4 Usage: constant-energy MD simulation .. 135

5.2.2.5 Usage: constant-temperature MD simulation .. 138

5.2.2.6 Precaution for use ... 138

5.3 ADVANCED DFT CALCULATIONS ... 140

5.3.1 DFT+U Method .. 140

5.3.1.1 General features ... 140

5.3.1.2 Input parameters ... 141

5.3.1.3 Outputs .. 142

5.3.1.4 Sample : cubic SrTiO3 .. 144

5.3.1.5 Sample : cubic LaVO3 .. 144

5.3.1.6 Sample : orthrombic LaVO3 ... 144

5.3.1.7 Sample : cubic FeO ... 144

5.3.2 Hybrid functionals .. 146

5.3.2.1 Overview .. 146

5.3.2.2 Input parameters ... 146

5.3.2.3 Examples: a hydrogen molecule ... 147

5.3.2.4 Examples: a water molecule .. 147

5.3.3 Non-local correlation term (van der Waals interaction) .. 149

5.3.3.1 Introduction for the van der Waals interaction ... 149

5.3.3.2 Total energy (1-shot calculation) ... 149

5.3.3.3 Example: Silicone Diamond .. 152

5.3.3.4 Electron state calculation (self-consistent field calculation) .. 152

5.3.3.5 References ... 153

5.3.4 Van der Waals corrected DFT ... 154

5.3.4.1 Overview .. 154

5.3.4.2 Input parameters ... 155

5.3.4.3 Calculation examples ... 157

5.4 ANALYSIS OF CHEMICAL REACTIONS ... 158

5.4.1 The NEB method .. 158

5.4.1.1 Outline of the feature ... 158

5.4.1.2 Input parameters ... 159

5.4.1.3 Execution ... 167

5.4.1.4 Output of the results .. 167

5.4.1.5 Example calculation: dissociative adsorption process of a hydrogen molecule on a silicon surface 169

5.4.1.6 Notes .. 172

5.4.2 Constrained dynamics and free-energy analysis by the Blue Moon approach .. 174

5.4.2.1 Outline of the feature ... 174

5.4.2.2 Input parameters ... 174

5.4.2.3 Execution ... 179

5.4.2.4 Output of the results .. 180

5.4.2.5 Free-energy calculation by the Blue Moon approac ... 180

5.4.2.6 Example calculation: rotation barrier of H2O2 and H2S2 molecules ... 182

5.4.2.7 Notes .. 184

5.4.3 Metadynamics ... 185

5.4.3.1 Outline of the feature ... 185

 7

5.4.3.2 Input parameters ... 186

5.4.3.3 Execution ... 192

5.4.3.4 Output of the results .. 193

5.4.3.5 Example calculation: energy surface of hydrocarbon molecules ... 194

5.4.3.6 Notes .. 199

5.5 TIME-DEPENDENT DENSITY FUNCTIONAL THEORY (TDDFT) CALCULATIONS .. 200

5.5.1 Optical spectrum calculations of molecules by real-time TDDFT (RT-TDDFT) .. 200

5.5.1.1 Calculation methods .. 200

5.5.1.2 Input parameters ... 200

5.5.1.3 Notes .. 201

5.6 STRUCTURE OPTIMIZATION ... 202

5.6.1 Optimizing a unit cell by using the stress tensor ... 202

5.6.1.1 Input parameters ... 202

5.6.1.2 Calculation results.. 202

5.6.1.3 Examples: rutile type TiO2 .. 203

6. CALCULATION BY THE PAW METHOD .. 207

6.1 OVERVIEW .. 207

6.2 HOW TO USE THE PAW METHOD ... 207

6.3 EXAMPLE .. 207

6.4 SUPPORTED FEATURES .. 209

7. APPENDIX .. 210

7.1 CALCULATION ACCURACY .. 210

7.1.1 Cutoff energy ... 210

7.1.2 k-point sampling ... 210

7.1.3 Convergence criterion ...211

7.1.4 Benchmark calculation (comparison of wavefunction solver) .. 213

7.1.4.1 FCC-Cu .. 213

7.1.4.2 Fe(100) surface .. 217

7.2 STRUCTURE OPTIMIZATION ... 220

7.2.1 Optimization methods ... 220

7.2.1.1 Calculation examples ... 220

7.2.1.2 Results ... 221

7.3 UNITS IN PHASE .. 222

7.4 FAQ .. 222

8. INSTALLATION OF PHASE .. 224

8.1 OPERATING ENVIRONMENT ... 224

8.2 INSTALLATION .. 225

8.3 NOTICE FOR EACH PLATFORM ... 227

8.3.1 Linux .. 227

8.3.2 Windows XP .. 227

8.3.3 Mac OS X (Intel ver.) .. 227

9. USAGE OF PROGRAMS AND TOOLS ... 228

9.1 PROGRAM PHASE .. 228

9.1.1 Executing phase .. 228

9.1.2 Options for parallel calculations ... 228

9.1.2.1 Parallelization over bands and parallelization over k-points .. 228

9.1.2.2 Parallelization of replica method .. 228

 8

9.1.3 Parallelization over G points (beta version) .. 229

9.2 PROGRAM EKCAL .. 230

9.2.1 Executing ekcal ... 230

9.2.2 Options for ekcal ... 230

9.3 PROGRAM UVSOL .. 231

9.4 DOS.PL: A TOOL FOR PLOTTING DOS ... 232

9.4.1 Options for dos.pl .. 232

9.5 BAND_KPOINT.PL: A TOOL FOR GENERATING K-POINTS .. 234

9.6 BAND.PL: A TOOL FOR PLOTTING BAND STRUCTURE ... 235

9.6.1 Executing band.pl ... 235

9.6.2 Options for band.pl ... 235

9.7 DYNM2TR2.PL: A TOOL FOR CONVERTING TO EXTENDED TRAJECTORY FORMAT ... 237

9.8 FREQ.PL: A TOOL FOR PLOTTING FREQUENCY LEVEL DIAGRAMS ... 239

9.8.1 Options for freq.pl ... 239

9.9 ANIMATE.PL: A TOOL FOR CONVERTING NORMAL MODES TO THE EXTENDED TRAJECTORY FORMAT 241

10. INPUT AND OUTPUT FILES .. 242

10.1 INPUT FILES.. 242

10.1.1 Input parameter file: nfinp.data .. 242

10.1.2 Pseudopotential files .. 242

10.2 INPUT/OUTPUT SETTING FILE: FILE_NAME.DATA... 244

10.3 INPUT FILES (EKCAL) ... 244

10.3.1 k-point data file: kpoint.data （F_KPOINT） .. 244

10.4 OUTPUT FILE .. 245

10.4.1 DOS file: dos.data (F_DOS)... 245

10.4.2 Energy history file: nfefn.data (F_ENF) .. 247

10.4.3 Trajectory file: nfdynm.data（F_DYNM） ... 248

10.4.4 Charge density file: nfchr.cube（F_CHR） .. 249

10.4.5 Restart file: continue.data （F_CNTN） ... 250

10.4.6 Eigenvalue data file: nfenergy.data（F_ENERG） ... 251

11. DIELECTRIC FUNCTION CALCULATION PROGRAM UVSOR ... 253

11.1 LINEAR-RESPONSE TIME-DEPENDENT DENSITY FUNCTIONAL THEORY（LR-TDDFT） 253

11.1.1 General features ... 253

11.1.1.1 introduction ... 253

11.1.1.2 Application to solids .. 253

11.1.1.3 Application to isolated systems ... 254

11.1.2 Input parameters .. 254

11.1.2.1 Control block ... 254

11.1.2.2 Accuracy block ... 255

11.1.2.3 Structure block .. 255

11.1.2.4 Spectrum block ... 255

11.1.3 Execution ... 257

11.1.4 output ... 257

11.1.5 Samples .. 258

11.1.5.1 Dielectric function of the Si crystal ... 258

11.1.5.2 Photoadsorption cross-section of C6H6 ... 258

11.1.6 Notes ... 259

 9

1. Introduction

1.1 Overview of PHASE-SYSTEM

PHASE-SYSTEM is a set of program packages for performing simulations of nanosize materials. It

consists of PHASE for first-principles electronic structure calculations, UVSOR for dielectric function

calculations, ASCOT for quantum transport property calculations, CIAO for all-electron calculations of an

atom and the generation of pseudopotentials, and PHASE Viewer, which is a graphical user interface (GUI)

for the PHASE package. Note that PHASE-STSTEM, the one program package PHASE, and an executable

“phase” are different entities.

Figure 1.1 Program packages included in PHASE-SYSTEM

Table 1.1 Brief overview of the program packages included in PHASE-SYSTEM

Program/Package Brief overview

PHASE

(First-principles electronic structure

calculation program)

PHASE is a first-principles electronic structure calculation program

based on the density functional theory (DFT) and the

pseudopotential scheme. It can calculate total energy, charge density,

density of states, and band structures, and it can perform molecular

dynamics simulations.

UVSOR

(Dielectric function calculation

program)

UVSOR is a program for calculating the dielectric functions of

materials based on the DFT and the pseudopotential scheme. It can

calculate both electron and lattice dielectric functions quantitatively.

It can predict the dielectric function of high-k materials that have

large lattice dielectric functions.

CIAO

(Pseudopotential generation

program)

CIAO is a program package for all-electron calculations of an atom

and the generation of pseudopotentials used in PHASE, UVSOR,

and ASCOT.

ASCOT

(Quantum transport property

calculation program)

ASCOT is a program package for calculating electronic structure

and quantum transport properties of nanostructures bridging

semi-infinite electrodes. It is based on the non-equilibrium Green’s

function method.

PHASE Viewer

(graphical user interface)

This is a graphical user interface (GUI) for the PHASE package. It

helps users construct and edit input files, execute calculations, and

visualize calculation results.

This manual is for PHASE, a first-principles electronic structure calculation program, and the related tools

Pseudopotential generation program

CIAO

Quantum transport property

calculation program
ASCOT

First-principles

electronic structure
calculation program

PHASE

Dielectric function

calculation program
UVSOR

Graphical User Interface （GUI）
PHASE Viewer

Pseudopotential

File

Charge Density

File

 10

included in the package.

1.2 What is PHASE?

1.2.1 Calculation functions of PHASE

PHASE is a first-principles electronic structure calculation program based on DFT [1] and the

pseudopotential scheme [2-4]. Using no parameters fitted to experimental results, this program can predict

the physical properties of materials that are not found in any experiments, with reasonably high accuracies.

It can also calculate various physical quantities using the calculated wave functions. In addition to electronic

states, PHASE can calculate the total energy and the forces acting on atoms. Using these, users can obtain

stable structures by minimizing forces and perform molecular dynamics simulations to see the time

evolution of a system.

The calculation functions available in PHASE are briefly summarized in the following table.

Calculation functions Corresponding physical quantities

(Physical properties, material behaviors, phenomena…)

Electronic structure calculation Density of states (DOS)

Band structure

Charge density

Energy, force

Total energy and forces acting on atoms

Lattice parameters, elastic parameters

Stress tensor

Structure optimization

Molecular dynamics simulation

Stable structure

Time evolution of atomic geometry

Vibration analysis Vibration frequency, vibration mode

Positron lifetime calculation Positron lifetime

STM image analysis STM image (topographic and differential)

Chemical reaction analysis Chemical reaction path, activation energy

The features of PHASE are summarized in the following.

Calculation scheme

 First-principles

calculation

Without any parameters fitted to experiments, this program has a

reasonably high accuracy in predicting material properties even for

unsynthesized materials; this enables users to do “material design.”

Owing to the use of hybrid functionals, more accurate predictions are

feasible.

 Density functional

theory

This program is based on the DFT, which is widely used in the field of

materials science and is known to be highly predictable. LDA and GGA

are featured in the program.

 Pseudopotential Ion cores are treated using the pseudopotential scheme, which enables

users to perform high-accuracy calculations.

Calculation functions

 Physical properties A wide variety of physical properties can be computed and compared with

those obtained experimentally.

Structural analyses

Atomic-geometry optimization, molecular dynamics simulation, and

reaction-path analysis can be performed.

Large-scale calculations Parallel calculations using MPI and OpenMP can be used to perform

calculations using hundreds of thousands of computer cores.

User friendliness

 11

 Input parameter file An input parameter file consists of blocks and tags so that physical

meanings of parameters can be easily understood by users.

Users can set a wide variety of parameters to meet computational goals.

Since default values are set for most parameters, the minimum size of an

input parameter file can be small.

 Tools

This PHASE package bundles useful tools that help users draw a band

structure, DOS, charge density distribution, etc.

 Machine architecture A wide variety of platforms are available from Windows PCs to massively

parallel supercomputers.

 User interface A GUI (PHASE Viewer) is available to execute the PHASE program, edit

input/output data, and visualize calculation results.

1.2.2 Contents of program package PHASE

The program package PHASE consists of the following programs and tools.

Program package PHASE Overview

Program phase

This is the main program in this program package. By using this, users

can perform electronic structure calculations and molecular dynamics

simulations. From a converged charge density, users can calculate the

DOS, band structures, etc.

ekcal

This is a subsidiary program that enables users to calculate the DOS and

band structure for many k-points. Some script files (tools) are available to

execute this program.

Tool

(script file)

band_kpoint.pl This is a Perl script for generating a k-point file to calculate a band

structure.

dos.pl This is a Perl script for generating an EPS file for the DOS.

band.pl This is a Perl script for generating an EPS file for a band structure.

Figure 1.2 Contents of program package PHASE. UVSOR is also included in the figure.

First-principles electronic structure calculation program

PHASE

Dielectric function

calculation program
UVSOR

Input Parameter File

Pseudopotential File

Charge Density

File

Program

phase

Program

ekcal

Program

epsmain

tdlrmain

Tool

band_kpoint.pl

Tool

band.pl

Tool

dos.pl

Electronic Structure

Molecular Dynamics

Generation of sampling K-points

For Band Calculation

Charge Density

File

Density of State Band Structure

 12

1.2.3 Platforms to use PHASE

Since PHASE is programmed in Fortran90 and C, Fortran90 and C compilers are necessary. Those

compilers are usually available in facilities like supercomputer centers in universities. MPI libraries are

necessary to perform parallel calculations.

To use PHASE, the following libraries, compilers, and other software are necessary.

 Fortran90 compiler and C compiler (required)

 MPI libraries (optional), which are necessary to execute parallel calculations

 LAPACK and BLAS (optional)

 FFTW (optional)

 Perl (optional), which is necessary to use PHASE TOOLS

 Gnuplot (optional), which is necessary to use PHASE TOOLS

The binary “phase.exe,” which is available on Windows PC, is included in the package. This enables users

to use PHASE without compiling the program. However, since this executable is not parallelized, it is

difficult to perform a large-scale calculation, because it takes significant time or it may fail owing to memory

limitations. If it is necessary to use PHASE on parallel machines, you must compile the program yourself.

Note that the description in this manual is based on a platform running the Linux/Unix operating system.

On other operating systems, commands, and messages may differ from those in this manual.

 13

1.3 Outline of this manual

This manual consists of the following chapters.

Chap. 1 Introduction

 This chapter contains a brief introduction to the PHASE-SYSTEM and the PHASE program

package.

Chap. 2 Directions for the basic use of PHASE

 This chapter gives directions for the basic use of PHASE, giving users an overview of how to use

PHASE.

Chap. 3 Input parameter file: nfinp.data (F_INP file)

 This chapter explains all the parameters available in “nfinp.data.” For many of the parameters,

since default values have been set, users do not need to set all parameters. For the advanced use

of PHASE, this chapter should be helpful.

Chap. 4 Examples of basic functions

 This chapter provides some examples of the basic functions of PHASE. This chapter is also

available as a tutorial for PHASE. For each parameter, refer to the corresponding item in

Chapter 3.

Chap. 5 Advanced analytical functions

 This chapter describes advanced analytical functions of PHASE.

Chap. 6 PAW method

 The projector augmented wave (PAW) method is available in PHASE. This chapter shows how to

use PAW and discusses the functions that are available for PAW.

Chap. 7 Miscellaneous

 This chapter is devoted to supplemental material. If necessary, see this chapter.

Users who read this manual for the first time are encouraged to read Chapter 2 first and then read Chapter

4. Chapter 3 is not useful for beginners. Chapters 5–7 are for users who need specialized tools.

Figure 1.3 Outline of this manual

Chapter 1

Introduction

Chapter 2

Directions for the basic use of PHASE

Chapter 3

Input parameter file: nfinp.data

(Reference Manual)

Chapter 4

Examples of basic functions

(Tutorial)

Chapter 5

Advanced analytical functions

--- Inexperienced users

--- Experienced users

 14

1.4 Upgrade history of PHASE

version 8.00

2009/06 release

・Constrained MD calculation was implemented.

• Structure optimization and MD calculation within the DFT+U method was

implemented.

version 8.01

2010/03 release

・Computational speed was improved by using BLAS routines.

version 9.00

2010/06 release

・Computational speed was improved by using BLAS routines and cache tuning.

・van der Waals interaction calculation was implemented.

・Free-energy calculation was implemented.

・Band calculation by using the DFT+U method was implemented.

・Hybrid functional was implemented.

version 10.00

2011/06 release

・Efficiency of SCF convergence was improved.

・PAW-type pseudopotential was implemented.

・Metadynamics methods were implemented.

・SCF calculation using van der Waals DFT was implemented.

・BFGS method was implemented for structure optimization.

・New script was added to PHASE TOOLS.

・Bugs related to reading pseudopotential files were fixed.

Note that this change causes differences in the total energy compared to values

obtained from the previous version.

version 10.01

2011/08 release

・Efficiency of SCF convergence for a system with spin was improved.

・Bug related to GGA was fixed.

Note that this change causes differences in the total energy compared to values

obtained from the previous version.

version 11.00

2012/06 release

・New wave function solvers were implemented.

・Hybrid functional calculation was improved.

 Treatment for ultrasoft pseudopotentials, reduced k-points calculations, etc.

・Continuation of optimization calculation due to the GDIIS or BFGS method was

implemented.

・Computational speed for the calculation of the DOS using ultrasoft pseudopotential

was improved.

・Writing the DOS and charge density during optimization calculation or molecular

dynamics calculation was implemented.

・Some bugs were fixed.

・3-axis-parallelized version was released in which G-point-parallelization was

implemented.

PHASE/0 2014

2014/04 release

・Automatic method for wave function solver and charge mixing was implemented.

・Prediction method of wave function solver and charge mixing during optimization

calculation or molecular dynamics calculation was implemented.

・Time-dependent density functional theory (TDDFT) calculation were implemented.

・The interface of ESM was implemented.

・Optimization of unitcell was implemented.

・Work function calculation was implemented.

・Wave function solvers were improved.

・Hybrid functional calculation was improved.

 15

・Calculation of vdW interaction was improved.

・noncollinear calculation and spin orbit coupling calculation were implemented.

・Optimization calculation was improved. (CG method)

・Phonon calculation was improved.

・Real space calculation of nonlocal potential was implemented.

・UVSOL was integrated.

・3-axis-parallelized version was improved.

・Some bugs were fixed.

 16

2. Directions for the basic use of PHASE

In this section, the directions for the basic use of PHASE are described. Since the main purpose of this

section is to show the procedures for using PHASE, detailed directions for each calculation function are

sometimes omitted. If detailed explanations are necessary, see Chapter 3 or later chapters.

Before reading this section, the installation of PHASE on your computer system is recommended; see the

installation manual. Reading the PHASE tutorial is also recommended.

2.1 Outline of the calculation procedures of PHASE

The outline of the calculation procedure for using PHASE is as follows.

1. Prepare input files

2. Execute PHASE

3. Check the progress of the calculation

4. Analyze calculation results and/or visualize results.

Figure 2.1 Outline of the calculation procedure of PHASE

Preparation of input files

Input parameter file
Pseudopotential file

Execute PHASE

Check the progress of the

calculation

Analyze calculation results

and/or visualize results.

Sec. 2.2

Sec. 2.3

Sec. 2.4

Sec. 2.5

Check input parameter

Re-calculation
Continuation calculation

 17

2.2 Preparation of input files

2.2.1 Minimum set of input files

The minimum set of input files for executing PHASE consists of an input parameter file and

pseudopotential files. These files must reside in the execution directory of the computer system.

Users can use “file_names.data” to change a file name from the default to a user-defined one and to put

those files in a directory other than the execution one.

Input file

File Brief overview

Input parameter file

This file specifies a model structure (e.g., atomic positions), calculation

conditions (e.g., methods), and so on.

The default name of this file is “nfinp.data,” but by using “file_names.data,”

the name can be changed.

An example involving many default parameters is introduced in section

2.2.2. For a detailed explanation of all parameters, see Chapter 3. Chapter 4 is

devoted to examples that help users learn how to setup “nfinp.data.” Chapter

5 is devoted to the application functions.

Pseudopotential file

To use PHASE, pseudopotential files for the elements identified in

“nfinp.data” are necessary. For a detailed explanation, see section 2.2.3.

The default names of pseudopotential files are “pot.01,” “pot.02”… These

names can be changed by using “file_names.data.”

Pseudopotential files can be downloaded through the website of PHASE, or

they can be generated using CIAO codes.

The maximum number of elements in a calculation is 16.

File-names setting file

file_names.data This file is used to set the file names used in PHASE calculations. Since all

files used in PHASE have default names, it is not always necessary to use this

file.

By using this file, users can change (i) file names, and (ii) directories in

which those files are contained, except for this file itself.

For detailed explanations, see Section 2.2.4.

 18

2.2.2 Input parameter file: nfinp.data (simplified version)

The input parameter file “nfinp.data” specifies the model structure you want to calculate, calculation

method you want to use, etc. For a detailed explanation of each parameter, see Chapter 3. For many

parameters, default values are available. Therefore, it is not necessary for users to set all the parameters. In

the following, a typical example of a parameter file is described.

2.2.2.1 Example of an input parameter file

An input parameter file consists of hierarchical blocks and tags (keywords). Each block is indicated by a

block name and delimited by curly brackets {}. Parameters are usually specified in the format ’tag_keyword

= value’.

The following is an input parameter file for the calculation of a diamond-structure Si crystal in which two

Si atoms are included in the unit cell.

control{

 condition = initial

 cpumax = 86400 sec

 max_iteration = 10000

}

accuracy{

 cutoff_wf = 25.0 rydberg

 cutoff_cd = 100.0 rydberg

 num_bands = 8

ksampling{

 method = monk

 mesh{

 nx = 10

 ny = 10

 nz = 10

 }

}

 initial_wavefunctions = atomic_orbitals

 initial_charge_density = atomic_charge_density

 scf_convergence{

 delta_total_energy = 1e-10

 succession = 3

 }

 force_convergence{

 max_force = 0.001 hartree/bohr

 }

}

structure{

 element_list{

 #tag element atomicnumber

 Si 14

 }

 unit_cell{

 #units angstrom

 a_vector = 0 2.732299538 2.732299538

 b_vector = 2.732299538 0 2.732299538

 c_vector = 2.732299538 2.732299538 0

 }

 unit_cell_type = bravais

 19

 atom_list{

 atoms{

 #tag element rx ry rz imove

 Si 0.125 0.125 0.125 0

 Si -0.125 -0.125 -0.125 0

 }

 coordinate_system = internal

 }

}

wavefunction_solver{

 solvers{

 #tag sol till_n prec cmix submat

 davidson 1 on 1 on

 rmm3 -1 on 1 on

 }

 rmm{

 edelta_change_to_rmm=5e-5

 }

}

charge_mixing{

 mixing_methods{

 #tag no method rmxs rmxe istr prec nbmix

 1 pulay 0.40 0.40 3 on 15

 }

}

Postprocessing{

dos{

sw_dos = ON

deltaE = 1.e-4 hartree

}

charge{

sw_charge_rspace = ON

filetype = cube !{cube|density_only}

title = "This is a title line for the bulk Si"

}

}

The following blocks are available for most of the above blocks.

Block name Contents

control Setting for calculation conditions

accuracy Setting for calculation accuracy

structure Setting for atomic geometry

wavefunction_solver Setting for wavefunction solver

charge_mixing Setting for charge-mixing method

structure_evolution Setting for optimization or molecular dynamics simulation

postprocessing Setting for postprocess analysis

printlevel Setting for log output

In the following sections, input parameters available in each of these blocks are described.

 20

2.2.2.2 Control block

In the ‘control’ block, users can set parameters that control the entire calculation process and can specify

general options.

control{

 condition = initial

 cpumax = 86400 sec

 max_iteration = 10000

}

condition This tag specifies a calculation condition: ‘initial’ means that the user starts the

calculation from scratch, and ‘continuation’ means that the user continues the

calculation from a previous one. This mode is necessary when a previous calculation does

not reach completion.

cpumax Upper limit on CPU time (defaults to 86,400 s). Available units are {s, min, h, day}.

max_iteration Maximum number of SCF iterations (defaults to 10,000)

2.2.2.3 Accuracy block

In the ‘accuracy’ block, users can set parameters related to calculational accuracy.

accuracy{

 cutoff_wf = 25.0 rydberg

 cutoff_cd = 100.0 rydberg

 num_bands = 8

ksampling{

 method = monk

 mesh{

 nx = 10

 ny = 10

 nz = 10

 }

 }

 initial_wavefunctions = atomic_orbitals

 initial_charge_density = atomic_charge_density

 scf_convergence{

 delta_total_energy = 1e-10

 succession = 3

 }

 force_convergence{

 max_force = 0.001 hartree/bohr

 }

}

cutoff_wf Cut-off energy for wavefunction expansion.

cutoff_cd Cut-off energy for charge-density expansion.

num_bands Number of bands.

ksampling block This is a sub-block for setting k-point sampling.

method Specify k-point sampling method; ‘monk’ means the Monkhorst–Pack method

[5].

mesh Number of partitions for the division of the Brillouin Zone.

 21

initial_wavefunctions Initial wavefunction generation method; ‘atomic_charge_density’ means

that the initial wavefunction is calculated from charge-density data in the

pseudopotential files.

scf_convergence block This sub-block specifies convergence criteria for an SCF calculation.

delta_total_energy Convergence criteria for an SCF calculation. If the difference between the

current total energy and the total energy of the previous SCF iteration is

smaller than the specified value, the convergence criterion is satisfied.

succession SCF iterations are terminated if the energy difference is smaller than the

criterion ‘delta_total_energy” n-times in succession. The variable

‘succession’ specifies the value of n.

force_convergence block This sub-block specifies the convergence criterion for structure optimization.

max_force Convergence criterion for structure optimization. When the maximum value

among forces acting on all atoms becomes smaller than this value, an

optimized structure is obtained.

2.2.2.4 Structure block

In the ‘structure’ block, users can set parameters related to the atomic structure.

structure{

 element_list{

 #tag element atomicnumber

 Si 14

 }

 unit_cell{

 #units angstrom

 a_vector = 0 2.732299538 2.732299538

 b_vector = 2.732299538 0 2.732299538

 c_vector = 2.732299538 2.732299538 0

 }

 unit_cell_type = bravais

 atom_list{

 atoms{

 #tag element rx ry rz imove

 Si 0.125 0.125 0.125 0

 Si -0.125 -0.125 -0.125 0

 }

 coordinate_system = internal

 }

}

element_list block This sub-block specifies the elements used in the calculation. In this case, Si is

specified as an element and ‘14’ is its atomic number.

unit_cell block This sub-block specifies the unit cell.

“#units angstrom” specifies the unit of angstrom.

“a_vector,” “b_vector,” and “c_vector” are lattice vectors.

atom_list block This sub-block specifies the coordinates and elements of atoms.

In this case, two Si atoms are set, and their coordinates are “0.125 0.125 0.125”

 22

and “-0.125 -0.125 -0.125.”

coordinate_system This tag specifies a coordinate type.

“Internal” means the internal coordinate based on the lattice vectors.

2.2.2.5 Wavefunction_solver block

In the “wavefunction_solver” block, users can set parameters related to solvers of wavefunctions.

wavefunction_solver{

 solvers{

 #tag sol till_n prec cmix submat

 davidson 1 on 1 on

 rmm3 -1 on 1 on

 }

 rmm{

 edelta_change_to_rmm=5e-5

 }

}

Solvers block This sub-block specifies which solver is used to calculate wave functions.

In this case, “davidson” [6] is used first, and then “rmm3” is used; “rmm3” is a

residual minimization method (RMM) solver [7].

Rmm block This sub-block is used to set parameters related to RMM solvers.

edelta_change_to_rmm This tag indicates the criterion for changing the solver. If the difference between

the current total energy and the total energy of the previous SCF iteration is

smaller than the specified value, the solver is changed. In this case, if the energy

difference becomes smaller then 5e-5, the solver is changed from “davidson” to

“rmm3.”

2.2.2.6 Charge_mixing block

In the “charge_mixing” block, users can set parameters related to charge mixing during an SCF

calculation.

charge_mixing{

 mixing_methods{

 #tag no method rmxs rmxe istr prec nbmix

 1 pulay 0.40 0.40 3 on 15

 }

}

mixing_methods block This sub-block specifies the charge-mixing method. In this case, the Pulay

method [8] is used, and the mixing ratio is “0.40.”

2.2.2.7 Postprocessing block

In the “postprocessing” block, users can set parameters related to postprocess analysis.

 23

Postprocessing{

dos{

sw_dos = ON

deltaE = 1.e-4 hartree

}

charge{

sw_charge_rspace = ON

filetype = cube

title = "This is a title line for the bulk Si"

}

}

dos block This sub-block specifies parameters related to the DOS.

sw_dos “ON” means that the DOS is calculated.

deltaE This indicates the energy-mesh width for the DOS.

Charge block This sub-block specifies parameters related to the output of the charge density

distribution.

sw_charge_rspace “ON” means that the charge density distribution is calculated.

filetype This indicates a file type for the charge density distribution; “cube” means the

“Gaussian cube” style [9].

title This specifies the first line of a “Gaussian cube” style file. In this case, “This is a

title line for the bulk Si” is the output as the first line of the file.

2.2.2.8 Minimum set of input parameters

In the example above, many parameters are set explicitly. However, users do not need to change all those

parameters to calculate other materials because many of the parameters also apply to other materials.

It is necessary for users to set parameters related to cut-off energies, number of bands, k-points, atomic

structure, and unit cell. Those parameters are shaded in the example below. Users can perform PHASE

calculations for most materials by just changing those few parameters.

Note that if users want an efficient calculation, it may be necessary to change other parameters, such as

“wavefunction_solver” and “charge_mixing.”

control{

 condition = initial

 cpumax = 86400 sec

 max_iteration = 10000

}

accuracy{

 cutoff_wf = 25.0 rydberg

 cutoff_cd = 100.0 rydberg

 num_bands = 8

ksampling{

 method = monk

 mesh{

 nx = 10

 ny = 10

 nz = 10

 }

}

 24

 initial_wavefunctions = atomic_orbitals

 initial_charge_density = atomic_charge_density

 scf_convergence{

 delta_total_energy = 1e-10

 succession = 3

 }

 force_convergence{

 max_force = 0.001 hartree/bohr

 }

}

structure{

 element_list{

 #tag element atomicnumber

 Si 14

 }

 unit_cell{

 #units angstrom

 a_vector = 0 2.732299538 2.732299538

 b_vector = 2.732299538 0 2.732299538

 c_vector = 2.732299538 2.732299538 0

 }

 unit_cell_type = bravais

 atom_list{

 atoms{

 #tag element rx ry rz imove

 Si 0.125 0.125 0.125 0

 Si -0.125 -0.125 -0.125 0

 }

 coordinate_system = internal

 }

}

wavefunction_solver{

 solvers{

 #tag sol till_n prec cmix submat

 davidson 1 on 1 on

 rmm3 -1 on 1 on

 }

 rmm{

 edelta_change_to_rmm=5e-5

 }

}

charge_mixing{

 mixing_methods{

 #tag no method rmxs rmxe istr prec nbmix

 1 pulay 0.40 0.40 3 on 15

 }

}

Postprocessing{

dos{

sw_dos = ON

deltaE = 1.e-4 hartree

}

charge{

sw_charge_rspace = ON

filetype = cube !{cube|density_only}

title = "This is a title line for the bulk Si"

 25

}

}

For most parameters, default values are pre-set. Then, even if users omit such parameters in the parameter

file, they can still calculate with PHASE.

Note that the input parameter file shown above and the one shown below give the same energy value if the

SCF calculations converge; however, the number of SCF iterations needed to reach convergence may differ.

accuracy{

 cutoff_wf = 25.0 rydberg

 cutoff_cd = 100.0 rydberg

 num_bands = 8

ksampling{

 mesh{

 nx = 10

 ny = 10

 nz = 10

 }

 }

}

structure{

element_list{

 #tag element atomicnumber

 Si 14

 }

 unit_cell{

 #units angstrom

 a_vector = 0 2.732299538 2.732299538

 b_vector = 2.732299538 0 2.732299538

 c_vector = 2.732299538 2.732299538 0

 }

atom_list{

 atoms{

 #tag element rx ry rz imove

 Si 0.125 0.125 0.125 0

 Si -0.125 -0.125 -0.125 0

 }

 }

}

 26

2.2.3 Pseudopotential files

Pseudopotential files must be prepared for all elements used in a calculation. For example, in a calculation

for H2O, pseudopotential files for O and H atoms are necessary. Pseudopotential files can be downloaded

from the download page of the RISS project, which is the same web page used for the PHASE download.

Alternatively, pseudopotential files can be generated using CIAO. For the CIAO code, see the manual book

for CIAO.

2.2.3.1 Types of pseudopotentials

Pseudopotential files for PHASE are classified into two types. One is a frozen core type, and the other is a

PAW type [4].

Frozen core type Core electrons and the atom core are treated together as an ion core and

are fixed at the same states as those in an isolated atom. With these

pseudopotentials, PHASE calculates electronic states by considering only

valence electrons. These types of pseudopotentials are further classified

into two types: one is norm-conserving [2] and the other is ultrasoft [3].

PAW type In PAW-type pseudopotentials, electronic states are calculated by partly

considering core electron states.

Note that both types of pseudopotential cannot be used in the same calculation. Determine which type of

pseudopotentials is to be used before starting a calculation.

2.2.3.2 How to get pseudopotential files?

Pseudopotential files can be downloaded from the website “http://www.ciss.iis.u-tokyo.ac.jp/dl/” operated by

the Center for Research on Innovative Simulation Software, Institute of Industrial Science, the University of

Tokyo. All elements in the periodic table are available.

A pseudopotential file name is created by the following naming rule.

Element_Exchange Correlation term method_Pseudopotential type_identification number.pp

For example, “Si_ldapw91_nc_01.pp” is a pseudopotential file for an element Si (silicon) with its

exchange-correlation term being “ldapw91,” its type being “nc,” and its identification number being “01.”

If the pseudopotential type is “ultrasoft,” “us” is used instead of “nc,” for “PAW,” “paw” is used.

Element Si (silicon)

Exchange-correlation term

method

ldapw91 [10]

Pseudopotential type Norm-conserving pseudopotential. “nc” is the abbreviation for “norm

conserving”

Identification number Sequential serial number for the identification.

2.2.3.3 How to indicate pseudopotential files?

The default names of pseudopotential files are “pot.01,” “pot.02,”… for the elements identified in the input

 27

parameter file; use the same order as in the file.

 By using “file_names.data,” users can freely set pseudopotential file names and directories in which

pseudopotential files are stored.

 28

2.2.4 file_names.data

The file “file_names.data” is used for setting file names of an input parameter file, pseudopotential files, etc.

Users can use PHASE without this file. In this case, default names will be used for all files.

By using this file, users can freely change (i) file names and (ii) directories where files are stored. However,

the file name of “file_names.data” itself cannot be changed. This file must be placed in the execution

directory.

The format of “file_names.data” is as follows.

&fnames

File_keyword = ‘file_name(and path for the file)’
…

…

/

Note that “/” is necessary on the last line. The following is an example.

&fnames

F_INP = ’./nfinp.data’

F_POT(1) = ’./Si_ggapbe_nc_01.pp’

F_POT(2) = ’./O_ggapbe_us_02.pp’

F_CHGT = ’./nfchgt.data’

F_CHR = ’./nfchr.cube’

/

For the path to a file, users may provide either an absolute path or a path relative to the execution directory.

“F_POT(n)” is used to set the pseudopotential file name for the n-th element indicated in an input

parameter file. In the example, the pseudopotential file for the first element indicated in an input parameter

file is “Si_ggapbe_nc_01.pp” and that for the second is “O_ggapbe_us_02.pp.”

Available file_keywords are listed in Table 2.1.

Table 2.1 Files settable in “file_names.data”

File_keyword program Input/output Default name Overview

F_INP phase

ekcal

Input nfinp.data This file keyword is used to assign an input

parameter file.

F_POT(n) phase

ekcal

Input pot.01,

pot.02,

 ･･･

These file keywords are used to assign

pseudopotential files. Each element

identified in an input file needs one

pseudopotential file.

F_STOP phase

ekcal

Input nfstop.data This file is used to stop the PHASE

execution at a certain SCF iteration number.

F_KPOINT phase

ekcal

Input kpoint.data This file is used to set k-point sampling. This

file is available only when “file” is selected

for k-point sampling in an input parameter

file.

F_DYNM phase Output nfdynm.data This file contains atomic geometries and

forces acting on atoms at each step during a

geometry optimization calculation or an MD

 29

calculation.

F_ENF phase Output nfefn.data This file contains the total energy value and

the maximum force value among those

acting on all the atoms at each step during a

geometry optimization calculation or an MD

calculation.

F_CHR phase Output nfchr.data This file is an output file for PHASE. It

contains the charge density distribution.

The default file style is “Gaussian cube.”

F_DOS phase

ekcal

Output dos.data This file contains the DOS.

F_ENERG ekcal Output nfenergy.data This file contains eigenvalues that result

from a band calculation.

F_ZAJ phase

ekcal

Input/output zaj.data This file contains wavefunction data. In a

continuation calculation, this file is used as

an input file for wavefunctions. This is a

binary file.

F_CHGT phase

ekcal

Input/output nfchgt.data This file contains charge-density data. In a

continuation calculation, this file is used as

an input file for charge density. This is a

binary file.

F_CNTN phase Input/output continue.data This file contains some data needed in a

continuation calculation.

F_CNTN_BIN phase Input/output continue

bin.data

This file contains some data needed in a

continuation calculation. This is a binary

file.

F_STATUS phase

ekcal

Output jobstatus00x In this file, the status of a calculation is

recorded.

 30

2.3 How to calculate with PHASE?

2.3.1 Execution of program PHASE

First, put an input parameter file and the pseudopotential files in the execution directory. If the user uses

the file “file_names.data,” put it in the same directory.

When performing a serial calculation (a calculation with one computer core), execute the PHASE

executable as follows, where “ .././phase_v1200/bin/” means the directory in which the PHASE

executable has been placed.

% ../../phase_v1200/bin/phase

When performing a parallel calculation, execute the PHASE executable as follows. Here “mpirun” is used

as a command for parallel calculations; this is the most common command. However, this command depends

on the MPI library. For more details, see the manual for the computer system.

% mpirun -np NP ../../phase_v1200/bin/phase ne=NE nk=NK

Here, “NP” means the number of MPI processes, “NE” means the number for band parallelization, and

“NK” means the number for k-point parallelization. NP must be equal to NE * NK.

 31

2.3.2 How to check the calculation status?

The SCF convergence progress is printed to a log file “output000.” The total energy at each step during

SCF convergence is printed on a line that starts with “TOTAL ENERGY FOR.”

These lines can be found using the “grep” command as follows.

% grep TH output000

The output of this command is
TOTAL ENERGY FOR 1 -TH ITER= -30.856896066222 edel = -0.308569D+02 : SOLVER = MATDIAGON

TOTAL ENERGY FOR 2 -TH ITER= -31.552303846339 edel = -0.695408D+00 : SOLVER = DAVIDSON

TOTAL ENERGY FOR 3 -TH ITER= -31.585336745971 edel = -0.330329D-01 : SOLVER = DAVIDSON

TOTAL ENERGY FOR 4 -TH ITER= -31.587689791426 edel = -0.235305D-02 : SOLVER = SUBMAT + RMM3

TOTAL ENERGY FOR 5 -TH ITER= -31.587917474699 edel = -0.227683D-03 : SOLVER = SUBMAT + RMM3

TOTAL ENERGY FOR 6 -TH ITER= -31.587936742564 edel = -0.192679D-04 : SOLVER = SUBMAT + RMM3

TOTAL ENERGY FOR 7 -TH ITER= -31.587937115320 edel = -0.372756D-06 : SOLVER = SUBMAT + RMM3

..............

..............

The integer appearing after “FOR” identifies the SCF calculation iteration, and the value appearing after

“ITER=” is the total energy at that iteration. Energy values are displayed in Hartree. Generally, these total

energy values are negative. In the above example, the total energy values are about −31 Ht.

After “edel =,” the energy difference between the current SCF iteration and the previous SCF iteration is

displayed. If this energy difference becomes lower than the criterion “delta_total_energy” set in the

input parameter file, the convergence criterion is satisfied.

After “SOLVER =,” solver information at the iteration is shown. In the example above, at the first iteration,

“MATDIAGON” was used, while at the second and third iterations, “DAVIDSON” was used. After the third

iteration, “RMM3” was combined with “SUBMAT.”

By checking the convergence progress, users can determine whether the convergence calculation was

performed accurately.

2.3.3 Continuation calculation

In many cases, one PHASE calculation is not sufficient to complete a calculation because of limits on

machine time. In such cases, users can continue a PHASE calculation by setting the “condition” tag in the

input parameter file. The following is an example.

control{

condition = continuation

}

In a continuation calculation, some output files from the previous calculation are necessary; thus, it is better

to perform the continuation calculation in the same execution directory. If “automatic” is set instead of

“initial” or “continuation,” PHASE automatically sets this tag depending on which files exist in the

execution directory.

2.3.4 Ekcal program for the calculation of the DOS and band structure

Ekcal is a subprogram of PHASE for calculating the DOS and band structure for many k-points. A charge

density distribution file is necessary to perform an ekcal calculation.

 32

2.3.4.1 How to calculate the DOS by ekcal?

After the completion of a PHASE calculation, a charge-density file, whose default file name is “nfchgt.data,”

is created. This is an input file for the DOS calculation by the program ekcal.

Copy the file into the execution directory or set the path for the file by the key_word “F_CHG” in

“file_names.data.”

Edit the input parameter file. In the “control” block, set the condition tag, as follows.

control{

condition = fixed_charge

}

In the “accuracy” block, set the “delta_eigenvalue” tag for the convergence of eigenvalues, as follows.

accuracy{

ek_convergence{

delta_eigenvalue = 1e-5

}

}

Execute the program ekcal as the follows, where “phase_v1100/bin/” is a directory in which the ekcal

executable is stored.

% ../../phase_v1100/bin/ekcal

2.3.4.2 How to calculate the band structure by ekcal?

After the completion of a PHASE calculation, a charge-density file, whose default file name is “nfchgt.data,”

is created. This is an input file for the DOS calculation by the program ekcal.

Copy the file into the execution directory or set the path for the file by the key_word “F_CHG” in

“file_names.data.”

A file “kpoint.data,” which is a file for k-point data, is necessary to calculate the band structure. A PHASE

tool, “band_kpoint.pl” can be used to generate “kpoint.data.” Make the file “bandkpt.in,” which is an input

file for “band_kpoint.pl,” as follows.

0.04 spacing of k points data

-0.8333333 0.8333333 0.8333333

0.8333333 -0.8333333 0.8333333 reciprocal vectors

0.8333333 0.8333333 -0.8333333

3 2 1 4 # W typical k points n1 n2 n3 nd # Symbol

1 1 1 2 # L

0 0 0 1 # {/Symbol G}

1 1 0 2 # X

3 2 1 4 # W

5 3 0 8 # K

For indicating each typical k-point, n1/nd, n2/nd, and n3/nd mean internal coordinates based on reciprocal

vectors. For example, “3 2 1 4 # W” means the W point with their internal coordinates 3/4, 2/4, and 1/4 based

on the reciprocal vectors.

 33

Execute the tool “band_kpoint.pl,” as follows, and “kpoint.data” will be generated.

% ../../phase_v1100/tools/bin/band_kpoint.pl bandkpt.in

Edit the input parameter file. In the “control” block, set the condition tag, as follows.

control{

condition = fixed_charge

}

In the “accuracy” block, set the “method” tag as “file” to read “kpoint.data” and set the

“delta_eigenvalue” tag for the convergence of eigenvalues, as follows.

accuracy{

ksampling{

 method = file

 }

ek_convergence{

delta_eigenvalue = 1e-5

}

}

Execute the program ekcal as follows, where ”phase_v1100/bin/” is the directory in which the ekcal

executable is stored.

% ../../phase_v1100/bin/ekcal

 34

2.4 How to check the completion of the calculation?

2.4.1 Status of the PHASE calculation, causes, and options

The status of a PHASE calculation and the causes and options associated with each status are listed below.

Status Cause of the status options

Successful completion

SCF calculation converges.

(or structure is optimized)

Energy difference between two consecutive iterations

becomes smaller than the convergence criterion

(delta_total_energy).

Analytical

calculation

In an optimization calculation, the maximum among the

forces becomes smaller than the criterion (max_force).

Successful completion

SCF calculation does not

converge (or structure is

not optimized)

Number of SCF iterations reaches the maximum iteration

number indicated by the “max_iteration” tag in the

“control” block.

Continuation

calculation

Number of SCF iterations exceeds the value set in the file

“nfstop.data.” Users can stop a PHASE execution by using

this file, even if it is on the process.

Elapsed time exceeds the time limit indicated by the tag

“cpumax” in the “control” block.

Abnormal termination Possible causes are as follows:

Failure in an input parameter file,

Pseudopotential files do not exist,

Trouble in the computer system,

Bugs in the program.

Check files

and re-execute

the program

2.4.2 How to check successful completion or abnormal termination?

If a PHASE execution ends normally, text like the following is printed to a logfile (output000).

 <<Total elapsed CPU Time until now = 81.69520 (sec.)>>
 closed filenumber = 31
 closed filenumber = 52
 closed filenumber = 53
 closed filenumber = 55
 closed filenumber = 42
 closed filenumber = 43
 closed filenumber = 44
 closed filenumber = 75
 closed filenumber = 65
 closed filenumber = 66

After the “Total elapsed CPU Time until now =,” the calculation time is displayed.

If the last part of the logfile differs from this example, then the PHASE execution failed. In that case, a

recalculation is necessary, but before recalculating, check the input parameter file, the execution command,

all compile options, etc.

 35

2.4.3 Check the convergence of an SCF calculation and structure optimization

If a PHASE execution ends normally, the calculation may still not have reached the desired completion.

Users can find the status of a PHASE calculation by checking the file “continue.data,” which is generated

after a PHASE execution ends. The last part of this file looks like the following.

iteration, iteration_ionic, iteration_electronic

 11 1 11

 Ionic System

 (natm)

 2

 (pos)

 0.1250000000000000D+00 0.1250000000000000D+00 0.1250000000000000D+00

 -0.1250000000000000D+00 -0.1250000000000000D+00 -0.1250000000000000D+00

 (cps)

 0.1290824363824501D+01 0.1290824363824501D+01 0.1290824363824501D+01

 -0.1290824363824501D+01 -0.1290824363824501D+01 -0.1290824363824501D+01

 (cpd)

 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00

 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00

 (cpo(1))

 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00

 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00

 (cpo(2))

 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00

 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00

 (cpo(3))

 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00

 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00

 forcmx_constraint_quench

 0.1000000000000000D+03

 Total Energy

 -0.7878566524513241D+01 -0.7878566524513241D+01

isolver

 5

convergence

 2

edelta_ontheway

 0.1000000000000000D-09

corecharge_cntnbin

 0

neg

 8

In the shaded area, “2” appears after “convergence.” The “2” means that the SCF calculation has

converged, and an optimized structure was obtained. If a different number appears there, then a

continuation calculation is necessary.

2.4.4 Calculation status during a calculation (logfile: output000 and jobstatus000)

The file “output000” contains a log of a PHASE execution. The string “000” indicates the number of

executions; its value increases as 001, 002, etc., depending on how many times the calculation has been

executed in the directory.

This file holds information about the calculation and about physical quantities. In the following, useful

parts are explained.

 36

2.4.4.1 Sampling k- points

The k-points used in a calculation are difficult to know from an input parameter file. Users can find

k-point data in the logfile “output000.” To do so, find the string “kv3” in the logfile.
 !kp kv3 = 8 nspin = 1

In this case the number of k-points was 8. The “1” after “nspin =” means that spin freedom was not

considered. If “2” is here, then spin freedom was considered.

2.4.4.2 Total energy

Total energies are printed in a logfile as follows.
 TOTAL ENERGY FOR 3 -TH ITER= -687.253021587082 edel = -0.215950D+02 : SOLVER = DAVIDSON
 KI= 294.118626755617 HA= 4820.263454482710 XC= -686.596385560733 LO= -8452.905431759591
 NL= -349.620400894588 EW= 3182.022578317359 PC= 505.464805336868 EN= -0.000268264724
 PHYSICALLY CORRECT ENERGY = -687.252887454720

The value of the total energy is printed after “TOTAL ENERGY FOR …ITER=,” and the energy difference

between the current iteration and the previous one is printed after “edel =.” Following this line,

contributions to the total energy are displayed: “KI” means kinetic energy, “HA” Hartree energy, “XC”

exchange-correlation energy, “LO” local potential energy, “NL” nonlocal potential energy, “EW” Ewald energy,

“PC” partial core correction energy, and “EN” entropy. The summation of all these terms is the total energy.

After “PHYSICALLY CORRECT ENERGY,” a corrected total energy is printed for the case of smearing electron

occupations.

2.4.4.3 Spin freedom

When the calculation considers spin freedom, majority and minority spin states are shown at each SCF

iteration, as follows.
 !OLD total charge (UP, DOWN, SUM) = 4.53623488 (+) 3.46376512 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.64907433 (+) 3.35092567 (=) 8.00000000

The line starting with “!OLD” shows spin information from the previous iteration and that starting with

“!NEW” shows spin information for the current iteration.

2.4.4.4 Eigenvalues and their occupations

Eigenvalues for each k-point are printed to the logfile just before the completion of execution. Note that

this output is only for the last iteration; results for eigenvalues at previous iterations are not printed.
 EFermi = 0.24579615
 ====== Energy Eigen Values ======
 1 0.00000000 0.00000000 0.00000000
 -0.19655861 -0.04839227 -0.04839227 -0.04839227 -0.04839227
 -0.04839227 -0.04839227 0.12584623 0.12584623 0.12584623
 0.12584623 0.12584623 0.12584623 0.23389619 0.23389619
 0.23389619 0.26196708 0.26196708 0.26196708 0.26196708
 2 0.25000000 0.00000000 0.00000000
 -0.18998394 -0.11270106 -0.04555873 -0.04555873 -0.04555873
 -0.04555873 0.02675145 0.10512408 0.10512408 0.10512408
 0.10512408 0.13505063 0.13505063 0.18575457 0.20251681
 0.20251681 0.25769611 0.29275976 0.30811466 0.30811466
 3 0.50000000 0.00000000 0.00000000
 -0.16102016 -0.16102016 -0.04095243 -0.04095243 -0.04095243
 -0.04095243 0.08874423 0.08874423 0.08874423 0.08874423
 0.10781439 0.10781439 0.16184290 0.16184290 0.16184290
 0.16184290 0.27543069 0.27543069 0.35154734 0.35154734
 4 0.75000000 0.00000000 0.00000000
 -0.18998394 -0.11270106 -0.04555873 -0.04555873 -0.04555873
 -0.04555873 0.02675145 0.10512408 0.10512408 0.10512408
 0.10512408 0.13505063 0.13505063 0.18575457 0.20251681
 0.20251681 0.25769611 0.29275976 0.30811466 0.30811466
 5 0.00000000 0.25000000 0.00000000
 -0.18998394 -0.11270106 -0.04555873 -0.04555873 -0.04555873
 -0.04555873 0.02675145 0.10512408 0.10512408 0.10512408

 37

 0.10512408 0.13505063 0.13505063 0.18575457 0.20251681
 0.20251681 0.25769611 0.29275976 0.30811466 0.30811466
 ..
 ..
 ..

Following the output for eigenvalues, the occupations for each k-point are displayed, as follows.
 ====== Occupations ======
 1 0.00000000 0.00000000 0.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
 2 0.25000000 0.00000000 0.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
 3 0.50000000 0.00000000 0.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Occupations are usually between 0 and 1. When spin freedom is not considered, “1.0” means that two

electrons occupy the state. Owing to system symmetries, reduction of k-points may occur. In that case,

occupations may vary depending on the reduction. This happens for bulk systems with many k-points.

2.4.4.5 Elapsed time for each SCF calculation

If a “printlevel” tag in an input parameter file is set to 1 or more than 1, the elapsed time for that

iteration is printed to the logfile as follows.
 << CPU Time Consumption -- TOP 9 Subroutines (2) >>
 no id subroutine name time(sec) r(%) count no(2)
 1 20 evolve_WFs_in_subspace (davidson 115.74820 71.17 8 1
 2 13 m_ES_Vnonlocal_W 10.78620 6.63 8 2
 3 8 betar_dot_WFs 7.33490 4.51 14 3
 4 16 m_CD_softpart 2.53880 1.56 1 4
 5 7 m_XC_cal_potential 0.97520 0.60 2 5
 6 17 m_CD_hardpart 0.28100 0.17 1 6
 7 10 m_ES_Vlocal_in_Rspace 0.02990 0.02 1 7
 8 19 m_CD_mix_pulay 0.00670 0.00 1 8
 9 18 m_CD_convergence_check 0.00230 0.00 1 9
 Total cputime of (2)-th iteration 162.64080 / 221.651 (sec.)

After “…iteration,” the elapsed time for that iteration and the total elapsed time from the beginning

appear. If the difference between the current iteration and the previous iteration is smaller than 5% of the

elapsed time, this information is not displayed.

2.4.4.6 Progress situation of the calculation (jobstatus000)

In the file “jobstatus000,” the progress situation of the calculation is recorded. The number “000” on file

names depends on how many times the calculation has been executed in the directory. The record is as

follows.
 status = FINISHED
 iteration = 674
 iter_ionic = 21
 iter_elec = 23
 elapsed_time = 51648.7582

status FINISHED (completion), ITERATIVE (in progress), START (initialization)

iteration Number of total SCF calculation iterations

iter_ionic Number of MD/optimization steps

 38

iter_elec Number of SCF iterations for the current MD/optimization step

elapsed_time Total elapsed time

2.5 Analysis of calculation results and visualization

2.5.1 Total energy and force (recorded in nfefn.data)

In the file “nfefn.data” (or a file indicated by “F_ENF” in “file_names.data”), the total energy of the system

and the maximum among forces acting on atoms at each MD/optimization step are recorded. In case of an

MD calculation, the kinetic energy and the conserved quantity are also recorded.

The output content in “nfefn.data” for an MD simulation differs from that for structure optimization. In

the following, both types of “nfefn.data” are shown separately.

2.5.1.1 Structure optimization

Output content of “nfefn.data” for an optimization calculation:
 iter_ion, iter_total, etotal, forcmx
 1 24 -108.4397629733 0.0086160410
 2 40 -108.4401764388 0.0076051917
 3 56 -108.4405310817 0.0068758156
 4 73 -108.4410640011 0.0065717365
 5 94 -108.4414256084 0.0099533097
 6 113 -108.4414317178 0.0094159378

The meaning of each column is as follows.

iter_ion Number of optimization steps

iter_total Number of total SCF iterations.

etotal Total energy in Hartree units.

forcmx Maximum among the forces acting on all the atoms. The unit is hartree/bohr3. The

calculation continues until this value becomes smaller than the value for “max_force” set in

the input parameter file.

2.5.1.2 MD simulation

Output content of “nfefn.data” for an MD simulation:
 iter_ion, iter_total, etotal, ekina, econst, forcmx
 1 18 -7.8953179624 0.0000000000 -7.8953179624 0.0186964345
 2 30 -7.8953851218 0.0000665502 -7.8953185716 0.0183575425
 3 43 -7.8955768901 0.0002565396 -7.8953203505 0.0173392067

In addition to the structure optimization case, the following two columns are recorded.

ekina Kinetic energy of atoms

econst Conserved quantity. For an NVE calculation, this corresponds to the total energy, including

the atomic kinetic energy. For an NVT calculation, this value corresponds to the total

energy, including the energy of the heat bath.

 39

2.5.2 Atomic geometry (recorded in nfdynm.data)

In the file “nfdynm.data” (or a file indicated by “F_DYNM” in “file_names.data”), coordinates, and forces for

all the atoms at each MD/optimization step are recorded.

The content of “nfdynm.data” is as follows. Note that atomic units are used in this file regardless of the

units specified in the input parameter file.

a_vector = 9.2863024980 0.0000000000 0.0000000000
b_vector = -4.6431512490 8.0421738710 0.0000000000 (a)
c_vector = 0.0000000000 0.0000000000 10.2158587136
ntyp = 2 natm = 9 (b)
(natm->type) 1 1 1 1 1 1 2 2 2 (c)
(speciesname) 1 : O (d)
(speciesname) 2 : Si

 cps and forc at (iter_ion, iter_total = 1 24) (e)
 1 3.161057370 1.169332082 1.214972077 -0.004058 -0.005565 -0.004966 (f)
 2 6.693102525 2.152889944 4.620258315 0.006945 -0.001028 -0.004994
 3 4.075293851 4.719951845 8.025544553 -0.002872 0.006394 -0.004796
 4 -1.482093879 6.872841789 5.595600399 -0.004362 0.005502 0.004993
 5 -0.567857398 3.322222026 9.000886637 -0.002792 -0.006296 0.004965
 6 2.049951276 5.889283925 2.190314161 0.006974 0.000708 0.004795
 7 4.921740324 0.000000000 3.405282833 0.001436 0.000122 0.000068
 8 -2.460870162 4.262352150 6.810569070 -0.000612 0.001305 -0.000066
 9 2.182281087 3.779821719 10.215855308 -0.000660 -0.001143 0.000001
 cps and forc at (iter_ion, iter_total = 2 40)
 1 3.156999743 1.163767576 1.210005993 -0.002904 -0.005755 -0.003892
 2 6.700048015 2.151861938 4.615264365 0.006567 0.000186 -0.003832
 3 4.072421499 4.726345880 8.020748072 -0.003503 0.005487 -0.003829
 4 -1.486455954 6.878343743 5.600593135 -0.003122 0.005780 0.003831
 5 -0.570648922 3.315925959 9.005851266 -0.003532 -0.005392 0.003892
 6 2.056925355 5.889992076 2.195109289 0.006503 -0.000290 0.003828
 7 4.923176344 0.000121757 3.405351146 0.000397 -0.000013 0.000018
 8 -2.461482612 4.263656762 6.810503226 -0.000210 0.000337 -0.000017
 9 2.181621403 3.778679157 10.215856638 -0.000197 -0.000341 0.000000

(a) Lattice vectors.

(b) After “ntyp =,” the number of elements is given. In this case, it is 2. After “natm =,” the number of

atoms is given. In this case, it is 9.

(c) After “(natom→type),” the correspondence between elements and atoms is shown. In this case,

atoms 1–6 correspond to element “1,” and atoms 7–9 correspond to element “2.”

(d) After “(speciesname),” the list of elements is printed. In this case, “1” corresponds to “O” (oxygen)

and “2” corresponds to “Si” (silicon).

(e) Header information for each step of an MD/optimization. In this case, “1” means the 1st step of an

MD/optimization calculation, and “24” means the number of SCF iterations performed until this

step.

(f) Coordinates and forces of atoms are listed. The first column is the ID of an atom. Columns 2–4 are its

coordinates, and columns 5–7 are its force. If the “velocity” tag in the “printlevel” block is “2,”

the velocity of the atom is displayed in columns 8–10.

 40

2.5.3 Charge density (recorded in nfchr.cube)

In the file “nfchr.cube,” (or a file indicated by “F_CHR” in “file_names.data”), the charge density distribution in

the Gaussian cube style is recorded. Only data from the last MD/optimization step are recorded.

Using the PHASE Viewer or other visualization software, users can view the atomic geometry and charge

density distribution.

2.5.4 Density of states (recorded in dos.data)

In the file “dos.data” (or a file indicated by “F_DOS” in “file_names.data”), the DOS data are recorded.

To draw a graph of the DOS, a PHASE tool “dos.pl” is useful. The execution of this Perl script generates

the file “density_of_states.eps.” In the command below, ”phase_v1100/bin/” is the directory in which PHASE

is installed. The file “density_of_states.eps” can be viewed using ghost script or other tools. For more details,

see the manual for PHASE tools.

% ../../phase_v1100/tools/bin/dos.pl dos.data -erange=-15,10 -with_fermi -color

dos.data File containing the DOS data.

-erange Energy range for DOS visualization; “-15,10” means a range from −15 Ht to 10 Ht.

-with_fermi If this option is used, the Fermi level is indicated as shown in the figure below.

-color Color output

Figure 2.2 Example of the visualization of the DOS (diamond-structure Si)

 41

2.5.5 Band structure (recorded in nfenergy.data)

In the file “nfenergy.data” (or a file indicated by “F_ENERG” in “file_names.data”), eigenvalues for all

k-points are recorded.

To draw a graph of the band structure, a PHASE tool “band.pl” is useful. The execution of this Perl script

generates the file “band_structure.eps.” In the command below, ”phase_v1100/bin/” is the directory in which

PHASE is installed. The file “band_structure.eps” can be viewed using ghost script or other tools. For more

details, see the manual for PHASE tools.

% ../../phase_v1100/tools/bin/ band.pl nfenergy.data bandkpt.in -erange=-15,10 -w
ith_fermi -color

nfenergy.data File containing eigenvalue data.

bandkpt.in File containing k-point data

-erange Energy range for band structure visualization; “-15,10” means a range from −15 Ht to 10

Ht.

-with_fermi If this option is used, the Fermi level is indicated as shown in the figure below.

-color Color output

Figure 2.3 Example of the visualization of a band structure (diamond-structure Si)

 42

2.6 References

[1] W.Kohn, L.J.Sham, Phys. Rev. A140, 1133, (1965)

[2] N. Troullier and J.L. Martins, Phys. Rev. B43, 1993 (1991)

[3] D. Vanderbilt, Phys. Rev. B41 7892 (1990)

[4] P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

[5] G. Kresse and D. Joubert, Phys. Rev. B59, 1758, (1999)

[6] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[7] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[8] C.G. Broyden, Math. Comput. 19, 577, (1965)

[9] P. Pulay, Chem. Phys. Lett. 73, 393 (1980)

 43

3. Input parameter file: nfinp.data (F_INP file)

3.1 Format of input parameter file

The input parameter file “nfinp.data” specifies a model structure (e.g., atomic positions) and calculation

conditions. Although “nfinp.data” is the default name of this file, you can specify an arbitrary filename

through the F_INP keyword. For example, you can set a name related to the target system.

3.1.1 Description of parameters

This section briefly describes how to write the input parameter file. In this file, input parameters are listed in

hierarchical blocks, which are delimited by a block name and curly brackets { }, as shown below.

Upper_block{

Lower_block{

...

tag_keyword = value

}

}

Each block specifies a crystal structure, calculation method, calculation accuracy, and other calculation

conditions. Related parameters are listed together in one block. These blocks are defined in the format

‘blockname{…}’. Parameters are usually specified in the format ‘tag_keyword = value’. Further details

for specifying parameters are described later.

In making an input file, note the following:

 Multiple blocks with the same name cannot be defined at the same hierarchical level.

 Block names are not case sensitive.

 If a block name is misspelled, the block will be ignored and default values will be employed for the

variables in the block. Error messages will not be printed.

 Variables can be separated by commas as well as by line feeds.

 Double quotes are used to include spaces in a string variable;

e.g., title = "This is a title line for the bulk Si.”

 Two-byte characters cannot be used.

The following blocks are available at the top level.

control block Sets options that control the entire calculation process.

accuracy block Sets options related to calculation accuracy.

structure block Sets an atomic structure.

wavefunction_solver block Sets wavefunction solver.

charge_mixing block Sets charge density mixing scheme.

structure_evolution block Sets geometry optimization or molecular dynamics calculation.

postproccesing block Sets post-processing.

printlevel block Sets print level for the output file.

 44

3.1.2 Specification of units

Although atomic units (e.g., bohr and hartree) are default units for input files, you can use other units as well.

Table 3.1 lists available units in PHASE. Default units are shown in bold type.

Table 3.1 Available units in PHASE

Length bohr, angstrom, nm

Energy hartree, eV, rydberg

Time au_time, fs, ps, ns, s, sec, min, hour, day

Velocity bohr/au_time, bohr/fs, angstrom/fs, angstrom/au_time, nm/fs, nm/au_time

Force hartree/bohr, hartree/angstrom, hartree/nm, eV/angstrom, eV/bohr, ev/nm,

rydberg/bohr, rydberg/angstrom, rydberg/nm

Pressure hartree/bohr3, hartree/angstrom3, hartree/nm3, eV/angstrom3, eV/bohr3,

eV/nm3, rydberg/angstrom3, rydberg/bohr3, rydberg/nm3,

Mass au_mass, atomic_mass,

A unit can be individually specified for each variable (e.g., cpumax = 86400 sec). Furthermore, you can

specify units for an entire block. See the example below.

block{

#units angstrom

...

...

}

In the above example, the unit of length is set to Ångstrom. When you specify multiple units, separate the

units by spaces (e.g, #units angstrom eV).

3.1.3 Comment lines

All lines beginning with ! or // are considered to be comment lines. See the example below.

block{

! comment

! tag_keyword = value1 comment

// tag_keyword = value2 comment

tag_keyword = value3

}

 45

3.1.4 Example of input parameter file

The following input file is an example for an electronic-state calculation of Si atoms (diamond structure; two

Si atoms). In this example, typical calculation conditions are employed.

control{

 condition = initial

 cpumax = 86400 sec

 max_iteration = 10000

}

accuracy{

 cutoff_wf = 25.0 rydberg

 cutoff_cd = 100.0 rydberg

 num_bands = 8

ksampling{

 method = monk

 mesh{

 nx = 10

 ny = 10

 nz = 10

 }

}

 initial_wavefunctions = atomic_orbitals

 initial_charge_density = atomic_charge_density

 scf_convergence{

 delta_total_energy = 1e-10

 succession = 3

 }

 force_convergence{

 max_force = 0.001 hartree/bohr

 }

}

structure{

 element_list{

 #tag element atomicnumber

 Si 14

 }

 unit_cell{

 #units angstrom

 a_vector = 0 2.732299538 2.732299538

 b_vector = 2.732299538 0 2.732299538

 c_vector = 2.732299538 2.732299538 0

 }

 unit_cell_type = bravais

 atom_list{

 atoms{

 #tag element rx ry rz imove

 Si 0.125 0.125 0.125 0

 Si -0.125 -0.125 -0.125 0

 }

 coordinate_system = internal

 }

}

wavefunction_solver{

 solvers{

 #tag sol till_n prec cmix submat

 46

 davidson 1 on 1 on

 rmm3 -1 on 1 on

 }

 rmm{

 edelta_change_to_rmm=5e-5

 }

}

charge_mixing{

 mixing_methods{

 #tag no method rmxs rmxe istr prec nbmix

 1 pulay 0.40 0.40 3 on 15

 }

}

Postprocessing{

dos{

sw_dos = ON

deltaE = 1.e-4 hartree

}

charge{

sw_charge_rspace = ON

filetype = cube !{cube|density_only}

title = "This is a title line for the bulk Si"

}

}

 47

3.2 List of tag keywords

Tag keywords for the input parameter file “nfinp.data” are listed in エラー! 参照元が見つかりません。. In

this table, keywords are briefly described. Further details are described in later sections.

Table 3.2 List of tag keywords for the input parameter file “nfinp.data”

1st level block 2nd, 3rd level block Tag keyword Description

control Block for specifying calculation conditions

that control the entire calculation process

 condition Specify the calculation condition. Options are:

preparation, −2: only pre-processing is

executed.

automatic, −1: the option initial or

continuation is automatically selected.

initial, 0: the calculation is started from

initial.

continuation, 1: the previous calculation is

continued.

(The following options are used in EKCAL)

fixed_charge, 2: the calculation with fixed

charge density is started.

fixed_charge_continuation, 3: the previous

calculation by fixed_charge is continued.

(defaults to automatic)

 cpumax Upper limit of CPU time (defaults to 86400

sec). Units are {sec, min, hour, day}

 max_iteration

max_total_scf_iter

ation

Maximum number of total SCF iterations

(defaults to 10000)

 max_mdstep Maximum number of total steps of an MD

calculation (default: limitless)

 max_scf_iteration Maximum number of SCF iterations in one

MD step (default: limitless)

 nfstopcheck A number written in the file “nfstop.data”

that determines the number of steps to

execute before stopping the process. This

variable can be changed even when the

calculation is running.

 sw_ekzaj If this switch is set to ON, wavefunctions are

stored in the wavefunction file F_ZAJ, which

is used as an input for EKCAL. Set this

switch to ON to read the file in EKCAL. Note

that this is available only for the calculation

at the Γ-point. (defaults to OFF)

accuracy Block for controlling calculation accuracy

 cutoff_wf Cutoff energy for wavefunctions

 cutoff_cd Cutoff energy for charge density

 num_bands Number of bands

 ksampling Block for k-sampling

 method Specify k-point sampling method. Options are

monk: the Monkhorst–Pack method

mesh: mesh generation

file: read k-points from a file

 48

direct_in: Directly inputs k-points

gamma: Γ-point only

(Defaults to monk)

 mesh Block for mesh generation

 nx, ny, nz Number of mesh divisions in the X, Y, and Z

directions.

default value = (4,4,4)

maximum value = (20,20,20)

 kshift Block that specifies the shift of k-points. This

block is enabled only for the Monkhorst–Pack

method.

 k1, k2, k3 Specify the mesh displacement. Input range

is [0.0, 0.5]. Default values are as follows:

If the crystal system is hexagonal,

k1 = k2 = 0, k3 = 0.5

Otherwise,

k1 = k2 = k3 = 0.5

Here 0.5 indicates half the mesh width.

 kpoints Block for weighting of k-points

 kx ky kz denom

weight
 (kx/denom, ky/denom, kz/denom)

Coordinates and weighting of k-points

 smearing Block for smearing of k-sampling

 method Specify method used for smearing. Options

are

parabolic: parabolic method (default)

cold: cold smearing method (This option is

effective for metal systems.)

tetrahedron: tetrahedron method

improved_tetrahedron: improved tetrahedron

method

Note. tetrahedron and improved_tetrahedron

are available only when the mesh method is

selected for k-point sampling.

 width Specify the smearing width (defaults to 0.001

hartree)

This variable is used only when method =

parabolic or cold.

 (no block name)

 xctype Specify a type of exchange-correlation energy.

Options are

LDA: LDAPW91, PZ

GGA: GGAPBE, REVPBE

 scf_convergence Block that specifies convergence criteria of

the SCF calculation

 delta_total_energy Convergence criterion for the total energy

difference (default: hartree)

 succession The SCF iterations are terminated if the

energy difference is less than the

specified criterion -times in succession. The
variable “succession” specifies the number .

(defaults to 3)

 force_convergence Block that specifies convergence criterion of

atomic force

 max_force Convergence criterion for the maximum force

(default: 0.001 hartree/bohr)

 ek_convergence Block that specifies convergence criteria for

 49

eigenvalues. This block is enabled only for

EKCAL.

 num_extra_bands Number of bands that are allowed to remain

unconverged (default: 2)

 num_max_iteratio

n

Maximum number of updates per k-point

(defaults 300)

 sw_eval_eig_diff Switch that specifies whether to evaluate

eigenvalues. Options are

1, on, yes: Evaluate (default)

0, off, no: Do not evaluate

 delta_eigenvalue Allowable error of eigenvalues

(defaults to hartree)

 succession Number of iterations (defaults to 3)

 (no block name)

 initial_wavefunctio

ns

Initial guess for wave functions. Options are

random_numbers: Initialize by random

numbers

matrix_diagon: Initialize by small matrix

diagonalization

atomic_orbitals: Initialize by atomic orbitals

file: Input initial value from the file F_ZAJ

 matrix_diagon Initial values of wavefunctions are given by

small matrix diagonalization

 cutoff_wf Cutoff of wavefunctions

 (no block name)

 initial_charge_dens

ity

Initial value of charge density. Options are

Gauss: Initialize by overlap of the Gaussian

distribution function.

atomic_charge_density: Initialize by overlap

of electron density of atom.

file: Input initial value from the file F_CHGT

 precalculation Block for preconditioning of charge mixing

 nel_Ylm Specify the highest order of spherical

harmonics to be prepared in advance and

stored in memory. (defaults to 9)

structure Block for structure settings

 unit_cell_type

Type of unit cell. Options are primitive and

Bravais.

 unit_cell

a_vector

b_vector

c_vector

a, b, c

alpha,

beta,

gamma

Specify unit cell. The unit cell can be defined

in the following two ways.

(x,y,z) component for each lattice vector

(default unit is Bohr)

Lattice parameters:

the a-, b-, c-axes;

the angles formed by b–c, c–a, a–b axes

(default unit of angle is degree)

 symmetry

 method Options are {manual, automatic}.

The option automatic automatically

determines symmetry.

 crystal_structure Options are {diamond, hexagonal, fcc, bcc,

simple cubic}

 tspace Block for TSPACE.

 50

Details of TSPACE are described in “空間群の

プログラム TSPACE (A program for space

group TSPACE)” written by A.Yanase and the

manual of ABCAP.

 lattice_system Options are {rhombohedral,trigonal,r,t,-1},

{hexagonal,h,0}，{primitive,simple,p,s,1},

{facecentered,f,2}，{bodycentered,b,3},

{bottomcentered,basecentered,onefacecentere

d,bot,ba,o,4}

 num_generators Number of generators

(an integer value from one to three)

 generators Generators

 af_generator Generators for a magnetic space group

 (no block name)

 sw_inversion Switch for inversion symmetry

 (no block name)

 magnetic_state Options are {para, antiferro, ferro}

antiferro can be abbreviated to af.

 atom_list Atom list

 coordinate_system Options are {cartesian, internal}

 atoms Block of atoms (tabular form). This table

contains the following columns.

 rx, ry, rz xyz coordinates

 element Element names

 mobile Flags that specify whether the atoms can

move or not during the calculation

(Use {1,0}, {on,off}, or {yes, no})

 weight If sw_inversion=on and weight=2, copied

atoms are generated at positions of inversion

symmetry.

 element_list

 element Element names. This parameter must match

that specified in the element column of the

atoms block.

 atomic_number Atomic number

 mass Mass

 zeta Spin polarization:

 deviation Deviations of Gaussian functions used to

determine the initial guess of charge density

distribution

(of , which

determines deviation of electron density

distribution).

dev or standard_deviation can also be used as

the tag name instead of deviation.

wavefunction_so

lvers

solver Wave function solver

 sol Specify the wavefunction solver. Options are

MatrixDiagon: matrix diagonalization

method

lm+MSD: lm(line minimization) +

MSD(modified steepest descent) method

RMM2P, RMM3: The RMM method

MSD: The modified steepest descent method

submat: subspace rotation method

 51

Davidson: The Davidson method

 till_n The wavefunction solver specified in the sol

column is employed until the -th step. This

column till_n sets the number .

 dts Initial value of time step

 dte Time step for the steps after the itr-th step. If

only dts is specified, the same value is set to

dte.

 itr Time step is changed from dts to dte after the

 -th step. The variable itr sets the number .

 var An interpolation method. Options are {linear,

tanh}

 prec Switch that specifies whether to execute

preprocessing. Options are {on, off}

 cmix Variables that specify which charge-mixing

method is used for each wavefunction solver

by the number corresponding to the order of

the method listed in the charge_mixing block.

 submat If this variable is on, subspace rotation as

specified in the subspace_rotation variable is

performed. Options are {on,off}

 line_minimization Block for line minimization

 dt_lower_critical

dt_upper_critical

Lower and upper limits of time steps for line

minimization (default values are 0.005 and

2.0, respectively)

 delta_lmdenom Factor of line minimization

 rmm The residual minimization method

 imGSrmm Specify how often Gram–Schmidt

orthogonalization is applied to the wave

functions updated by the RMM method.

(default value is imGSrmm=1, which means

orthogonalization is performed every step)

 rr_Critical_Value Convergence criterion for each band. If the

residual error of the band becomes less than

the criterion, the updating of this band will

stop.

 edelta_change_to_r

mm

Threshold used to switch the wave function

solver to the RMM method. If the difference

in the total energy becomes less than the

value specified by this variable, the

wavefunctions solver is changed to the RMM

method.

 subspace_rotation Block for controlling subspace diagonalization

 subspace_matrix_s

ize

Size of subspace matrix. Default value is

equal to the number of bands (i.e.,

num_bands). If a specified value is larger

than the num_bands, the value of

num_bands is set to the keyword.

 damping_factor A damping factor for off-diagonal elements. If

a specified value exceeds the range of [0.0,

1.0], it is treated as 1.0.

 period If the submat variable in the solver block is

ON, subspace rotation is performed once per

period times. If the period = 3, for example,

the subspace rotation is performed when

 52

iteration = 1,4,7,10,…

(Defaults to 1)

 critical_ratio If the ratio between values of off-diagonal and

diagonal elements becomes less than the

critical_ratio once, then subspace rotation is

not performed for the elements. (Defaults to

)

charge_mixing Block for the charge-mixing method

 mixing_methods Mixing methods of charge density

 method Method of charge mixing. Options are

{simple,broyden2,pulay}

(Defaults to simple)

 rmxs Initial value of charge mixing ratio

(Defaults to 0.5)

 rmxe Charge mixing ratio for the steps after itr-th

step. If only rmxs is specified, the same value

is set to rmxe. (Defaults to 0.5)

 itr Number of the steps taken to vary the charge

mixing ratio form rmxs to rmxe.

 var Method of varying the charge mixing ratio

Options are {linear, tanh}

 prec Switch that specifies whether to execute

preprocessing. Options are {on,off}

 istr When the specified method is not simple, this

method is employed after the istr-th step.

 nbmix Charge density of the previous steps will

be stored to arrays. The variable nbmix

specifies the number .

 update Specify a way of renewing the arrays that

store the charge density when the arrays are

filled. Options are

anew: discard all stored data and reallocate

the arrays

renew: replace the oldest data with the

newest data

 charge_preconditi

oning

 Block for preconditioning of charge mixing

 amix Variable for preconditioning

 bmix Variable for preconditioning

structure_evolut

ion

 Block for structure optimization and

molecular dynamics

 method Options are {sd, quench, gdiis, bfgs, cg,

velocity_verlet}

 dt Time step

 stress Calculation of stress

 sw_stress Switch that specifies whether to calculate

stress. Options are {on, off}

 gdiis Block for the GDIIS and BFGS methods

 initial_method Initial method that is employed before

switching the method to GDIIS or BFGS.

Options are {quench, cg, sd}

 gdiis_box_size Atomic coordinates of the previous steps

 53

will be stored in arrays. The variable

gdiis_box_size specifies the number

 gdiis_hownew Method of renewing the arrays that store the

atomic coordinates after the gdiis_box_size

steps. Options are {anew, renew}

 c_forc2gdiis Threshold used to switch the method to

GDIIS or BFGS.

Defaults to 0.0025 (hartree/bohr)

postprocessing

 dos Output of density of states

 sw_dos Switch that specifies whether to output the

density of states.

Options are {on, off}

 method Options are {tetrahedral, Gaussian}

 deltaE_dos Energy accuracy for the density of states

 variance Variance of the Gaussian function. This

variable is enabled only when

method=Gaussian.

 nwd_dos_window_

width

Energy width is specified by the following

equation

 nwd_dos_window_width deltaE_dos

 charge Output of charge

 sw_charge_rspace Switch that specifies whether to output

charge density. Options are {on, off}

 filetype File format of the charge density file

Options are {cube, density_only}

 title Title of the charge density file. This variable

is enabled only when fileytype=cube.

printoutlevel Print level of the standard output

0: no output

1: output normally

2: output extra information for debugs

 base This variable becomes the default values for

the other variables that specify the print

level.

 pulay Pulay charge-mixing method

 timing Timing information

 solver Electronic state solver

 evdff Difference of eigenenergies

 rmm The RMM method

 snl Non-local potential

 gdiis The GDIIS method

 eigenvalue Eigenvalue

 spg Space group

 kp k-points

 matdiagon Matrix diagonalization method

 vlhxcq Local potential

 totalcharge Electron density

 submat Subspace matrix rotation method

 strcfctr Structure factor

 parallel Print level for the result of preprocessing of

parallelization

 input_file Output of analysis result of the input file

F_INP

 parallel_debug If this variable is set to 1, not only the 0-th

 54

process but also other processes will output

the information to files such as

output00x_xxx.

 jobstatus If this variable is set to 1, progress of the

calculation will also be printed in the file

jobstatus00x.

 jobstatus_option Output of the job status

 jobstatus_format Options are tag, tag_line, and tabta.

(Defaults to tag)

 jobstatus_series ON or OFF

 55

3.3 Control block

The control block contains variables that control the entire calculation process or specify general options. An

example of the control block is shown below.

control{
 condition = initial
 cpumax = 1 day
 max_iteration = 1000000
}

The control block contains the following variables.

condition Specifies whether the calculation starts from an initial condition or continues a

previous calculation. Available options are as follows:

preparation: This option only executes pre-processing (e.g., printing size of

allocated memory, generating k-points).

initial: The calculation starts from an initial condition (default).

continuation: The previous calculation is continued. Wave functions, charge

density distribution, and other data are read from files generated by the

previous calculation.

automatic: This option automatically chooses initial or continuation. The option

continuation is chosen if the necessary files for continuation exist. (These files

are automatically generated by the previous calculation). Otherwise, the

option initial is selected.

(The following options are used in EKCAL.)

fixed_charge: Charge density distribution is read from files, and only wave

functions are converged while the charge distribution is fixed. This option is

employed for the purpose of only calculating, for example, band structure.

fixed_charge_continuation: Continuation of the fixed_charge.

Default value is initial. The keywords initial， continuation，automatic，

preparation，fixed_charge，fixed_charge_continuation can be substituted by

integer numbers 0，1，−1，−2，2，3，-3, respectively.

cpumax Specifies a time limit for the execution of PHASE. The value is specified in the

format “real number + unit.” Default value is 86400 s (i.e., one day). Available units

are “sec,” “s” (identical with “sec”), “min,” “hour,”and “day.” Unit cannot be omitted.

If the execution time exceeds the specified value, PHASE terminates the

calculation and generates restart files even if the calculation has not yet

converged.

If there is a possibility of exceeding the time limit given by a job scheduler, it is

recommended to set a smaller value than the time limit.

(For example, if the job time limit is six hours and there is no post-processing, such

as calculating density of states, “5.8 hour” may be appropriate.)

max_iteration

max_total_scf_iteration

Specifies the maximum number of total SCF iterations. If the number of total SCF

iterations exceeds the specified value, the calculation halts, and restart files are

generated. Default value is 10000.

max_scf_iteration Specifies the maximum number of SCF iterations for one step of structure

optimization or molecular dynamics. The first steps of structure optimization often

require hundreds of SCF iterations to converge because of the instability of the

initial structure. In such cases, it is recommended to truncate the SCF iterations

early and calculate force to update atomic positions to a more stable structure.

However, a very small value (e.g., 10) causes serious errors and makes the

calculation slow. Do not use if an accurate force is essential.

 56

3.4 Accuracy block

3.4.1 Cutoff energy

Cutoff energy is an important parameter that determines the accuracy of the calculation using a plane-wave

basis set.

The cutoff energies are specified as follows:

accuracy{

cutoff_wf = 25 Rydberg

cutoff_cd = 225 Rydberg

}

cutoff_wf Specifies cutoff energy for wave functions in units of energy.

cutoff_cd Specifies cutoff energy for charge density in units of energy.

Although it should be examined whether the given cutoff energy can achieve sufficient accuracy, the

following guides are also useful.

 25 rydberg may be appropriate for cutoff_wf.

 If norm-conserving pseudopotentials are employed, four times cutoff_wf may be appropriate for

cutoff_cd. Otherwise, nine times cutoff_wf may be appropriate.

3.4.2 Number of bands

The number of bands is specified by the num_bands variable in the accuracy block as follows.

accuracy{

num_bands = 12

}

num_bands Number of bands

The number of bands must be larger than half the number of valence electrons. Typically, num_bands is set

to 1.2 times the minimum value. If the specified value is less than the lower limit, the value will be

automatically increased. If no value is given to the keyword, the value is automatically set.

3.4.3 k-point sampling and smearing

In addition to the cutoff energy, k-point sampling is also an important factor that determines the reliability of

the calculation. It is set up in the ksampling block of the accuracy block. An example is shown below.

accuracy{

ksampling{

method = monk

mesh{

nx=4

ny=4

nz=4

}

}

}

The ksampling block contains the following variables and blocks.

 57

method Specifies the method used for k-point sampling. Options are

monk: k-point sampling based on the Monkhorst–Pack method. Typically, this option

is recommended. (default)

mesh: The reciprocal space is divided by a simple mesh. This option is specified when

the tetrahedron method is employed to calculate the charge density distribution

and the density of states.

file: k-points are read from a file. This option is used, for example, when user-defined

k-points are specified to calculate the band structure.

gamma: Only the -point is sampled. This option is specified when a sufficiently large

unit cell is employed and the -point is sufficient to obtain adequate accuracy.

In any method, if -point is included in k-point sampling and inversion symmetry

is not applied for the system, calculation of wavefunctions at the -point is executed

about three times faster than that at other k-points by using symmetry of this point.

(You can also apply the normal method to the -point as well as other k-points as

described later.)

mesh Number of divisions along each reciprocal space direction, as specified by

nx: number of divisions along the first reciprocal lattice vector

ny: number of divisions along the second reciprocal lattice vector

nz: number of divisions along the third reciprocal lattice vector

Smearing is a manipulation that smears electrons over several orbitals within the range of the Fermi level.

By this manipulation, high accuracy may be archived with few k-points for metal systems that have many

states near the Fermi level. Smearing is specified in the block smearing of the accuracy block as follows.

accuracy{

smearing{

method = parabolic

width = 0.001 hartree

}

}

The smearing block contains the following variables.

method Specifies a method of smearing. Options are

parabolic: Smearing of the electron distribution near the Fermi level.

tetrahedron or improved_tetrahedron: tetrahedron method. These options are selected

when the tetrahedron method is employed to calculate the density of states.

cold: Cold smearing. This option is generally effective for metal systems.

width Specifies the smearing width in units of energy. Default value is 0.001 hartee.

This variable is enabled only when method=parabolic.

3.4.4 Exchange-correlation energy

Exchange-correlation energies are classified into LDA or GGA. In PHASE, LDAPW91 and PZ are available

for LDA, while GGAPBE and REVPBE are available for GGA.

accuracy{

xctype = ggapbe

}

xctype Exchange-correlation energy (LDA, GGA)

LDA: LDAPW91, PZ

GGA: GGAPBE, REVPBE

 58

3.4.5 Convergence criteria

There are two types of convergence criteria: criterion for SCF calculation and criterion for structure

optimization. These criteria are specified as follows:

accuracy{

scf_convergence{

delta_total_energy = 1.0E-8 Hartree

succession = 3

}

force_convergence{

max_force = 2.0E-4 Hartree/Bohr

}

}

Blocks and variables related to convergence criteria are shown below.

scf_convergence This block specifies convergence criteria for the SCF calculation.

delta_total_energy Convergence criterion for the total energy difference. If the difference between the

current total energy and the total energy of the previous step is smaller than the

specified value, the convergence criterion is satisfied.

Default value is 1e−10 hartree.

succession SCF iterations are terminated if the energy difference is smaller than the criterion

delta_total_energy n-times in succession. The variable succession specifies the number

n. Default value is 3.

force_convergence This block specifies the convergence criterion for structure optimization.

max_force Convergence criterion for the maximum force in units of force.

Default value is 1e−3.

3.4.6 Initial wavefunctions and initial charge density

The SCF calculation can converge faster if initial wavefunctions and initial charge density are appropriately

set up. Types of initial wave functions and initial charge density are specified as follows:

accuracy{

initial_wavefunctions = atomic_orbitals

intial_charge_density = atomic_charge_density

matrix_diagon{

cutoff_wf = 5 rydberg

}

}

Blocks and variables related to initial wavefunctions and initial charge density are described below.

initial_wavefunctions Specifies a method to initialize wavefunctions. Options are

random_numbers: Initial guess is obtained using random numbers.

matrix_diagon: Initial guess is obtained by matrix diagonalization. The cutoff

energy for this procedure can be specified by the block matrix_diagon described

later.

file: Initial guess is read from a wavefunctions file. If you have a data file of

wavefunctions that is already almost converged, you can specify this file to read

them.

atomic_orbitals: Wavefunctions are initialized by data of atomic orbitals that is

saved in the pseudopotential files.

(Defaults to random_numbers)

initial_charge_density Specifies a method used to initialize charge density. Options are

Gauss: Initial guess is obtained by simple atom-centered Gaussian functions.

file: Initial charge density is read from a file. If you have a data file of charge density

 59

that is already almost converged, you can specify this file to read density.

atomic_charge_density: Charge density is initialized by the atomic orbitals saved in

the pseudopotential files.

(Defaults to Gauss)

matrix_diagon This block is for matrix diagonalization.

This block is enabled only when initial_wavefunctions=matrix_diagon.

cutoff_wf Specifies the cutoff energy for initializing wavefunctions.

Default value is half the normal cutoff energy.

3.5 Structure block

A model of atomic structure is specified in the block structure as follows:

structure{
 unit_cell_type = Bravais
 unit_cell{
 #units angstrom
 a_vector = 4.914100000 0.000000000 0.000000000
 b_vector = -2.457050000 4.255735437 0.000000000
 c_vector = 0.000000000 0.000000000 5.406000000
 }
 atom_list{
 coordinate_system = Internal
 atoms{
 #units angstrom
 #tag element rx ry rz
 O 0.413100000054 0.145400000108 0.118930000000
 O 0.854599999943 0.267699999886 0.452263333333
 O 0.732300000003 0.586900000006 0.785596666667
 O 0.267699999946 0.854599999892 0.547736666667
 O 0.145399999997 0.413099999994 0.881070000000
 O 0.586899999939 0.732299999879 0.214403333333
 Si 0.530000000000 0.000000000000 0.333333000000
 Si -0.000000000072 0.529999999857 0.666666333333
 Si 0.469999999954 0.469999999908 0.999999666667
 }
 }
 element_list{
 #tag element atomicnumber mass zeta deviation
 O 8 29164.9435 * *
 Si 14 51196.4212 * *
 }
 symmetry{
 method = automatic
 sw_inversion = off
 }
}

3.5.1 Unit cell

unit_cell_type Specifies a type of unit cell. Options are primitive or bravais. Default value is bravais.

To define a unit cell by lattice parameters, the variable unit_cell_type must be bravais.

In addition, when unit_cell_type=bravais, you can convert the lattice by using the

variable lattice_system in the block tspace in the block symmetry. The details of the

lattice_system variable are described latter.

unit_cell This block specifies the unit cell. You can specify the unit cell by cell vectors or by

lattice parameters. Specifying the unit cell by lattice parameters is enabled only when

 60

unit_cell_type=bravais.

 Specifying by cell vectors

By using cell vectors, you can specify the unit cell as follows:

 unit_cell{
 #units angstrom
 a_vector = a1 a2 a3
 b_vector = b1 b2 b3
 c_vector = c1 c2 c3
 }

The a-axis, b-axis, and c-axis are specified by the variables a_vector, b_vector, and c_vector, respectively. The

unit of length can be defined for the entire block, not for each variable. In this example, the unit of length is

set to Ångstrom by the description “#units angstrom.”

 Specifying by lattice parameters

By using lattice parameters, the unit cell can be defined as follows:

 unit_cell{
 a = a0
 b = b0
 c = c0
 alpha = alpha0
 beta = beta0
 gamma = gamma0
 }

The variables a, b, c, alpha, beta, and gamma specify the lattice parameters and , respectively.

If a unit cell is specified using lattice parameters, cell vectors will be defined by the lower triangular matrix

as follows:

 a_vector = a1 0.0 0.0

 b_vector = b1 b2 0.0

 c_vector = c1 c2 c3

3.5.2 Atomic coordinates

atom_list This block specifies atomic coordinates, etc.

coordinate_system Specifies whether the atomic coordinates are defined using Cartesian

coordinates or fractional coordinates. Options are

internal: atomic positions are referred to lattice vectors.

cartesian: atomic positions are given in Cartesian coordinates.

Default value is internal.

atoms This block specifies atomic coordinates and other properties of atoms.

These properties are defined in a tabular form. Representative properties

are list below.

 element Element names. The element names used here need to be defined in the

block element_list described latter.

 rx x-coordinates

 ry y-coordinates

 rz z-coordinates

 mobile Flag that specifies whether or not the atoms can move in geometry

optimization or in molecular dynamics. Set this flag to on, to update the

atomic coordinates. Default value is off.

 weight If sw_inversion=on and weight=2, copied atoms are generated at positions

 61

of inversion symmetry. Defaults to 1.

3.5.3 Atomic species

element_list This block specifies elements and their properties. These properties

are defined in tabular form. Representative properties are list below.

 element Name of elements (required).

 atomicnumber Atomic number (required).

 mass Mass

 zeta Initial value of spin polarization. This variable is enabled only when

spin is considered.

The pseudopotential files are specified by the file pointer F_POT(n) in the file “file_names.data.” Here n is an

integer that corresponds to the order of elements in the element_list block. For example, if the element_list is

defined as follows

structure{

...

...

element_list{

#tag element atomicnumber mass zeta deviation

O 8 29164.9435 * *

Si 14 51196.4212 * *

}

}

and the corresponding pseudopotential files for Si and O atoms are Si_ggapbe_nc_01.pp and

O_ggapbe_us_01.pp, respectively, you can specify these files as shown below.

&fnames

F_INP=’./nfinp.data’

F_POT(1)=’./Si_ggapbe_nc_01.pp’

F_POT(2)=’./O_ggapbe_us_01.pp’

/

The pseudopotential files that can be downloaded from our website are generated either by GGA/PBE or by

LDA/PW91.You can identify which functionals are used to generate the pseudopotential by their filenames

because these filenames contain the string “ggapbe” or “ldapw91.” Note that you cannot execute the hybrid

calculation composed of ggapbe and ldapw91. Ultrasoft, PAW, and norm-conserving pseudopotentials should

not be mixed. Atomic species can be listed up to 16 types

3.5.4 Symmetry

symmetry This block specifies symmetry of the system. Using symmetry enables us to significantly

reduce the calculation amount. The following blocks and variables are available.

method This method determines symmetry. Options are

manual: symmetry is directly specified by input (default).

automatic: symmetry is automatically determined.

sw_inversion Switch that specifies whether inversion symmetry is applied. The center of inversion

symmetry is set to the origin (0,0,0). Note that this option is efficient for systems having

inversion symmetry, but if this option is applied to a system that has no inversion

symmetry, incorrect calculations will be carried out.

tspace This block specifies the generator by using TSPACE

lattice_system Specify the type of lattice. This variable is enabled only when unit_cell_type=bravais.

 62

Options are facecentered, bodycentered, basecentered, and rhombohedral.

If this variable is specified, the input lattice is converted to the lattice specified.

See Table 4.1 for more details on converting lattices. By using this variable, you can input

the lattice using a Bravais lattice, which is easy to specify. However, the actual calculation

is performed using a basic lattice, which is easy to calculate. By this option, only the unit

cell is converted. Therefore, atomic potions need to be defined to fit the basic lattice. For

instance, in the case of a face-centered cubic lattice, only the atom on the origin should be

specified. k-point sampling should also be specified to fit the converted lattice.

generators This table specifies the generators. The generators can be defined up to only three. See

section 4.2 for more details on specifying generators.

 63

3.6 Wavefunction_Solver block

3.6.1 Calculation flow of PHASE

Figure 3.1 shows calculation flow of PHASE.

Figure 3.1 Calculation flow of PHASE

The Kohn–Sham equation

 (1)

is solved during updating wavefunctions. Trial wavefunctions are given, and the equation

is iteratively solved to obtain the solution to (1). Here corresponds to a differential energy for

wavefunctions , and it approaches zero during optimization of the wavefunctions. During the process of

generating the charge density in Fig. 3.1, by using the updated wavefunctions, a new charge density is

given by

The inner loop in Fig. 3.1 is processed until self-consistency is achieved (). This calculation is

called a self-consistent field (SCF) calculation. The outer loop in Fig. 3.1 is for structure optimization. Atomic

positions are updated until the forces acting on atoms become almost zero.

3.6.2 Wavefunction solver

During the SCF calculation, wavefunctions are updated by the “wavefunction solver.” The wavefunction

solver is specified in the block wavefunction_solver.

Atomic position : Initial

Charge density : Initial
Wave function : Initial

in

inQ

in

Calculate charge density out
Update charge density in

Update wave function

  outin

Calculate force

force Update atomic position inQ

Charge density mixing

Yes

No

No

Yes

 64

wavefunction_solver{
 solvers{
 #tag sol till_n prec cmix submat
 msd 1 on 1 on
 davidson 2 off 1 off
 rmm3 -1 on 1 on
 }
 davidson{
 max_subspace_size = 12
 ndavid = 4
 }
 rmm{
 edelta_change_to_rmm = 1e-3
 }
}

The following blocks and variables are available in the wavefunction_solver block.

solvers This block specifies the wavefunction solver.

 sol Specify an algorithm for the wavefunction solver. Options are

MSD: the modified steepest descent method. Although the

computational cost for each step is the lowest, it is difficult to get

convergence by using only this method. This method is mainly used

for solving initial wavefunctions.

lm+MSD: the modified steepest descent method combined with line

minimization. The computational cost for each step is lower than

that of the other methods below, and this method can converge

faster than the MSD method.

CG: the conjugate gradient method. Although the computational cost

is higher than that of lm+MSD, convergence is normally better.

Davidson: the Davidson method. Although the computational cost for

each step is higher than that of other methods, this method

generally provides good accuracy.

RMM3: The RMM3 method has a lower computational cost than the

Davidson method, while its accuracy is about the same. However,

this method is not stable for random wavefunctions; thus, you

should use another solver for the initial SCF steps before applying

RMM3.

 till_n The wavefunction solver specified in the sol column is applied until the

 -th step. This till_n column specifies the number .

In the above example, the MSD method is employed for the first step,

the Davidson method is applied until the second step (However, unless

the criterion edelta_charge_to_rmm is satisfied, the Davidson method

will be applied for later steps). If a negative value is set for till_n, the

specified solver will be applied until the final step. Therefore, in the

example, the RMM3 method will be employed until the last step.

 prec Flag that specifies whether to execute preprocessing. Normally this

should be “on.” However, in case of the Davidson method, “off” may be

appropriate.

 cmix Specify the method used for charge mixing. Details of charge mixing

are described later.

 submat Specify whether to perform subspace matrix diagonalization. Options

are ON and OFF. Normally, this should be “on,” but it is not necessary

to set to “on” for the Davidson method because subspace matrix

diagonalization is already implemented in this method.

davidson Block for the Davidson method. The following variables are available

to control the Davidson method.

 65

max_subspace_size Specify the maximum size of the subspace used in the Davidson

method. Default value is four times the number of bands.

ndavid The Davidson method updates wavefunctions while gradually

spreading the subspace. This variable ndavid specifies the number of

steps to be used to spread the subspace. Defaults to 5.

rmm Block for the RMM method

edelta_change_to_rmm The RMM method is not stable for the totally unconverged

wavefunctions in early steps. Therefore, another wavefunction solver

is used for the initial steps before applying RMM. This variable

edelta_change_to_rmm is a threshold used to switch the wave function

solver to the RMM method. If the difference in the total energy

becomes less than the value specified by this variable, the

wavefunctions solver is changed to the RMM method.

line_minimization Block for line minimization. Line minimization is performed in the

lm+MSD method and CG method to obtain an appropriate step size.

dt_lower_critical Specify lower limit for the step size of line minimization.

(Defaults to 0.1)

dt_upper_critical Specify upper limit for the step size of line minimization.

(Defaults to 2.0.)

3.7 Charge_Mixing block

3.7.1 Charge mixing method

In the SCF iteration, the calculated charge density is mixed with the density obtained from the previous

iteration to obtain the input density for the next iteration. This “charge mixing” is specified by the block

charge_mixing as follows.

charge_mixing{
 mixing_methods{
 #tag method rmxs rmxe prec istr nbmix
 pulay 0.4 0.4 on 3 15
 }
 charge_preconditioning{
 amix = 0.9
 bmix = -1
 }
}

In the charge_mixing block, the methods used for charge mixing are specified by the following blocks and

variables.

mixing_methods This tabular form block specifies the methods used for charge mixing.

Multiple methods can be defined in this table. These methods are

specified by the cmix column of the solvers table mentioned above.

The cmix column specifies which charge-mixing method is used for

each wavefunction solver by the number corresponding to the order of

the method list.

 method Specify an algorithm used for charge mixing. Options are

simple: simple mixing

broyden2: improved Broyden method

pulay: The RMM-DIIS method by Pulay

Note. The broyden2 and pulay are quasi-Newton methods.

 rmxs Initial value of charge mixing ratio.

 66

 rmxe Final value of charge mixing ratio.

 prec Specify whether to execute preprocessing. Normally, this should be

“on”.

 istr Even if broyden2 or pulay is selected, the simple method is employed

for the first steps. This variable istr specifies the number of steps that

use the simple method.

 nbmix When broyden2 or pulay is selected, this variable nbmix specifies the

number of previous iterations whose charge density is stored as a

record.

charge_preconditioning Set the preconditioning factor. If preconditioning is enabled, the

mixing ratio of G is determined by the following equation.

Here represents the minimum value of G (excluding the origin).

Values for amix and bmix can be specified by the variables in the

same block, but default values are recommended.

 amix

 bmix

3.7.2 Technics to accelerate the convergence

Here we introduce some techniques that are useful when the SCF calculation does not rapidly converge.

(1) Subspace diagonalization

By default, subspace diagonalization is not carried out. If subspace diagonalization is executed, although

each step consumes more calculation time, convergence will be accelerated in most cases. To perform the

diagonalization, define the submat column and set its value to “on.”

wavefunction_solver{
 solvers{
 #tag sol till_n dts dte itr var prec cmix submat
 lmMSD -1 0.2 1.0 40 linear on 1 on
 }
}

The behavior of SCF convergence is affected by whether subspace diagonalization is applied before updating

wavefunctions or after. This difference is especially significant when the RMM method is employed. By

default, diagonalization is applied after updating wavefunctions. To apply it before updating wavefunctions,

set the variable before_renewal to “on.”

wavefunction_solver{
 solvers{
 #tag sol till_n dts dte itr var prec cmix submat
 lmMSD -1 0.2 1.0 40 linear on 1 on
 }
 submat{
 before_renewal=on
 }
}

 67

Subspace diagonalization is more effective when many bands are involved. Because of this, although the

computational cost generally increases with an increasing number of bands, the entire calculation time may

sometimes be reduced when you increase the number of bands.

(2) Truncation of SCF iterations

When the initial atomic coordinates significantly differ from a stable structure, the first steps of structure

optimization often require a large number of SCF iterations to converge. In this case, it is recommended to

truncate the SCF iterations early and calculate the forces needed to update atomic positions to a more stable

structure. This may reduce the entire calculation time. To truncate the SCF iterations, set the variable

max_scf_iteration in the control block as follows.

control{
 ...
 max_scf_iteration = 50
}

In the above example, the SCF calculation will end after the 50-th iteration even if the SCF calculation has

not converged, and the force is calculated to update atomic positions.

(3) Changing the mixing ratio of total and spin charge densities

When spin is considered, total charge densities and spin charge densities (i.e., difference between charge

densities of up spin and down spin) are individually mixed, and different mixing ratios can be applied to

these two charge mixings. To set a different charge-mixing ratio, define the spin_density_maxfactor variable

as shown below.

charge_mixing{
 spin_density_mixfactor = 4
 mixing_methods{
 #tag no method rmxs rmxe prec istr nbmix update
 1 broyden2 0.1 0.1 on 3 15 renew
 }
}

In the above example, since the spin_density_mixfactor is set to four, the mixing ratio of spin density is set to

0.4 (= 0.1 × 4).

If you want to mix charge densities of up spin and down spins, set the sw_recomposing variable to “off”:

charge_mixing{
 sw_recomposing = off
 ...
}

(4) Changing the algorithm used for spin charge mixing

You can force PHASE to employ the simple mixing method for spin charge density. This option can be

specified by setting the variable sw_force_simple_mixing in the spin_density block to “on” as follows.

charge_mixing{
 sw_recomposing=on
 spin_density_mixfactor = 4
 mixing_methods{
 #tag no method rmxs rmxe prec istr nbmix update
 1 broyden2 0.1 0.1 on 3 15 renew
 }
 spin_density{

 68

 sw_force_simple_mixing = on
 }
}

(5) Fixing spin

If you perform the SCF calculation with a fixed spin, convergence may be improved. This option is specified

by the block ferromagnetic_state in the structure block as follows

structure{
 ...
 ferromagnetic_state{
 sw_fix_total_spin = on
 spin_fix_period = INITIALLY
 total_spin = 1.0
 }
 ...
}

The following variables can be specified in the ferromagnetic_state block.

sw_fix_total_spin If “on,” total spin is fixed.

spin_fix_period Specify how to fix total spin. Options are

INITIALLY: total spin is fixed to the value of the initial SCF iteration, and the
constraint will be weakened step by step.

WHOLE: total spin is fixed to the initial value until the final step.

any integer value: total spin is fixed until the specified number of iterations. After that,

a normal calculation is performed.

total_spin Specify total spin (i.e., difference between up and down spins). Total spin for the entire

unit cell is specified.

(6) Mixing of “deficit charge”

In the PAW method, mixing of “deficit charge” is performed. In the DFT+U method, mixing of occupied

matrix is performed, but this is actually identical to mixing of “deficit charge.” To apply the same algorithm

as normal charge mixing to the mixing, set the switch sw_mix_charge_hardpart to “on.”

charge_density{
 ...
 sw_mix_charge_hardpart = on
 ...
}

By this setting, convergence of the PAW method and the DFT+U method may be improved

 69

3.8 Structure_evolution block

Parameters related to structure optimization or molecular dynamics are specified in the block

stucture_evolution.

3.8.1 Structure optimization

Execution of structure optimization is specified in structure_evolution as follows.

...
structure_evolution{
 method = quench
 dt = 50
 ...
}
...

method A method of structure relaxation. Options are

quench: quenched MD method (default)

cg: CG method

gdiis: GDIIS method

bgfs: BFGS method

dt Time step for structure relaxation. Appropriately large values converge faster, but too large a

value may make the calculation incorrect.

Defaults to 100 au.

Because the GDIIS and BFGS methods are not stable when the force is large, the quenched MD or CG

method is employed for earlier steps, and the method will be switched to GDIIS (or BFGS) after the force

becomes sufficiently small.

The initial method for the earlier steps and the criterion for switching the method to GDIIS (or BFGS) are

specified by the variables initial_method and c_forc2gdiis, respectively.

...
structure_evolution{
 method = gdiis
 dt = 50

 gdiis{
 initial_method = cg
 c_forc2gdiis = 0.0025 hartree/bohr
 }
}
...

The block gdiis is common to GDIIS and BFGS. Default values are quench for initial_method and 0.0025

hartree/bohr for c_forc2gdiis.

gdiis Block for the GDIIS and BFGS methods.

 initial_method Initial method for the earlier steps.

Options are {quench, cg, sd}.

 gdiis_box_size The atomic coordinates of the previous steps will be stored in arrays.

The variable gdiis_box_size specifies the number
 gdiis_hownew Method of renewing the arrays that store the atomic coordinates after the

gdiis_box_size steps.

Options are {anew, renew}

 c_forc2gdiis Criterion for switching the method to GDIIS or BFGS.

 70

 Defaults to 0.0025 (hartree/bohr).

3.8.2 Molecular dynamics

Parameters related to molecular dynamics are specified in the block structure_evolution.

structure_evolution{
 method = velocity_verlet
 dt = 100
}

method Method for updating atomic coordinates. For molecular dynamics, the options are

velocity_verlet: constant energy simulation.

temperature_control: constant temperature simulation.

dt Time step.

Defaults to 100 au (about 2.4 fs).

thermostat Block for specifying the thermostat.

 temp Temperature.

 qmass Thermostat parameter Q, corresponding to an effective mass.

This parameter is required for constant-temperature simulations.

3.8.3 Stress tensor

Calculation of the stress tensor can be specified in the block stress in the structure_evolution block.

structure_evolution{
 stress{
 sw_stress=1
 }
}

stress Calculation of stress tensor.

 sw_stress Switch that specifies whether to calculate the stress tensor. Options are {on,

off}.

 71

3.9 Postproccesing

3.9.1 Density of states (DOS)

The density of states (DOS) can be calculated after the SCF iterations converge. Calculation of DOS is

specified in the dos block in the postprocessing block as follows.

 postprocessing{
 dos{
 sw_dos = on
 method = gaussian
 deltaE_dos = 1e-4 hartree
 }
 }

The following variables are available in the dos block.

sw_dos Switch that specifies whether to calculate the DOS. Options are on and off.

method Method for calculating the density of states. Options are

gaussian: simple Gaussian broadening.

tetrahedral: accurate calculation based on the tetrahedral method.

Note that the conditions in which the tetrahedral method is available are limited (See

below).

deltaE_dos Specifies the broadening used in the DOS calculation, in units of energy.

Defaults to 1e−4 hartee.

The tetrahedral method is available when

 mesh method is employed for the k-sampling,

 accuracy{
 ksampling{
 method = mesh
 }
 }

 tetrahedral method is used for the smearing

 accuracy{
 smearing{
 method = tetrahedral
 }
 }

If the above conditions are not satisfied, the DOS is calculated by the Gaussian method.

3.9.2 Charge density

Charge density is calculated in reciprocal space during the SCF calculation, but you can convert the charge

density to real space by inverse Fourier transformation. It can then be visualized using the PHASE-Viewer.

The block charge in the block postprocessing is used to output the charge density to real space.

 postprocessing{
 charge{
 sw_charge_rspace = on
 filetype = cube
 }
 }

The following variables are set in the charge block.

sw_charge_rspace Switch that specifies whether to generate the charge density in real space. Options

are on or off.

 72

filetype Specifies the file format of the charge density data. Options are

density_only: only the charge density is written to the file. (default)

cube: charge density is stored in Gaussian cube format.

Using the cube option is recommended.

title Title of the Gaussian Cube file. Double quotes “ ” are used to include spaces in the

title.

If filetype=cube, it is recommended to change the filename of the charge density file. The filename can be

specified in the file “file_names.data” as shown below.

 &fnames
 ...
 F_CHR = './nfchr.cube'
 /

The default name of the file is “nfchr.data.” If spin polarization is considered and “nfchr.cube” is set to the

filename, two cube files named “nfchr.up.cube” and “nfchr.down.cube,” which correspond to densities of up

and down spins, respectively, will be generated.

3.10 Print level

PHASE outputs a log file named “output000.” The number “000” will increase as execution continues. The

print level of the log file is specified in the block printoutlevel.

 printoutlevel{
 base = 1
 }

In the printoutlevel block, the variables that control the print level are listed. These variables are set to

either 0, 1, or 2; a large value causes more detail to be printed. Default values of all these variables are 1.

Representative variables are listed below.

base Print level for the entire calculation. This variable becomes the default value for other

variables that specify the print level.

timing Print level of time profiles.

input Print level of input.

solver Print level of wavefunction solver.

spg Print level of space group.

Note that base=2 prints a large amount of output, making the log file hard to read. Because this additional

information is mainly for debugging, it is not recommended for general users to use base=2.

 73

4. Examples for basic functions

4.1 Total energy calculation

Calculation of total energy is one of the most basic functions of PHASE. By calculating total energy using

several different lattice constants, the equilibrium lattice constant and bulk modulus can be obtained, and

stability of crystals at absolute zero temperature can be evaluated.

4.1.1 Input parameters

Here we introduce an example total energy calculation. The target system, a silicon crystal (diamond

structure) composed of eight silicon atoms, is shown in Figure 4.1エラー! 参照元が見つかりません。 .

Figure 4.1 Diamond structure composed of silicon atoms

Input files of the calculation are specified in the file “file_names.data.” These files are specified as follows.

&fnames
 F_INP = './input_scf_Si8.data'
 F_POT(1) = '../pp/Si_ldapw91_nc_01.pp'
 ...
 F_CHR = './nfchr.cube'
&end

To execute PHASE, you need to specify a pseudopotential file and an input file to F_POT(1) and F_INP.

“Si_ldapw91_nc_01.pp” is a pseudopotential file.

Here we describe the input parameter file “input_scf_Si8.data.” The control block specifies calculation

conditions for the entire calculation. For example, cpumax specifies the limit of calculation time.

Control{

condition = initial
 cpumax = 3600 sec ! {sec|min|hour|day}
}

The accuracy block contains parameters related to computational accuracy.

 74

accuracy{
 cutoff_wf = 9.00 rydberg
 cutoff_cd = 36.00 rydberg
 num_bands = 20
 ksampling{
 method = mesh ! {mesh|file|directin|gamma}
 mesh{ nx = 4, ny = 4, nz = 4 }
 }
 ...
 xctype = ldapw91
 scf_convergence{
 delta_total_energy = 1.e-12 hartree
 succession = 3 !default value = 3
 }
 ...
}

Parameters cutoff_wf and cutoff_cd indicate that cutoff energies for wavefunctions and the charge density

distribution are 9.0 Ry and 36.0 Ry, respectively. The parameter num_bands specifies the number of the

energy level. Since this system has eight Si atoms and a Si atom has four valence electrons, the number of

total occupied energy levels is obtained by 8 4/2 = 16. (This is divided by two because up- and down-spin

electrons occupy the same energy level). Therefore, number_bands must be larger than 16. The ksampling

block is used to specify a method of k-point sampling. In this example, a 4 × 4 × 4 mesh was used for k-point

sampling. xctype = ldapw91 specifies using an LDA-type exchange-correlation energy. scf_convergence is

used to specify a convergence criterion. In this example, SCF iterations were terminated when the difference

in total energies was less than Hartree, three times in succession.

The structure block is used to input the crystal structure. Default units are atomic units (The unit of length

is Bohr).

structure{
 unit_cell_type = primitive
 unit_cell{
 a_vector = 10.26 0.00 0.00
 b_vector = 0.00 10.26 0.00
 c_vector = 0.00 0.00 10.26
 }
 atom_list{
 coordinate_system = internal ! {cartesian|internal}
 atoms{
 #default weight = 1, element = Si, mobile = 1
 #tag rx ry rz
 0.125 0.125 0.125
 -0.125 -0.125 -0.125
 0.125 0.625 0.625
 -0.125 -0.625 -0.625
 0.625 0.125 0.625
 -0.625 -0.125 -0.625
 0.625 0.625 0.125
 -0.625 -0.625 -0.125
 }
 }
 element_list{ #tag element atomicnumber
 Si 14
 }
}

The atom_list specifies atomic species, internal coordinates, and whether the atomic position is fixed.

The element_list defines the element and its atomic number.

 75

The postprocessing block is used to specify parameters related to post-processing.

postprocessing{
 ...
 charge{
 sw_charge_rspace = ON
 filetype = cube !{cube|density_only}
 title = "This is a title line for the bulk Si"
 }
}

The charge block is used to output charge density. The charge density is saved to the file specified by the

F_CHR keyword in “file_names.data.” filetype = cube specifies the Gaussian cube format. In this case, the

file extension of the cube file must be *.cube. Gaussian cube files can be visualized using PHASE Viewer and

other visualization software.

4.1.2 Execution of calculations

You execute PHASE as follows:

 % mpirun -np NP ../../bin/phase ne=NE nk=NK

Here NP is the number of processors used for the calculation，NE is the degree of parallelism for energy

levels，and NK is the degree of parallelism for k-points. Note that NE times NK must be equal to NP (NP =

NE×NK). If you use only one processor, you can execute PHASE as follows:

 % mpirun ../../bin/phase

You can check the progress of the SCF calculation by checking the log file “Output000.” Values of total energy

can be extracted using the grep command as follows:

% grep TOTAL output000

The following results were obtained for the sample calculation of Si8.

 TOTAL ENERGY FOR 1 –TH ITER= -30.851502112276 edel = -0.308515D+02
 TOTAL ENERGY FOR 2 -TH ITER= -31.428857832957 edel = -0.577356D+00
 TOTAL ENERGY FOR 3 -TH ITER= -31.547875271353 edel = -0.119017D+00
 TOTAL ENERGY FOR 4 -TH ITER= -31.575313743308 edel = -0.274385D-01
 TOTAL ENERGY FOR 5 -TH ITER= -31.582591031973 edel = -0.727729D-02
 TOTAL ENERGY FOR 6 -TH ITER= -31.585296287695 edel = -0.270526D-02
 TOTAL ENERGY FOR 7 -TH ITER= -31.586566551584 edel = -0.127026D-02
 TOTAL ENERGY FOR 8 -TH ITER= -31.587203940144 edel = -0.637389D-03
 TOTAL ENERGY FOR 9 -TH ITER= -31.587536187844 edel = -0.332248D-03
 TOTAL ENERGY FOR 10 -TH ITER= -31.587714367315 edel = -0.178179D-03
 TOTAL ENERGY FOR 11 -TH ITER= -31.587811775875 edel = -0.974086D-04
 TOTAL ENERGY FOR 12 -TH ITER= -31.587865777306 edel = -0.540014D-04
 TOTAL ENERGY FOR 13 -TH ITER= -31.587896135394 edel = -0.303581D-04
 TOTAL ENERGY FOR 14 -TH ITER= -31.587913347827 edel = -0.172124D-04
 TOTAL ENERGY FOR 15 -TH ITER= -31.587923218322 edel = -0.987050D-05
 TOTAL ENERGY FOR 16 -TH ITER= -31.587928921902 edel = -0.570358D-05
 TOTAL ENERGY FOR 17 -TH ITER= -31.587932250599 edel = -0.332870D-05
 TOTAL ENERGY FOR 18 -TH ITER= -31.587934208228 edel = -0.195763D-05
 TOTAL ENERGY FOR 19 -TH ITER= -31.587935369846 edel = -0.116162D-05
 TOTAL ENERGY FOR 20 -TH ITER= -31.587936064369 edel = -0.694523D-06
 TOTAL ENERGY FOR 21 -TH ITER= -31.587937128483 edel = -0.106411D-05
 TOTAL ENERGY FOR 22 -TH ITER= -31.587937146269 edel = -0.177857D-07
 TOTAL ENERGY FOR 23 -TH ITER= -31.587937147223 edel = -0.953783D-09
 TOTAL ENERGY FOR 24 -TH ITER= -31.587937147361 edel = -0.138854D-09
 TOTAL ENERGY FOR 25 -TH ITER= -31.587937147369 edel = -0.733991D-11
 TOTAL ENERGY FOR 26 -TH ITER= -31.587937147369 edel = -0.358824D-12
 TOTAL ENERGY FOR 27 -TH ITER= -31.587937147369 edel = -0.117240D-12

 76

The above results indicate that the total energy is converging.

4.1.3 Output of calculation results

The calculated total energy is printed to the F_ENF file. In the example Si8 calculation, the results were

printed to the F_ENF file (nfefn.data) as follows:

iter_ion, iter_total, etotal, forcmx

1 12 -31.587937147369 0.0000004495

After the calculation is finished, the charge density file “nfchr.cube” is generated. The charge density

distribution is shown in Figure 4.2. Note: You may need to fix the number of atoms written in the cube file.

Figure 4.2 Visualized charge density distribution of a silicon crystal

 77

4.2 Calculations using symmetry properties

PHASE can reduce its computational costs by using the symmetry of crystals. A type of symmetry can be

automatically identified, or you can manually specify the generator. Atomic positions can be specified in

either of two ways: basic lattice or Bravais lattice. To choose between these, you need to set the unit_cell_type

to “primitive” or “Bravais.”

4.2.1 Input parameters

4.2.1.1 Specifying the unit cell

（１） Specifying the unit cell by basic lattice

 unit_cell_type = primitive
 unit_cell{
 #units bohr
 a_vector = 0.00000 5.13000 5.13000
 b_vector = 5.13000 0.00000 5.13000
 c_vector = 5.13000 5.13000 0.00000
 }

This specification is available not only to unit_cell_type=primitive but also to unit_cell_type =Bravais.

（２） Specifying the unit cell by lattice parameters

 unit_cell_type = Bravais
 unit_cell{
 #units bohr
 a = 10.26, b = 10.26, c = 10.26
 alpha = 90, beta = 90, gamma = 90
 }

This specification is enabled only when unit_cell_type=Bravais. When the Bravais lattice is used, the basic

lattice is automatically determined on the basis of a specification of symmetry. Note that the actual

calculation will be carried out using the automatically determined basic lattice; thus, you need to specify

atomic positions, number of k-points, symmetry of k-points, and other parameters that are suitable for the

basic lattice.

If the unit_cell_type is “Bravais,” you should input only the atom on a lattice point. For example, for a

body-centered lattice, input only the atom on (0, 0, 0) and do not input the atom on (0.5, 0.5, 0.5). The type of

lattice is specified by the lattice_system variable (See Table 4.1) For a rhombohedral crystal, you need to

specify the lattice parameters for the corresponding hexagonal crystal. The relationship between the lattice

vectors of rhombohedral and hexagonal crystals is shown in Figure 4.3.

Table 4.1 The Bravais lattices and crystal systems

crystal systems lattice

parameters

description of unit cell type of lattice keywords for the

lattic_system

cubic (c) a = , b = , c =

alpha = 90, beta = 90, gamma =

90

primitive (P)

face-centered

(F)

body-centered

primitive

face-centered

bodycentered

 78

(I)

tetragonal (t) a = , b = , c =

alpha = 90, beta = 90, gamma =

90

primitive (P)

body-centered

(I)

primitive

body-centered

orthorhombic (o) a = , b = , c =

alpha = 90, beta = 90, gamma =

90

primitive (P)

base-centered

(C)

face-centered

(F)

body-centered

(I)

primitive

base-centered

face-centered

body-centered

hexagonal (h) a = , b = , c =

alpha = 90, beta = 90, gamma =

120

primitive (P) hexagonal

trigonal (h)

rhombohedral

 a = , b = , c =

alpha = 90, beta = 90, gamma =

120

rhombohedral

(R)

primitive (P)

rhombohedral

hexagonal

monoclinic (m)

a = , b = , c =

alpha = 90, beta = , gamma = 90

primitive (P)

base-centered

(C)

primitive

base-centered

triclinic (a)

a = , b = , c =

alpha = , beta = , gamma =

primitive (P) primitive

Figure 4.3 Relationship between the lattice vectors of rhombohedral and hexagonal crystals (view along the

c-axis of hexagonal).

 are the lattice vectors for hexagonal, and

 are the lattice

vectors for rhombohedral crystals

Table 4.2 Primitive translation vectors for Bravias lattice

the Bravais

lattices

primitive cubic

(cP)

face-centered

cubic (cF)

body-centered

 –

 79

cubic (cI)

primitive

tetragonal (tP)

body-centered

tetragonal (tI)

primitive

orthorhombic

(oP)

base-centered

orthorhombic

(oC)

face-centered

orthorhombic

(oF)

body-centered

orthorhombic

(oI)

primitive

hexagonal (hP)

primitive

rhombohedral

(hR)

primitive

monoclinic (mP)

base-centered

monoclinic (mC)

primitive

triclinic (aP)

4.2.1.2 Specifying symmetry

Symmetry can be specified in three ways: the crystal_structure variable, automatic identification of the

symmetry operation, and specification of the generator.

1. The crystal_structure variable

You can specify a type of crystal structure by the crystal_structure variable. Options are diamond, hexagonal,

fcc, bcc, and simple_cubic. For the Si crystal, diamond is specified.

（１） Automatic identification of the symmetry operation

If the method variable is set to automatic, then symmetry is automatically identified. The lattice_system

variable in the tspace block should be specified if the type of lattice is not primitive.

 symmetry{
 method = automatic
 tspace{
 lattice_system = facecentered
 !{rhombohedral|hexagonal|primitive|facecentered|bodycentered|basecentered}
 }
 }

（２） Specification of generator

 80

The generator is specified by the tspace block. For the Si crystal, the tspace block is specified as follows:

 tspace{
 lattice_system = facecentered
 !{rhombohedral|hexagonal|primitive|facecentered|bodycentered|basecentered}
 num_generators = 3
 generators{
 #tag rotation tx ty tz
 IE 0 0 0
 C31+ 0 0 0
 C4X+ 1/4 1/2 3/4
 }
 }

The lattice_system=facecenterd indicates that the symmetry is face-centered, and num_generators=3 sets

the number of generators to three. In the generators block, IE, C31+, and C4X+ are specified as the

generators.

Here we describe how to specify the generators. The rotational operation is specified by the following codes.

Each line corresponds to one rotation. The numbers in the first column or the symbol in the second column is

used in the rotation column in the generators block to specify the symmetry operations. The third to fifth

columns represent rotational operations. For trigonal and hexagonal lattices, W represents X-Y. The rotation

can be specified either by the numbers in the first column or by the symbol in the second column.

For the trigonal and hexagonal,

 1 E X Y Z 13 IE -X -Y -Z
 2 C6+ W X Z 14 IC6+ -W -X -Z
 3 C3+ -Y W Z 15 IC3+ Y -W -Z
 4 C2 -X -Y Z 16 IC2 X Y -Z
 5 C3- -W -X Z 17 IC3- W X -Z
 6 C6- Y -W Z 18 IC6- -Y W -Z
 7 C211 -W Y -Z 19 IC211 W -Y Z
 8 C221 X W -Z 20 IC221 -X -W Z
 9 C231 -Y -X -Z 21 IC231 Y X Z
 10 C212 W -Y -Z 22 IC212 -W Y Z
 11 C222 -X -W -Z 23 IC222 X W Z
 12 C232 Y X -Z 24 IC232 -Y -X Z

and for the others,

 1 E X Y Z 25 IE -X -Y -Z
 2 C2X X -Y -Z 26 IC2X -X Y Z
 3 C2Y -X Y -Z 27 IC2Y X -Y Z
 4 C2Z -X -Y Z 28 IC2Z X Y -Z
 5 C31+ Z X Y 29 IC31+ -Z -X -Y
 6 C32+ -Z X -Y 30 IC32+ Z -X Y
 7 C33+ -Z -X Y 31 IC33+ Z X -Y
 8 C34+ Z -X -Y 32 IC34+ -Z X Y
 9 C31- Y Z X 33 IC31- -Y -Z -X
 10 C32- Y -Z -X 34 IC32- -Y Z X
 11 C33- -Y Z -X 35 IC33- Y -Z X
 12 C34- -Y -Z X 36 IC34- Y Z -X
 13 C2A Y X -Z 37 IC2A -Y -X Z
 14 C2B -Y -X -Z 38 IC2B Y X Z
 15 C2C Z -Y X 39 IC2C -Z Y -X
 16 C2D -X Z Y 40 IC2D X -Z -Y
 17 C2E -Z -Y -X 41 IC2E Z Y X
 18 C2F -X -Z -Y 42 IC2F X Z Y
 19 C4X+ X -Z Y 43 IC4X+ -X Z -Y

 81

 20 C4Y+ Z Y -X 44 IC4Y+ -Z -Y X
 21 C4Z+ -Y X Z 45 IC4Z+ Y -X -Z
 22 C4X- X Z -Y 46 IC4X- -X -Z Y
 23 C4Y- -Z Y X 47 IC4Y- Z -Y -X
 24 C4Z- Y -X Z 48 IC4Z- -Y X -Z

However, translation operations, which are associated with a rotational operation, are specified by the tx, ty,

tz columns in the generators table. Fractional numbers refer to the lattice vectors being used.

4.2.1.3 Using inversion symmetry

If the system has inversion symmetry, this can be used to reduce the computational cost.

2. Using no inversion symmetry

If the variable sw_inversion is “off,” inversion symmetry is not used. In this case, the atom_list block for the

Si crystal is specified as below.

 atom_list{
 atoms{
 !#tag rx ry rz element
 0.125 0.125 0.125 Si
 -0.125 -0.125 -0.125 Si
 }
 }

3. Using inversion symmetry

To use inversion symmetry, set the sw_inversion variable to “on.” For example, the following atomic

coordinates have inversion symmetry whose center is the origin; thus, the computational cost can be reduced

using the sw_inversion variable.

 atom_list{
 coordinate_system = internal ! {cartesian|internal}
 atoms{
 #units !{angstrom(cartesian) | bohr(cartesian)}
 #tag rx ry rz weight element mobile
 0.125 0.125 0.125 1 Si 1
 -0.125 -0.125 -0.125 1 Si 1
 }
 }

Set the sw_inversion to “on” in the symmetry block and specify the atomic coordinates as below.

 atom_list{
 coordinate_system = internal ! {cartesian|internal}
 atoms{
 #units !{angstrom(cartesian) | bohr(cartesian)}
 #tag rx ry rz weight element mobile
 0.125 0.125 0.125 2 Si 1
 }
 }

 symmetry{

sw_inversion = on

 }

In the above example, the weight column of the atom is set to 2. This indicates that the atoms will be copied

by the inversion symmetry operation. It is recommended to use this option if the system has inversion

symmetry. The origin is the center of the inversion symmetry operation. Note that if this option is applied to

a system that has no inversion symmetry, an incorrect calculation will be carried out.

 82

4.2.2 Example: Silicon crystal (Si2)

A diamond-structured silicon crystal (Figure 4.4) has two unique atoms in its unit cell. Here we introduce a

sample input for the silicon crystal (hereafter referred to as Si2). This input file is in “sample/Si2/.”

Figure 4.4 Atomic structure of Si2. The orange lines represent

the primitive lattice composed of two silicon atoms.

4. SCF calculation

First, perform the SCF calculation to obtain the charge density. The input file is “sample/Si2/scf.”

In the file “file_names.data,” the input parameter file and the pseudopotential files are specified.

F_INP = './input_scf_Si.data'
F_POT(1) = '../../pp/Si_ldapw91_nc_01.pp'

F_CHGT = '../scf/nfchgt.data'
 ...

In this input parameter file, “diamond” is specified for the crystal_structure variable.

accuracy{
 cutoff_wf = 9.00 rydberg
 cutoff_cd = 36.00 rydberg
 num_bands = 8
}

structure{
 unit_cell_type = Bravais
 unit_cell{
 a = 10.26, b = 10.26, c = 10.26
 alpha = 90, beta = 90, gamma = 90
 }
 symmetry{
 crystal_structure = diamond
 }

 83

 atom_list{
 atoms{
 #tag rx ry rz element
 0.125 0.125 0.125 Si
 -0.125 -0.125 -0.125 Si
 }
 }
}

The number of energy levels, num_bands, is set to 8 because the number of atoms is two.

Execute PHASE as below.

% mpirun ../../../bin/phase

After the calculation is complete, the charge density is output to the file “nfchgt.data,” as specified by the

F_CHGT variable in file_names.data.

5. Density of states

To calculate the density of states (DOS), use an input file like sample/Si2/dos. Execute the calculation in a

different directory from the previous directory, where the SCF calculation was done, to avoid overwriting

output files.

In the file_names.data file, input and output files are specified as follows.

F_INP = './input_dos_Si.data'
F_POT(1) = '../../pp/Si_ldapw91_nc_01.pp'

F_CHGT = '../scf/nfchgt.data'

F_ENERG = './nfenergy.data'

The data file for charge density, specified by F_CHGT, is an output file created by the SCF calculation.

Input files are input_dos_Si.data and nfchgt.data. The following parameters are specified in the input file

input_dos_Si.data.

Control{
 condition = fixed_charge
}

accuracy{
 cutoff_wf = 9.00 rydberg
 cutoff_cd = 36.00 rydberg
 num_bands = 8
 ksampling{
 method = mesh
 mesh{ nx = 4, ny = 4, nz = 4 }
 }
 smearing{
 method = tetrahedral
 }
 xctype = ldapw91
 initial_wavefunctions = matrix_diagon
 matrix_diagon{
 cutoff_wf = 9.00 rydberg
 }
 ek_convergence{

 84

 num_max_iteration = 200
 sw_eval_eig_diff = on
 delta_eigenvalue = 1.e-8 hartree
 succession = 2
 }
}

postprocessing{
 dos{
 sw_dos = ON
 method = tetrahedral !{ tetrahedral | Gaussian }
 deltaE_dos = 1.e-3 eV
 nwd_window_width = 10
 }
}

The first block in Control specifies that the charge density, obtained from the SCF calculation, is fixed. The

parameter ksampling specifies that k-points are sampled by and that tetrahedral is employed for

smearing. Convergence criteria are set by ek_convergence. The postprocessing block specifies parameters

used for the calculation of DOS based on the tetrahedral method.

Calculate the DOS by using the program ekcal and these input files.

 % mpirun ../../../bin/ekcal

After the calculation is done, the output file nfenergy.data is generated. In this file, energy eigenvalues are

printed for every k-points in order of increasing energy. The header part of the file is shown below.

 num_kpoints = 141
 num_bands = 8
 nspin = 1
 Valence band max = 0.233846

=== energy_eigen_values ===
 ik = 1 (0.000000 0.500000 0.500000)
 -0.0484324491 -0.0484324491 0.1258095002 0.1258095002
 0.2619554320 0.2619554320 0.6015285289 0.6015285289
=== energy_eigen_values ===
 ik = 2 (0.000000 0.490000 0.490000)
 -0.0540717117 -0.0427149546 0.1258687813 0.1258687813
 0.2607026827 0.2633829946 0.6006244013 0.6006244013
=== energy_eigen_values ===
 ik = 3 (0.000000 0.480000 0.480000)
 -0.0596299923 -0.0369220783 0.1260465996 0.1260465996
 0.2596226501 0.2649874134 0.5980547648 0.5980547648
=== energy_eigen_values ===
 ik = 4 (0.000000 0.470000 0.470000)
 -0.0651046420 -0.0310567694 0.1263428799 0.1263428799
 0.2587131916 0.2667706685 0.5941566835 0.5941566835
=== energy_eigen_values ===
 ik = 5 (0.000000 0.460000 0.460000)
 -0.0704931128 -0.0251220735 0.1267574962 0.1267574962
 0.2579721226 0.2687346642 0.5892968047 0.5892968047

T The first two lines give the number of k-points and the number of bands. The third line indicates that spin

polarization was not considered in this calculation. The fourth line gives the highest valence band energy.

DOS can be plotted by the tool dos.pl as below. Here the option -erange is used to specify the energy range,

where E1 and E2 are the minimum and maximum energy levels, respectively.

 85

 % dos.pl dos.data -erange=E1,E2

This command creates density_of_states.eps, a postscript format file for the DOS. If the command is

executed with the –with_fermi option, a dashed line is drawn at the specified fermi level. Note that the

dashed line is drawn at the level of the highest valence band for systems having a band gap.

 % dos.pl dos.data -erange=-13,5 -with_fermi

Figure 4.5 shows the DOS for Si2.

Figure 4.5 Density of states for Si2

6. Band structure

Band structure is calculated by the following procedure. The input file is sample/Si2/band.

In file_names.data, input and output files are specified as below.

 F_INP = './input_band_Si.data'
 F_POT(1) = '../../pp/Si_ldapw91_nc_01.pp'
 F_KPOINT = '../tools/kpoint.data'
 F_CHGT = '../scf/nfchgt.data'

The above example specifies that the input file is input_band_Si.data and that k-points are to be read from

kpoint.data. The kpoint.data file is generated using the tool band_kpoint.pl as below. Here

bandkpt_fcc_xglux.in specifies parameters used to generate the k-points.

 % band_kpoint.pl bandkpt_fcc_xglux.in

Execute the program ekcal with these input files.

 % mpirun ../../../bin/ekcal

By using the tool band.pl, band structures can be plotted from the output file nfenergy.data. The file

band_structure.eps, a postscript format file for band structures, is generated by the following command.

% band.pl nfenergy.data bandkpt_fcc_xglux.in -erange=E1,E2 -with_fermi

 86

In this example, the band structure is plotted in the energy range from E1 = −13 to E2 = 5; these are the

same values as in the previous calculation.

% band.pl nfenergy.data bandkpt_fcc_xglux.in -erange=-13,5 -with_fermi

Figure 4.6 shows the band structure of Si2.

Figure 4.6 Band structure of Si2.

 87

4.3 Spin-polarized calculation

Spin polarization needs to be considered to study ferromagnetic or antiferromagnetic substances. This

section describes procedures for spin-polarized calculations. In these examples, body-centered cubic iron and

body-centered cubic chrome are employed as examples for ferromagnetic and antiferromagnetic substances,

respectively.

4.3.1 Calculations for a ferromagnetic substance

4.3.1.1 Input parameters

As an example of a ferromagnetic substance, the input file for body-centered cubic iron is shown below. This

file is in sample/bcc_Fe.

Control{
 condition = initial
 cpumax = 3 hour
 max_iteration = 250
}

accuracy{
 cutoff_wf = 25 rydberg
 cutoff_cd = 225.00 rydberg
 num_bands = 20
 ksampling{
 method = mesh
 mesh{ nx = 10, ny = 10, nz = 10 }
 }
 smearing{
 method = tetrahedral
 }
 xctype = ggapbe
 scf_convergence{
 delta_total_energy = 1.e-10 hartree
 succession = 3
 }
}

structure{
 unit_cell_type = Bravais
 unit_cell{
 #units angstrom
 a = 2.845, b = 2.845, c = 2.845
 alpha = 90, beta = 90, gamma = 90
 }

 symmetry{
 crystal_structure = bcc
 }

 magnetic_state = ferro

 atom_list{
 atoms{
 !#tag rx ry rz element
 0.000 0.000 0.000 Fe
 }

 88

 }
 element_list{ !#tag element atomicnumber zeta dev
 Fe 26 0.275 1.5 }

}

Postprocessing{
 dos{
 sw_dos = ON
 method = tetrahedral
 deltaE = 1.e-4 hartree
 nwd_dos_window_width = 10
 }
 charge{
 sw_charge_rspace = OFF
 filetype = cube
 title = "This is a title line for FM bcc Fe"
 }
}

printlevel{
 base = 1
}

7. Specifying the crystal structure

The crystal_structure variable is set to “bcc,” which means that the crystal structure is body-centered cubic.

The unit cell is defined by the Bravais lattice, and only one atom is listed in the atom_list block. Note that

the atom at body center is not listed. Since the crystal_structure is “bcc,” PHASE converts the specified

lattice to the basic lattice.

8. Specifying spin freedom

To calculate for a ferromagnetic substance, set the variable magnetic_state to “ferro.”

structure{
 magnetic_state = ferro !{para|antiferro|ferro}
}

In addition, you need to set an initial value of spin polarization for each atom. In the following input file,

 element_list{ #tag element atomicnumber zeta dev
 Fe 26 0.275 1.5
 }

the variable zeta specifies the initial value of spin polarization , which is the

difference between up- and down-spin densities.

4.3.1.2 Output

Transition of spin polarization is printed to the log file output000. You can check the change by using the

grep command as below.

% grep charge output000 | grep NEW | more

 !*--- input-file style = NEW
 !NEW total charge (UP, DOWN, SUM) = 4.91749982 (+) 3.08250018 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.75677803 (+) 3.24322197 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.64472738 (+) 3.35527262 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.55104317 (+) 3.44895683 (=) 8.00000000

 89

 !NEW total charge (UP, DOWN, SUM) = 4.47221206 (+) 3.52778794 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.46057861 (+) 3.53942139 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.48476557 (+) 3.51523443 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.52141098 (+) 3.47858902 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.56555794 (+) 3.43444206 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.61364243 (+) 3.38635757 (=) 8.00000000
 ...
 ...
 ...

 !NEW total charge (UP, DOWN, SUM) = 5.11286684 (+) 2.88713316 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 5.11285665 (+) 2.88714335 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 5.11284790 (+) 2.88715210 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 5.11284030 (+) 2.88715970 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 5.11283035 (+) 2.88716965 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 5.11282059 (+) 2.88717941 (=) 8.00000000

By the definition of spin polarization , the above result indicates that the spin

polarization has converged to .

You can check the change in values between before and after updating spin by using the grep command as

below.

 % grep charge output000 | more

 F_CHGT = ./nfcharge.data opened = false
 !** --- charge preconditioning ---
 !** sw_charge_rspace = 0
 !** charge_filetype = 1
 !** charge_title =
 !** deviation(1) of the Gauss. distrib. func. for the initial charge construction = 1.50000
 F_CHGT = ./nfcharge.data
 F_CHGT = ./nfcharge.data
 !! total_charge = 8.000000 (m_CD_initial_CD_by_Gauss_func)
 !OLD total charge (UP, DOWN, SUM) = 5.10000000 (+) 2.90000000 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.91749982 (+) 3.08250018 (=) 8.00000000
 !OLD total charge (UP, DOWN, SUM) = 4.91749982 (+) 3.08250018 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.75677803 (+) 3.24322197 (=) 8.00000000
 !OLD total charge (UP, DOWN, SUM) = 4.75677803 (+) 3.24322197 (=) 8.00000000
 !NEW total charge (UP, DOWN, SUM) = 4.64472738 (+) 3.35527262 (=) 8.00000000
 ...
 ...
 ...

4.3.2 Calculation for an antiferromagnetic substance

To reproduce an antiferromagnetic state, the initial spin must be set to an antiferromagnetic spin

configuration. Otherwise, the configuration is more likely to converge to a ferromagnetic state, which is

metastable. As described in the section for ferromagnetic substances, the initial value of spin polarization can

be specified only for each element. Therefore, to assign different initial spins to these elements, you need to

prepare two elements whose pseudopotentials are the same.

4.3.2.1 Input parameters

As an example of an antiferromagnetic substance, the input file for a body-centered cubic chrome is shown

below.

The Cr atom is specified as “Cr1” and “Cr2” in the element_list.

 element_list{
 #tag element atomicnumber zeta
 Cr1 24 0.3

 90

 Cr2 24 -0.3
 }
 }

The two different elements, Cr1 and Cr2, are defined with different values of spin polarization, zeta = 0.3

and zeta = −0.3, assigned to each. Atomic coordinates are specified as below.

 atom_list{
 atoms{
 #tag rx ry rz element
 0.000 0.000 0.000 Cr1
 0.500 0.500 0.500 Cr2
 }
 }

The atom at the origin is defined as Cr1, and the atom at the body center is defined as Cr2.

The magnetic_state is set to “ferro” as the spin freedom.

 magnetic_state = ferro !{para|antiferro|ferro}

In the file_names.data file, the pseudopotentials are specified as below.

&fnames
 F_INP = './nfinp.data'
 F_POT(1) = '../../Cr_ggapbe_paw_002.gncpp2'
 F_POT(2) = '../../Cr_ggapbe_paw_002.gncpp2'
/

By this specification, the same pseudopotential is used for both elements Cr1 and Cr2.

Similarly, you can perform calculations for systems having more complex magnetic states.

 91

4.4 Geometry optimization

PHASE can perform geometry optimizations by calculating the atomic force. This section describes how to

use geometry optimization.

4.4.1 Input parameter

An example of an input file for geometry optimization is shown below. Convergence criteria of geometry

optimization are specified in the accuracy block. The parameter max_force specifies the maximum value of

atomic force.

...
accuracy{
 ...
 max_force = 1.0e-3 hartree/bohr
 ...
}
...

The default value of the max_force is hartree/bohr.

The mobile attribute is defined in the atom_list block to specify whether the atom is optimized. If the flag is 1,

the position of the atom is optimized. Set the flag 0 or * to fix the position of the atom.

...
structure{
 ...
 atom_list{
 !#tag element rx ry rz mobile
 Ba 0.0000 0.5000 0.05 0
 O 0.5000 0.0000 0.05 1
 Ba 0.5000 0.0000 0.15 1
 O 0.0000 0.5000 0.15 1
 ...
 }
}
...

In the above example, the first Ba atom is fixed, and the remaining atoms are optimized.

The parameters used for geometry optimization are specified in the structure_evolution block.

...
structure_evolution{
 method = quench
 dt = 50
 ...
}
...

method A method of structure relaxation. Options are:

quench: quenched MD method (default)

cg: CG method

gdiis: GDIIS method

bgfs: BFGS method

dt Time step for the structure relaxation. Appropriately large value get the iterations converged

faster, but too much large value may make the calculation incorrect.

Defaults to 100 au.

 92

Because the GDIIS or BFGS method does not work stably when atomic forces are large, the quenched MD or

CG method is employed for earlier steps, and the method will be switched to the GDIIS (or BFGS) after the

force become small enough.

The initial method for the earlier steps and the criterion for switching the method to GDIIS (or BFGS) are

specified by the variables initial_method and c_forc2gdiis, respectively.

...
structure_evolution{

 method = gdiis
 dt = 50
 gdiis{
 initial_method = cg
 c_forc2gdiis = 0.0025 hartree/bohr
 }
}
...

The block gdiis is common to GDIIS and BFGS. Default values are quench for initial_method and 0.0025

hartree/bohr for c_forc2gdiis.

4.4.2 Output

If geometry optimization is performed, changes in the energy and maximum atomic force are printed to the

F_ENF file (default name: nfefn.data), and trajectories of atomic positions are stored in the F_DYNM file

(default name: nfdynm.data).

4.4.3 Example: geometry optimization of a silicon crystal

Here we introduce an example of geometry optimization for a silicon crystal. In this example, atomic

positions are manually displaced from their stable positions, and then geometry optimization is performed.

The input file is in sample/Si2/relax.

9. Input files

In the file_names.data file, input_relx_Si.data is an input file, and nfdynm.data is an output file in which

atomic positions and the atomic force are stored.

 F_INP = './input_relax_Si.data'
 ...
 F_DYNM = './nfdynm.data'
 ...

In the input file input_relax_Si.data, atomic positions are displaced from their stable positions by changing

the interval from 0.125 to 0.130. To optimize the atomic positions, the mobile variables are set to “yes.”

structure{
 ...
 atom_list{
 atoms{
 #tag rx ry rz element mobile
 0.130 0.130 0.130 Si yes
 -0.130 -0.130 -0.130 Si yes
 }
 }

 93

}

The accuracy block specifies the convergence criterion for the maximum atomic force.

accuracy{
 force_convergence{
 max_force = 1.0e-3
 }
}

10. Calculation results

The output file for geometry optimization, nfdynm.data, is shown below.

a_vector = 0.0000000000 5.1300000000 5.1300000000
b_vector = 5.1300000000 0.0000000000 5.1300000000
c_vector = 5.1300000000 5.1300000000 0.0000000000
ntyp = 1 natm = 2
(natm->type) 1 1
(speciesname) 1 : Si

 cps and forc at (iter_ion, iter_total = 1 34)
 1 1.333800000 1.333800000 1.333800000 -0.010794 -0.010794 -0.010794
 2 -1.333800000 -1.333800000 -1.333800000 0.010794 0.010794 0.010794
 cps and forc at (iter_ion, iter_total = 2 53)
 1 1.331707297 1.331707297 1.331707297 -0.010402 -0.010402 -0.010402
 2 -1.331707297 -1.331707297 -1.331707297 0.010402 0.010402 0.010402
 cps and forc at (iter_ion, iter_total = 3 75)
 1 1.327597870 1.327597870 1.327597870 -0.009614 -0.009614 -0.009614
 2 -1.327597870 -1.327597870 -1.327597870 0.009614 0.009614 0.009614
 cps and forc at (iter_ion, iter_total = 4 100)
 1 1.321624355 1.321624355 1.321624355 -0.008433 -0.008433 -0.008433
 2 -1.321624355 -1.321624355 -1.321624355 0.008433 0.008433 0.008433
 cps and forc at (iter_ion, iter_total = 5 127)
 1 1.314015753 1.314015753 1.314015753 -0.006865 -0.006865 -0.006865
 2 -1.314015753 -1.314015753 -1.314015753 0.006865 0.006865 0.006865
 cps and forc at (iter_ion, iter_total = 6 155)
 1 1.305076108 1.305076108 1.305076108 -0.004930 -0.004930 -0.004930
 2 -1.305076108 -1.305076108 -1.305076108 0.004930 0.004930 0.004930
 cps and forc at (iter_ion, iter_total = 7 184)
 1 1.295180554 1.295180554 1.295180554 -0.002671 -0.002671 -0.002671
 2 -1.295180554 -1.295180554 -1.295180554 0.002671 0.002671 0.002671
 cps and forc at (iter_ion, iter_total = 8 213)
 1 1.284767108 1.284767108 1.284767108 -0.000159 -0.000159 -0.000159
 2 -1.284767108 -1.284767108 -1.284767108 0.000159 0.000159 0.000159

The first lines beginning with # contain a part of the input data. The next line gives the number of the

optimization cycles and the total number of SCF iterations. Therefore, the above output shows that the

wavefunctions were updated 34 times in the first optimization cycle. Convergence criteria for the SCF

calculation are specified in the same manner as described in Section 3.

The next two lines contain the atomic number, atomic position (x,y,z coordinates, in units of bohr), and

atomic forces (x,y,z components, in units of hartree/bohr). The above results show that the atomic forces

drastically decreased. In the final step, all atomic forces are below the specified threshold, and the

optimization is terminated.

 94

4.5 Calculation of surface

4.5.1 How to calculate surface

Strictly speaking, PHASE cannot treat finite systems, including surfaces, because periodic boundary

conditions must be applied. However, you can treat a system as a surface by creating a “vacuum layer”

between slabs. The vacuum layer should be sufficiently large to avoid interactions between the surface and

the bottom of the slab. Typically, a vacuum layer with a thickness of 10Å is employed.

Here we introduce an example calculation for a hydrogen-terminated silicon surface. Figure 4.7 shows the

slab model for the silicon surface. The Si atoms on the bottom are terminated by artificial hydrogen atoms.

Figure 4.7 Atomic structure for the hydrogen

terminated Si(001)-p(2×1) surface

The following shows the file_names.data of this example.

&fnames
 F_INP = './input_SiH2x1.data'
 F_POT(1) = '../pp/Si_ldapw91_nc_01.pp'
 F_POT(2) = '../pp/H_ldapw91_nc_01.pp'

&end

Pseudopotentials for Si and H atoms are specified by F_POT(1) and F_POT(2).

Input parameters are described below.

The parameters for k-point sampling are specified as follows:

accuracy{
 cutoff_wf = 15.00 rydberg
 cutoff_cd = 60.00 rydberg
 num_bands = 25
 ksampling{
 method = monk ! {mesh|file|directin|gamma}
 mesh{ nx = 2, ny = 4, nz = 1 }
 kshift{ k1 = 0.5, k2 = 0.5, k3 = 0.0 }

 95

 }

}

Since this example is a slab model, only one k-point is sampled in the direction.

structure{
 unit_cell_type = primitive
 unit_cell{
 a_vector = 14.512 0.000 0.000
 b_vector = 0.000 7.256 0.000
 c_vector = 0.000 0.000 30.784
 }
 symmetry{}

 magnetic_state = para !{para|af|ferro}

 atom_list{
 coordinate_system = internal
 atoms{
 #default weight = 1, element = Si, mobile = 0
 #tag rx ry rz element
 0.26177 0.50000 0.65651 H
 0.73823 0.50000 0.65643 H
 0.34138 0.50000 0.56971
 0.65858 0.50000 0.56966
 0.26229 0.00000 0.49388
 0.73763 0.00000 0.49385
 0.00000 0.00000 0.41498
 0.50000 0.00000 0.40298
 0.00000 0.50000 0.32769
 0.50000 0.50000 0.32150
 0.25000 0.50000 0.24167
 0.75000 0.50000 0.24167
 0.25000 0.20000 0.18269 H
 0.25000 0.80000 0.18269 H
 0.75000 0.20000 0.18269 H
 0.75000 0.80000 0.18269 H
 }
 }
}

postprocessing{
 charge{
 sw_charge_rspace = ON
 filetype = cube !{cube|density_only}
 title = "Si(001) p(2x1) surface terminated by H atoms"
 }
}

In the atoms block, the default element is set to Si, so the atoms not specified as H by the element attribute

are treated as Si atoms. Since mobile = 0 is set by default, the positions of all atoms are fixed.

 % grep TOTAL output000

By the above command, the convergence progress of the total energy can be checked as follows.

TOTAL ENERGY FOR 1 -TH ITER= -41.206501960258 edel = -0.412065D+02 : SOLVER = MATDIAGON
 TOTAL ENERGY FOR 2 -TH ITER= -42.928541839902 edel = -0.172204D+01 : SOLVER = DAVIDSON
 TOTAL ENERGY FOR 3 -TH ITER= -42.956734520103 edel = -0.281927D-01 : SOLVER = DAVIDSON
 TOTAL ENERGY FOR 4 -TH ITER= -42.960659333525 edel = -0.392481D-02 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 5 -TH ITER= -42.961623666220 edel = -0.964333D-03 : SOLVER = SUBMAT + RMM3

 96

 TOTAL ENERGY FOR 6 -TH ITER= -42.962559338199 edel = -0.935672D-03 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 7 -TH ITER= -42.964136746929 edel = -0.157741D-02 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 8 -TH ITER= -42.964791285123 edel = -0.654538D-03 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 9 -TH ITER= -42.964953052183 edel = -0.161767D-03 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 10 -TH ITER= -42.965045860995 edel = -0.928088D-04 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 11 -TH ITER= -42.965076083146 edel = -0.302222D-04 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 12 -TH ITER= -42.965088896548 edel = -0.128134D-04 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 13 -TH ITER= -42.965091550789 edel = -0.265424D-05 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 14 -TH ITER= -42.965092402734 edel = -0.851945D-06 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 15 -TH ITER= -42.965092972980 edel = -0.570245D-06 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 16 -TH ITER= -42.965093291397 edel = -0.318417D-06 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 17 -TH ITER= -42.965093454357 edel = -0.162961D-06 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 18 -TH ITER= -42.965093580068 edel = -0.125710D-06 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 19 -TH ITER= -42.965093601039 edel = -0.209711D-07 : SOLVER = SUBMAT + RMM3
 TOTAL ENERGY FOR 20 -TH ITER= -42.965093604435 edel = -0.339656D-08 : SOLVER = SUBMAT + RMM3

Although the above example is only for the energy calculation, you can perform structure relaxations of a

surface, too. To execute a relaxation calculation, you need fix the bottom artificial hydrogen atoms and the

atoms connected to them. In this example, the value of the mobile variable is set to 1, and the mobile

attribute of the fixed atom is set to 0.

 atoms{
 #default weight = 1, element = Si, mobile = 1
 #tag rx ry rz element mobile
 0.26177 0.50000 0.65651 H
 0.73823 0.50000 0.65643 H
 0.34138 0.50000 0.56971
 0.65858 0.50000 0.56966
 0.26229 0.00000 0.49388
 0.73763 0.00000 0.49385
 0.00000 0.00000 0.41498
 0.50000 0.00000 0.40298
 0.00000 0.50000 0.32769
 0.50000 0.50000 0.32150
 0.25000 0.50000 0.24167 * 0
 0.75000 0.50000 0.24167 * 0
 0.25000 0.20000 0.18269 H 0
 0.25000 0.80000 0.18269 H 0
 0.75000 0.20000 0.18269 H 0
 0.75000 0.80000 0.18269 H 0
 }

Note that the stable structure of the buckled dimer for a Si(001) surface is c , not p . To

reproduce this structure, you need to add one more Si dimer so that the number of Si dimers on the surface

is even.

4.5.2 Surface calculation using inversion symmetry

Some surfaces have inversion symmetry. By taking advantage of this, you can reduce the computational cost

by half. The following input is for a Pt(111) surface. In this example, the structure block is specified as below.

structure{
 element_list{
 #tag element atomicnumber mass zeta deviation
 Pt 78 355606.909 0.0 1.83
 }
 atom_list{
 coordinate_system = cartesian
 atoms{
 #units angstrom
 #tag element rx ry rz mobile weight
Pt 0.00 0.00 0.00

 97

Pt 1.4142135624 2.4494897428 0.00
Pt 2.8284271248 0.00 0.00
Pt 4.2426406871 2.4494897428 0.00
Pt 5.6568542497 3.2659863239 2.30940111
Pt 4.2426406874 0.8164965811 2.30940111
Pt 2.828427125 3.2659863239 2.30940111
Pt 1.4142135626 0.8164965811 2.30940111
Pt 2.8284271245 1.6329931617 4.618802187
Pt 4.2426406868 4.0824829045 4.618802187
Pt 5.6568542492 1.6329931617 4.618802187
Pt 7.0710678116 4.0824829045 4.618802187
Pt 5.6568543525 0.0000002214 6.928203264
Pt 1.4142137683 2.4494897428 6.928203264
Pt 2.8284271248 0.00 6.928203264
Pt 4.2426406871 2.4494897428 6.928203264
Pt 5.6568542497 3.2659863239 9.237604341
Pt 4.2426406874 0.8164965811 9.237604341
Pt 2.828427125 3.2659863239 9.237604341
Pt 1.4142135626 0.8164965811 9.237604341
Pt 2.8284271245 1.6329931617 -2.30940111
Pt 4.2426406868 4.0824829045 -2.30940111
Pt 5.6568542492 1.6329931617 -2.30940111
Pt 7.0710678116 4.0824829045 -2.30940111
Pt 5.6568542497 3.2659863239 -4.618802187
Pt 4.2426406874 0.8164965811 -4.618802187
Pt 2.828427125 3.2659863239 -4.618802187
Pt 1.4142135626 0.8164965811 -4.618802187
Pt 2.8284270217 4.8989792642 -6.928203264
Pt 7.0710676059 2.4494897428 -6.928203264
Pt 2.8284271248 0.00 -6.928203264
Pt 4.2426406871 2.4494897428 -6.928203264
Pt 2.8284271245 1.6329931617 -9.237604341
Pt 4.2426406868 4.0824829045 -9.237604341
Pt 5.6568542492 1.6329931617 -9.237604341
Pt 7.0710678116 4.0824829045 -9.237604341
 }
 }
 unit_cell{
 #units angstrom
 a_vector = 5.6568542495 0.00 0.00
 b_vector = 2.8284271247 4.8989794856 0.00
 c_vector = 0.00 0.00 30.00
 }
 symmetry{
 method = automatic
 tspace{
 lattice_system = primitive
 }
 sw_inversion = on
 }
}

This structure has inversion symmetry whose center is on the origin. To utilize this symmetry, set the

variable sw_inversion to “on.” The structure is shown in Figure 4.8.

In this example, the surface has inversion symmetry along the thickness direction. In such cases, you can

reduce the computational cost to half by setting sw_inversion to “on.” Calculations in which molecules or

atoms are adsorbed on the surface can also be executed by arranging the adsorbent on both sides to preserve

 98

the inversion symmetry.

Figure 4.8 Atomic positions of Pt(111) surface.

This structure has an inversion symmetry whose center is at the origin.

4.5.3 Example: generation energy of metallic surfaces

Generation energy of a surface at 0 K can be estimated by the equation

Here is the surface generation energy, is the total energy of the surface, is the total energy of the

buck structure, and is the surface area. The above equation is divided by 2A because two surfaces appear

in the calculation. Note that the total energy of the buckled structure is scaled to fit the number of atoms in

the surface model.

Here we introduce an example for calculating the generation energy of a Pt surface.

Pt(111)

surface

nine-layered (111) surface, total 36 atoms

lattice parameters are

See Fig. 4.8.

Pt(110) MR

surface

Fifteen-layered missing-row (MR) (110) surface, total 28 atoms

MR surface means that the surfaces in which the atoms that compose a “row” of surface are

missing every second row.

lattice parameters are

See Fig. 4.10 (This figure is displayed in super cell.)

Pt(110)

surface

Fifteen-layered (110) surface, total 15 atoms

lattice parameters are

See Fig. 4.9 (This figure is displayed in super cell.)

 99

Figure 4.9 Pt(110) ideal surface (viewed in super cell)

Figure 4.10 Pt(110) missing-row surface model (viewed in super cell)

Generally speaking, the (111) surface is the most stable Pt surface, and surface reconstruction occurs in the

(110) surface to generate a mission-row surface. Here we confirm that the calculated surface generation

energy can explain these results.

 all models employ inversion symmetry

 cutoff energy is 25 Rydberg

 k-point samplings are 6×6×1, 6×8×1, and 3×8×1 for (111), (110), and (110) MR surface, respectively

 geometry optimization is performed by the BGFS method; the convergence criteria is

hartree/bohr

 four layers from the surface are optimized

Table 4.3 lists the surface generation energy obtained from the above conditions. These results indicate that

the (111) surface has the lowest energy, followed by (110) MR and by (110) surface.

Table 4.3 Generation energies for the platinum surface

The (111) surface has the lowest energy, followed by (110) MR and (110) surfaces.

 (111) (110) MR (110)

generation energy (eV/Å 2) 0.089 0.099 0.108

 100

4.6 Calculation of atoms and molecules

Isolated atoms and molecules can also be calculated by creating a vacuum layer. In such cases, the vacuum

layer needs to be created in all directions to negate the effects of periodic boundary conditions. Normally,

k-point is sampled only at the point.

4.6.1 Input parameters

To calculate isolated atoms or molecules, a large unit cell is defined.

 unit_cell{
 a_vector = 15.0 0.0 0.0
 b_vector = 0.0 15.0 0.0
 c_vector = 0.0 0.0 15.0
 }

The following example is for the calculation of a water molecule. The unit cell is large compared to the

molecule.

Control{
 condition = initial
 cpumax = 1 day ! maximum cpu time
 max_iteration = 6000
}

accuracy{
 cutoff_wf = 25.00 rydberg
 cutoff_cd = 225.00 rydberg
 num_bands = 8
 xctype = ggapbe
 initial_wavefunctions = matrix_diagon
 matrix_diagon {
 cutoff_wf = 5.0 rydberg
 }
 ksampling{
 method = gamma
 }
 scf_convergence{
 delta_total_energy = 1.e-10
 succession = 3
 num_max_iteration = 300
 }
 force_convergence{
 delta_force = 1.e-4
 }
 initial_charge_density = Gauss
}

structure{
 unit_cell_type = primitive
 unit_cell{
 a_vector = 15.0 0.0 0.0
 b_vector = 0.0 15.0 0.0
 c_vector = 0.0 0.0 15.0
 }
 symmetry{
 tspace{
 lattice_system = primitive

 101

 generators{
 #tag rotation tx ty tz
 C2z 0 0 0
 IC2x 0 0 0
 }
 }
 }

 atom_list{
 coordinate_system = cartesian
 atoms{
 !#default mobile=on
 !#tag rx ry rz element
 -1.45 0.000 1.123 H
 1.45 0.000 1.123 H
 0.0 0.0 0.0 O
 }
 }
 element_list{ #units atomic_mass
 #tag element atomicnumber zeta dev
 H 1 1.00 0.5
 O 8 0.17 1.0 }
}

wf_solver{
 solvers {
 !#tag sol till_n dts dte itr var prec cmix submat
 msd 5 0.1 0.1 1 tanh on 1 on
 lm+msd 10 0.1 0.4 50 tanh on 1 on
 rmm2p -1 0.4 0.4 1 tanh on 2 on
 }
 rmm {
 edelta_change_to_rmm = 1.d-6
 }
 lineminimization {
 dt_lower_critical = 0.1
 dt_upper_critical = 3.0
 }
}

charge_mixing{
 mixing_methods {
 !#tag id method rmxs rmxe itr var prec istr nbxmix update
 1 broyden2 0.3 0.3 1 linear on 5 10 RENEW
 2 simple 0.2 0.5 100 linear on * * *
 }
}

 102

4.7 Output of charge density

Although the charge density is treated in reciprocal space during an SCF calculation, the converged charge

density can be converted to real space and outputted to a file. PHASE-Viewer and other viewers can then be

used to visualize the charge density. To output the charge density to real space, define the postprocessing

block at the head of the input file and specify the charge block in it.

 postprocessing{
 charge{
 sw_charge_rspace = on
 filetype = cube
 }
 }

The charge block contains the following variables.

sw_charge_rspace Switch that specifies whether to generate the charge density in real space. Options

are on or off.

filetype Specifies the file format for the charge density data. Options are

density_only: only the charge density is written to the file. (default)

cube: charge density is stored in the Gaussian cube format.

Using the cube option is recommended.

title Title of the Gaussian Cube file. Double quotes “ ” are used to include spaces in the

title.

If filetype=cube, it is recommended to change the file name of the charge density file. The filename can be

specified in the file “file_names.data” as shown below.

 &fnames
 ...
 F_CHR = './nfchr.cube'
 /

The default name of the file is “nfchr.data.” If spin polarization is considered and “nfchr.cube” is set to the

filename, two cube files “nfchr.up.cube” and “nfchr.down.cube,” which are the respective densities of up and

down spins, will be generated.

As an example, Figure 4.11 shows the charge densities of minority and majority spins, visualized by

PHASE-Viewer. In addition, PHASE can extract and output the charge density within a specific energy

range. This function is described later in the section on advanced functions.

 103

Figure 4.11 Charge density distribution of Fe. Blue and orange surfaces denote the respective isosurfaces for

the charge densities of minority and majority spins generated by spontaneous magnetization

 104

4.8 Density of states

The DOS can be calculated after SCF iterations converge. Calculation of DOS is specified in the dos block in

the postprocessing block as follows.

 postprocessing{
 dos{
 sw_dos = on
 method = gaussian
 deltaE_dos = 1e-4 hartree
 }
 }

The following variables are available in the dos block.

sw_dos Switch that specifies whether to calculate the DOS. Options are on and off.

method Method for calculating the DOS. Options are

gaussian: simple Gaussian broadening

tetrahedral: accurate calculation based on the tetrahedral method

Note that the tetrahedral method is available only under limited conditions (See below).

deltaE_dos Specifies the broadening used in the DOS calculation, in units of energy.

Defaults to 1e−4 hartee.

The tetrahedral method is available when

 mesh method is employed for k-sampling

 accuracy{
 ksampling{
 method = mesh
 }
 }

 tetrahedral method is used for smearing

 accuracy{
 smearing{
 method = tetrahedral
 }
 }

If the above conditions are not satisfied, the DOS is calculated by the Gaussian method.

Figure 4.12 and Figure 4.13 show the DOS for body-centered cubic iron that are calculated by the Gaussian

method and the tetraheral method, respectively. Both calculations employed a 10 × 10 × 10 k-point mesh.

These figures indicate that the tetrahedral method can calculate the DOS more sharply and accurately than

the Gaussian method.

 105

Figure 4.12 Density of states of bcc Fe

calculated by the Gaussian method

Figure 4.13 Density of states of bcc Fe

calculated by the tetrahedral method

PHASE can also calculate a “partial DOS;” that is a DOS for specific atoms, layers, etc. This function is

described later in the section on advanced functions.

 106

4.9 Calculation of band structure

4.9.1 Generating k-point data

To obtain band structures, we need k-point data to calculate band dispersion. The k-point data are generated

by the script band_kpoint.pl. First, you need to prepare an input file for the band_kpoint.pl. The format of

the input file is shown below.

dkv
b1x b2x b3x
b1y b2y b3y
b1z b2z b3z
n1 n2 n3 nd # Symbol
...

The dkv of the first line is the interval between k-points. In the second line, b1x, b1y, and b1z represent the x,

y, and z components of the reciprocal lattice vector , respectively. The third and fourth lines are the x, y,

and z components of reciprocal lattice vectors , . In the fifth line, special k-points and their symbols are

specified. The specifications of these symbols are not required. However, if the symbols are specified, they are

used to output a band structure figure.

The vectors of these k-points are specified by the integers as

The symbols are written after the #. An example for a face-centered cubic lattice is shown below.

0.02 <---- interval of k-points
-1.0 1.0 1.0
1.0 -1.0 1.0 <---- reciprocal lattice vector
1.0 1.0 -1.0
0 1 1 2 # X <---- n1 n2 n3 nd # Symbol
0 0 0 1 # {/Symbol G}
1 1 1 2 # L
5 2 5 8 # U
1 0 1 2 # X

After preparing the input file, a file kpoint.data can be generated using the script band_kpoint.pl as shown

below.

% band_kpoint.pl bandkpt.in

The following is an example of kpoint.data.

141 141 (a)
0 50 50 100 1 (b)
0 49 49 100 1
0 48 48 100 1
0 47 47 100 1
0 46 46 100 1
0 45 45 100 1
0 44 44 100 1
0 43 43 100 1

The content of this file is as follows:

 107

(a) The first line gives the number of k-points. This example used 141 k-points.

(b) The remaining lines contain five integers: . These are used in

where

 are reciprocal lattice vectors.

 108

4.9.2 Calculation with fixed charge

The program ekcal is used to calculate the DOS or band structure with fixed charges as obtained from a

previous SCF calculation. Although you can execute this calculation in the same directory for the SCF

calculation, it is recommended that you create a new directory and execute the calculation in it to avoid

overwriting other output files, such as those containing wavefunction data.

4.9.2.1 Input parameters

11. file_names.data

In case of ekcal, you need to specify the charge density file created by the SCF calculation. The name of this

file is specified by the F_CHGT keyword in filenames.data of the previous SCF calculation; its default name

is nfchgt.data. For example, if the calculation is executed in the directory created in the SCF directory, the

charge density file is specified in the file_names.data as follows. The k-points data file kpoint.data, which is

used to plot the band structure, can be identified by the F_KPOINT keyword.

 &fnames

 ...

 F_CHGT = '../nfchgt.data'

F_KPOINT = 'kpoint.data'

 ...

 /

If the PAW method is employed, in addition to the F_CHGT keyword, the F_CNTN_BIN_PAW keyword

must also be specified to the file created by the SCF calculation. If the DFT+U method is employed, the

occupied matrix data file must be specified by the F_OCCMAT keyword. See the example below.

 &fnames
 ...
 F_CHGT = '../nfchgt.data'
 F_OCCMAT = '../occmat.data' <--- necessary for DFT+U

 F_CNTN_BIN_PAW = '../continue_bin_paw.data' <--- necessary for PAW

 ...
 /

12. Input parameter file

Here we explain how to create the input file for calculations with fixed charge. Basically, it is easier to make

the input file from the input file used in the previous SCF calculation. However, note the following.

 Atomic coordinates

If geometry optimization was performed in the previous calculation, the ekcal calculation must be executed

with the optimized structure. In this case, use the final atomic coordinates printed in the output file specified

by the F_DYNM keyword.

 Calculation condition

Set the condition variable to fixed_charge.

 Control{
 ...
 condition = fixed_charge
 ...
 }
 ...

 109

The fixed_charge calculation can also be restarted. To restart the calculation, set the condition variable to

“fixed_charge_continuation.”

 k-point sampling

Set the method variable in the ksampling block to “file” to read the generated kpoint.data.

 accuracy{
 ...
 ksampling{
 method = file
 }
 ...
 }

 ek_convergence block

The ek_convergence block in the accuracy block specifies convergence criteria. Set the block as follows.

 accuracy{
 ...
 ek_convergence{
 num_max_iteration = 500
 delta_eigenvalue = 1.e-5
 succession = 2
 }
 ...
 }

 The ek_convergence block contains the following variables.

num_max_iteration Specifies the maximum number of iterations

delta_eigenvalue Specifies the convergence criterion for the energy difference. The default value, 1.e−15

hartree, is very small. Use about 1.e−4 rydberg for insulator/semiconductor materials

and about 1.e−6 rydberg for metals.

succession Iterations are terminated when the energy difference is smaller than the criterion

delta_eigenvalue n-times in succession. The variable succession specifies the number

n. Default is 3.

 Solver

The default solver used in the ekcal is the steepest descent method. Since this simple method requires a

large number of iterations, use one of the other solvers, such as lm+msd, davidson, rmm3.

 110

4.9.3 Plotting band structure

As an output of the calculation, eigenenergies of bands for all k-points are printed to the file nfenergy.data.
 num_kpoints = 117 (a)
 num_bands = 8 (b)
 nspin = 1 (c)
 Valence band max = 0.233846 (d)

 nk_converged = 117 (e)
 ik = 1 (0.500000 0.500000 0.000000)
 ik = 2 (0.487805 0.487805 0.000000)
 ik = 3 (0.475610 0.475610 0.000000)
 ik = 4 (0.463415 0.463415 0.000000)
 ik = 5 (0.451220 0.451220 0.000000)
 ik = 6 (0.439024 0.439024 0.000000)
...
...
...

=== energy_eigen_values ===
 ik = 1 (0.000000 0.500000 0.500000) (f)
 -0.0484324576 -0.0484324576 0.1258094928 0.1258094928 (g)
 0.2619554301 0.2619554301 0.6015285208 0.6015285208
=== energy_eigen_values ===
 ik = 2 (0.000000 0.490000 0.490000)
 -0.0540717201 -0.0427149632 0.1258687739 0.1258687739
 0.2607026807 0.2633829927 0.6006243932 0.6006243932

The above items are

(a) Number of k-points. This example has 117 k-points.

(b) Number of bands. This example has eight bands.

(c) Spin degree of freedom, 1 or 2. In this example, the value is 1, which means that spin polarization

was not considered in the calculation.

(d) Fermi energy. For semiconductor/insulator materials, the energy of the valence-band edge is printed.

The unit is hartree.

(e) Calculated k-points.

(f) Eigenvalues are printed here. This first line identifies the k-point to which the eigenvalues apply. In

this example, the first k-point corresponds to the (0,0.5,0.5) reciprocal lattice vector.

(g) Eigenvalues for all bands are printed. The unit is hartree.

If spin polarization is considered, the output of eigenenergies is almost same, but “UP” or “DOWN” is added

next to item (f). Eigenvalues corresponding to the major and minor spin are printed.

=== energy_eigen_values ===
 ik = 1 (0.000000 0.000000 0.000000) UP
 -0.1998699758 0.0267639589 0.0267639589 0.0267639589
 0.0725171077 0.0725171077 1.0289118953 1.0289118953
 1.0289118953 1.1650173104 1.1650173104 1.1650173104

 111

 1.2129026022 1.2129026022 1.2994754011 1.2994754011
 1.2994754011 1.6365336765 2.2629596795 2.2629596795
=== energy_eigen_values ===
 ik = 2 (0.000000 0.000000 0.000000) DOWN
 -0.1960420390 0.1062941746 0.1062941746 0.1062941746
 0.1799862148 0.1799862148 1.0183970612 1.0183970612
 1.0183970612 1.2174266166 1.2174266166 1.2192701193
 1.2192701193 1.2192701193 1.3289165100 1.3289165100
 1.3289165100 1.6910264603 2.2876818717 2.2876818717

To plot the band structure from this data, a useful Perl script band.pl, which is contained in PHASE, is

available. The script band.pl is executed as shown below.

% band.pl nfenergy.data bandkpt.in -erange=-10,10 -color -with_fermi

As an example, band structure of body-centered cubic iron is shown in Figure 4.14.

Figure 4.14 Band structure of body-centered cubic iron

 112

4.10 Lattice constant

4.10.1 Calculation method

The equilibrium lattice constant can be obtained from total energies that are calculated for several different

lattice constants. In addition, if the lattice is cubic, the bulk modulus can also be determined by fitting the

Murnaghan equation of state,

 ′ ′
 ′

 ′

Here is the total energy with the lattice constant whose unit cell volume is , is the bulk

modulus, ′is the bulk modulus pressure derivative, and is the unit cell volume for the equilibrium

lattice constant. The four variables ′ are fitting parameters.

4.10.2 Example: Si crystal

Here we describe an example for calculating the equilibrium lattice constant of a Si crystal. This example is

stored in the directory sample/Si_lat. In this directory, there are several subdirectories named volxxx. Each

subdirectory contains input data for a unit cell having volume xxx. For example, the calculation model in the

directory vol1200 is specified as shown below.

structure{
 element_list{
 #tag element atomicnumber
 Si 14
 }
 atom_list{
 atoms{
 #units angstrom
 #tag element rx ry rz
 Si 0.125 0.125 0.125
 Si -0.125 -0.125 -0.125
 }
 coordinate_system = internal
 }
 unit_cell{
 a_vector = 10.62658569182611066038 0 0
 b_vector = 0 10.62658569182611066038 0
 c_vector = 0 0 10.62658569182611066038
 }
 symmetry{
 method = automatic
 tspace{
 lattice_system = facecentered
 }
 sw_inversion = on
 }
 unit_cell_type = bravais
}

 113

Atomic coordinates are given in fractional coordinates (atomic positions are referred to the lattice vectors).

Fractional coordinates are more appropriate than Cartesian coordinates because Cartesian coordinates need

to be modified every time the lattice constant is changed.

In this example, the unit_cell_type is set to “bravais,” and the lattice_system is set to “facecentered.” By

using this variable, you can input the lattice using a bravais lattice, which is easy to specify. However, the

actual calculations are performed using a basic lattice, which is easy to calculate. Note that if the volume of

Bravais lattice is employed, you need to scale the results. In this example, the bulk modulus is

quadruplicated because the volume of the Bravais lattice is four times larger than that of the basic lattice.

Figure 4.15 shows the energy–volume curve fitted to the Murnaghan equation of state, and Table 4.4 lists

the equilibrium lattice constant and bulk modulus obtained from the fit. Cohesive energy is also separately

calculated and is listed in Table 4.4. The cohesive energy is the difference between the average energy of the

atoms of a crystal and that of the free atoms. It can be obtained by , where

is the total energy of a free atom, is the total energy of a crystal at equilibrium lattice constant, and

 is the number of atoms in the crystal.

Figure 4.15 Energy-volume curve for a Si crystal. The white circles represent

calculated values, and the solid line represents the result from the fit.

Table 4.4 Resulting equilibrium lattice constant and bulk modulus

 PHASE Experimental data

a (Å) 5.48 5.43

B (GPa) 87.5 98.8

Ecoh (eV/atom) 4.60 4.63

 114

5. Advanced functions

5.1 Analysis functions

5.1.1 Stress tensor

5.1.1.1 Overview

PHASE has a function to calculate the stress tensor. By calculating it, the bulk modulus can be estimated.

5.1.1.2 Input parameters

To calculate the stress tensor, you need to define sw_stress=1 in the stress block in the structure_evolution

block. The following example is an input parameter file for Si (cubic). This file is in sample/stress/.

Control{
 cpumax = 24 hour
}

accuracy{
 cutoff_wf = 20.25 rydberg
 cutoff_cd = 81.00 rydberg
 num_bands = 20
 xctype = ggapbe
 ksampling{
 method = mesh
 mesh{ nx = 8, ny = 8, nz = 8 }
 }
 smearing{
 method = tetrahedral
 }
 scf_convergence{
 delta_total_energy = 1.0e-10 hartree
 succession = 3
 }
 force_convergence{
 delta_force = 1.0e-4
 }
 initial_wavefunctions = matrix_diagon
 matrix_diagon{
 cutoff_wf = 5.00 rydberg
 }
 initial_charge_density = Gauss
}

structure{
 unit_cell_type = primitive
 unit_cell{
 #units angstrom ! Unit of LENGTH changes to Angstrom.
 a_vector = 0.0000000000 2.7296850000 2.7296850000
 b_vector = 2.7296850000 0.0000000000 2.7296850000
 c_vector = 2.7296850000 2.7296850000 0.0000000000
 }

 symmetry{
 crystal_structure = diamond
 }

 115

 atom_list{
 coordinate_system = internal
 atoms{
 #tag rx ry rz element mobile weight
 0.125 0.125 0.125 Si yes 1
 -0.125 -0.125 -0.125 Si yes 1
 }
 }
 element_list{ #tag element atomicnumber dev
 Si 14 1.2
 }
}

structure_evolution{
 stress{
 sw_stress=1
 }
}

Execute PHASE as usual.

% mpirun PATH_TO_PHASE

Check results after the calculation is completed. The calculated stress tensor can be extracted from the

output file by the following command.

% grep –A3 ‘STRESS TENSOR$' OUTPUT_FILE

 STRESS TENSOR
 0.0000003475 0.0000000000 0.0000000000
 0.0000000000 0.0000003475 0.0000000000
 0.0000000000 0.0000000000 0.0000003475

The stress tensor is printed in the matrix form below:

The unit is [Hartree/Bohr3]. Because slightly smaller values were given to the lattice constants in the above

example, positive values were obtained for the diagonal elements . These values become 0 if the

lattice constants are the equilibrium ones. Here the following Hooke’s law holds:

where represents a lattice deformation from the equilibrium constants, and represents the stiffness

constant.

5.1.1.3 Elastic constant

The elastic constant can be obtained from the calculated stress tensor. Here we calculate the elastic constant

of a Si (cubic) crystal from its stress tensor. First, the equilibrium lattice constant, in which the stress tensor

is 0, needs to be calculated. An accurate value for the lattice constant is necessary to calculate an accurate

 116

stress tensor. In this example, the following lattice vectors, in which the stress tensor is almost 0, are

employed.

 a_vector = 0.0000000000 2.7297895000 2.7297895000
 b_vector = 2.7297895000 0.0000000000 2.7297895000
 c_vector = 2.7297895000 2.7297895000 0.0000000000

The following stress tensor is obtained after the calculation is completed.

% grep -A3 'STRESS TENSOR$' OUTPUT_FILE

 STRESS TENSOR
 0.0000000000 0.0000000000 0.0000000000
 0.0000000000 0.0000000000 0.0000000000
 0.0000000000 0.0000000000 0.0000000000

Make sure that all elements are zero or sufficiently small. Next, you need to deform the unit cell; e.g., make

the unit cell 0.01 angstrom larger in the x-direction. Modify the lattice vector as follows. Note that the

symmetry block in the input file must be removed or commented out.

 a_vector = 0.0000000000 2.7296850000 2.7296850000
 b_vector = 2.7296850000 0.0000000000 2.7296850000
 c_vector = 2.7296850000 2.7296850000 0.0000000000

The following stress tensor is obtained for the modified lattice.

% grep -A3 'STRESS TENSOR$' OUTPUT_FILE

 STRESS TENSOR
 -0.0000093954 0.0000000063 0.0000000016
 0.0000000063 -0.0000033142 0.0000000000
 0.0000000016 0.0000000000 -0.0000033163

In this example, the elastic constant is obtained from the diagonal elements of the stress tensor. and

are supposed to be equivalent because of symmetry; thus, their mean value −0.00000331525 is used for both

 and . Since a twist or shearing strain is not given in this example, the off-diagonal elements become

zero in theory. Some off-diagonal elements are not exactly zero because of numerical error.

By using a deformation from the equilibrium constants (0.01 angstrom in the x-direction) and the calculated

stress tensor, the stiffness constants , can be obtained as follows:

In this example, the stiffness constants , are calculated as below (units are []):

Further, elastic constants, Young’s modulus(), Poisson’s ratio(), and the bulk modulus() can be

obtained by from the following equations.

 117

The modulus of rigidity is given by . By substituting the stiffness constants , into the

above equations, the elastic constants of Si are obtained:

To accurately calculate elastic constants, cutoff_wf and cutoff_cd must be sufficiently large to get

well-converged wave functions. However, this calculation is time consuming.

 118

5.1.2 Local density of states and energy-dependent charge density

5.1.2.1 General features

To analyze electronic states, the local density of states (DOS) and energy-dependent charge density are

very useful. With the atom-divided local DOS, bonding states become clear. For a laminated structure or an

interface between two materials, the layer-divided local DOS is a powerful tool that enables users to identify

layer-dependent electronic states or a change in electronic states around an interface. An energy-dependent

charge density provides the charge density over a limited range of energies. This enables users to identify the

atoms that contribute to the states in that energy range.

 In the following, both functions are described using the interface between BaO/Si(001) as an example. For

convenience, the lattice constant of BaO is taken to be the same as that of Si (5.43 Å). The left part of Figure

5.1 shows the structural model, which consists of five layers of Si and six layers of BaO with the connecting

atom being O. The sample files for this calculation are in the directory “sample/BaO_Si001.”

The “structure” block of an input parameter file is as follows.

structure{
 unit_cell_type=bravais
 unit_cell{
 !! a_Si=5.43 A, c-axis=5*a_Si
 !! (c.f. a_BaO=5.52 A)
 !#units angstrom degree
 a = 3.83958982184, b= 3.83958982184, c= 27.15
 alpha=90.0, beta=90.0, gamma=90.0
 }

 symmetry{
 tspace{
 system = primitive
 generators {
 !#tag rotation tx ty tz
 E 0 0 0
 C2z 0 0 0
 }
 }
 sw_inversion = off
 }
 magnetic_state = para !{para|af|ferro}

 atom_list{
 coordinate_system = internal ! {cartesian|internal}
 atoms{
 !#default mobile=no
!#tag element rx ry rz num_layer
 Ba 0.0000 0.5000 0.05 1
 O 0.5000 0.0000 0.05 1
 Ba 0.5000 0.0000 0.15 2
 O 0.0000 0.5000 0.15 2
 Ba 0.0000 0.5000 0.25 3
 O 0.5000 0.0000 0.25 3
 O 0.0000 0.5000 0.35 4
 Si 0.0000 0.0000 0.40 5
 Si 0.5000 0.0000 0.45 6
 Si 0.5000 0.5000 0.50 7
 Si 0.0000 0.5000 0.55 8
 Si 0.0000 0.0000 0.60 9

 119

 O 0.5000 0.0000 0.65 10
 Ba 0.5000 0.0000 0.75 11
 O 0.0000 0.5000 0.75 11
 Ba 0.0000 0.5000 0.85 12
 O 0.5000 0.0000 0.85 12
 Ba 0.5000 0.0000 0.95 13
 O 0.0000 0.5000 0.95 13
 }
 }
 element_list{ !#tag element atomicnumber zeta dev
 Si 14 0.00 1.5
 Ba 56 0.00 1.5
 O 8 0.00 1.5
 }
}

In this example, “mobile” is set as “no,” because the optimization calculation takes a significant amount of

time.

5.1.2.2 Atom-divided local density of states

To calculate an atom-divided local density of states (ALDOS), edit the “postprocessing” block in an input

parameter file as follows. Add “dos” and “ldos” sub-blocks in the “postprocessing” block. Set the

“sw_dos” tag in the “dos” sub-block and the “sw_aldos” tag in the “ldos” sub-block to be “ON.”

Postprocessing{
 dos{
 sw_dos = ON
 method = g
 }
 ldos{
 sw_aldos = ON
 aldos{
 crtdst = 6.0 bohr
 naldos_from = 1
 naldos_to = 19
 }
 }
}

The “crtdst” tag specifies the length at which the Voronoi polyhedrons are cut. Regions that are farther

than this value from any atom are treated as vacuum. The local DOS for vacuum is output as atom “number

of atoms + 1” in the file “dos.data.” Tags “naldos_from” and “naldos_to” are used to indicate atoms for

which ALDOS are calculated. In the example, ALDOS are calculated for atoms from 1 to 19 that appear in

the atom list of an input parameter file. If these tags are not specified, ALDOS are calculated for all atoms in

the list. To calculate ALDOS, the column “aldos” of the atom list in an input parameter file is also available.

If this column is “off,” the DOS for that atom is not calculated. The tags “naldos_from” and “naldos_to”

are superior to “aldos.”

Calculation results are output to “dos.dat.” To draw a graph of ALDOS, a PHASE tool “dos.pl” is useful.

Execute this Perl script as follows, and files “dos_a001.eps,” “dos_a002.eps,”…, “dos_axxx.eps” are generated.

 % ../../../tools/bin/dos.pl dos.data -erange=-30,5 -dosrange=0,12 -mode=atom

Calculated ALDOS for the BaO/Si(001) interface are shown on the right in Figure 5.1. This figure clearly

shows the characteristics of Si, Ba, and O atoms in the interface.

 120

Figure 5.1 Atom-divided local density of states for a BaO/Si(001) interface. On the right, the upper panel is

for a Si atom at the center of Si layers, and the middle panel is for a Ba atom at the center of BaO layers, and

the bottom one is for an O atom at the center of BaO layers.

5.1.2.3 Layer-divided local density of states

To calculate layer-divided local density of states (LayerDOS), edit the “postprocessing” block in an input

parameter file as follows. Add “dos” and “ldos” sub-blocks in the “postprocessing” block. Set the

“sw_dos” tag in the “dos” sub-block and the “sw_layerdos” tag in the “ldos” sub-block to be “ON.”

 dos{
 sw_dos = ON
 method = g
 }
 ldos{
 sw_layerdos = ON
 layerdos{
 slicing_way = by_atomic_positions !{regular_intervals|by_atomic_positions

 121

}
 deltaz = 1.0 angstrom
 normal_axis = 3crtdst
 crtdst = 3.5 bohr
 }
 }

The “normal_axis” tag specifies the direction normal to the divided layers; “1” means the direction is along

the “a_vector,” “2” means along the “b_vector,” and “3” means along the “c_vector.” If

“by_atomic_positions” is set to the “slicing_way” tag, LayerDOS output depends on an atomic

coordinate of the defined axis. In this case, the “num_layer” column in the atom list of an input parameter

file specifies which atoms are classified into which layer. In the example input parameter file shown above,

atoms are classified into 13 layers. If “regular_intervals” is set to the “slicing_way” tag, the unit cell is

divided into layers of widths “deltaz.” The “crtdst” tag specifies the distance from the outermost atoms to

which LayerDOS are calculated. This tag is meaningless if a slab model is not used in the calculation.

Information about the range of each divided layer is output to a logfile “output000” as follows.

 !!ldos no, min, max
 !!ldos 1 0.00000000 5.13060607
 !!ldos 2 5.13060607 10.26121214
 !!ldos 3 10.26121214 15.39181821
 !!ldos 4 15.39181821 19.23977276
 !!ldos 5 19.23977276 21.80507579
 !!ldos 6 21.80507579 24.37037883
 !!ldos 7 24.37037883 26.93568186
 !!ldos 8 26.93568186 29.50098489
 !!ldos 9 29.50098489 32.06628793
 !!ldos 10 32.06628793 35.91424248
 !!ldos 11 35.91424248 41.04484855
 !!ldos 12 41.04484855 46.17545462
 !!ldos 13 46.17545462 51.30606069
 !!ldos 14 0.00000000 0.00000000

Here “no” means a layer number, while “min” and “max” mean the lower and upper limits of a layer in

atomic units, respectively. The last line in the list corresponds to the sum of the other areas.

The calculation results are output to file “dos.data.” To draw a graph of DOS, “dos.pl” is available. Execute it

as follows, and files “dos_l001.eps,” “dos_l002.eps,”…,” “dos_lxxx.eps” are created.

 % ../../../tools/bin/dos.pl dos.data -erange=-20,5 -dosrange=0,20 -mode=layer

The calculated LayerDOS for the BaO/Si(001) interface are shown in Figure 5.2.

 122

Figure 5.2 Layer-divided local density of states for a BaO/Si(001) interface. On the right, the upper panel is

for the center layer of a Si slab, the second panel is for a Si layer at the interface, the third panel is for an O

layer at the interface, the fourth panel is for a BaO layer at the interface, and the bottom panel is for a center

layer of the BaO slab.

5.1.2.4 Energy-dependent charge density

To calculate an energy-dependent charge density, edit the “postprocessing” block in an input parameter

file as follows. Add a “charge” sub-block in the “postprocessing” block and in the “charge” sub-block add

a “partial_charge” sub-block. In it, set the “sw_partial_charge” tag to be “ON.” The tags

“Erange_max” and “Erange_min” mean the maximum and minimum of the energy range, respectively, for

which the user wants to calculate the energy-dependent charge density. For these two tags, energy values

are based on the Fermi energy for metals or on the top of the valance band for insulators. The tag

“Erange_delta” means the width of energy windows; then the number of energy windows is calculated by

(Erange_max–Erange_min) / Erange_delta. Note that two additional energy windows are calculated and

output: one is just above Erange_max and the other is just below Erange_min.

dos{

 123

sw_dos = ON

 method = g
}
charge{

sw_charge_rspace = On

filetype = cube !{cube|density_only}

title = “a BaO/Si(001) interface”

partial_charge{

sw_partial_charge = On

Erange_min = -0.50 eV

Erange_max = 0.50 eV

Erange_delta = 0.05 eV

partial_charge_filetype = individual

}

}

Information about the energy window for each energy-dependent charge density is output to the logfile

“output000” as follows.
 !pc nEwindows = 20, nvb_windows = 10, ncb_windows = 10 <<m_ESoc_set_nEwindows_pc>>
 !pc iw if_elec_state erange(hartree) erange(eV)
 !pc (asis) (shifted) (shifted)
 !pc 1 1 (0.094537 0.096374) (-0.018375 -0.016537) (-0.500000 -0.450000)
 !pc 2 1 (0.096374 0.098211) (-0.016537 -0.014700) (-0.450000 -0.400000)
 !pc 3 1 (0.098211 0.100049) (-0.014700 -0.012862) (-0.400000 -0.350000)
 !pc 4 1 (0.100049 0.101886) (-0.012862 -0.011025) (-0.350000 -0.300000)
 !pc 5 0 (0.101886 0.103724) (-0.011025 -0.009187) (-0.300000 -0.250000)
 !pc 6 1 (0.103724 0.105561) (-0.009187 -0.007350) (-0.250000 -0.200000)
 !pc 7 1 (0.105561 0.107399) (-0.007350 -0.005512) (-0.200000 -0.150000)
 !pc 8 0 (0.107399 0.109236) (-0.005512 -0.003675) (-0.150000 -0.100000)
 !pc 9 0 (0.109236 0.111074) (-0.003675 -0.001837) (-0.100000 -0.050000)
 !pc 10 1 (0.111074 0.112911) (-0.001837 0.000000) (-0.050000 0.000000)
 !pc 11 1 (0.112911 0.114749) (0.000000 0.001837) (0.000000 0.050000)
 !pc 12 0 (0.114749 0.116586) (0.001837 0.003675) (0.050000 0.100000)
 !pc 13 0 (0.116586 0.118424) (0.003675 0.005512) (0.100000 0.150000)
 !pc 14 0 (0.118424 0.120261) (0.005512 0.007350) (0.150000 0.200000)
 !pc 15 0 (0.120261 0.122099) (0.007350 0.009187) (0.200000 0.250000)
 !pc 16 1 (0.122099 0.123936) (0.009187 0.011025) (0.250000 0.300000)
 !pc 17 1 (0.123936 0.125773) (0.011025 0.012862) (0.300000 0.350000)
 !pc 18 0 (0.125773 0.127611) (0.012862 0.014700) (0.350000 0.400000)
 !pc 19 0 (0.127611 0.129448) (0.014700 0.016537) (0.400000 0.450000)
 !pc 20 0 (0.129448 0.131286) (0.016537 0.018375) (0.450000 0.500000)

Here “nEwindows” means the number of energy windows; “nvb_windows” is the number of energy windows

for valence-band states, and “ncb_windows” is that for conduction-band states. The quantity “iw” is a

window number. The parameter “if_elec_state” indicates whether there are electronic states in the

corresponding energy window: “0” means there are no electronic states in the energy window, while “1”

means that one or more electronic states exist in the energy window. The energy-window range in atomic

units is “asis,” while “shifted” gives the energy-window range based on the Fermi level.

When the “partial_charge_filetype” tag is set to “individual” or “separate,” each charge density

file is output separately with its file name being “nfchr.00xx.cube,” where “nfchr” comes from file_names.data

and “xx” comes from “iw.” If spin freedom is considered, two files are created: one is “nfchr.up.00xx.cube,” and

the other is “nfchr.down.00xx.cube.” When “if_elec_state” is “0,” the corresponding charge density file is

not created. When the “partial_charge_filetype” tag is set to “integrated,” the charge density data

for all energy windows are output to one file in which “PARTIALCHARGE” is written above each set of

charge density data, and “END” is written below the data.

The calculated energy-dependent charge densities for the BaO/Si(001) interface are shown in Figure 5.3.

 124

Figure 5.3 Energy-dependent charge density distributions for a BaO/Si(001) interface. (a) Structural model

of a BaO/Si(001) interface. (b) Charge density for the energy range from −0.05 eV to 0 eV (Fermi energy). (c)

Charge density for the energy range from 0 eV to 0.05 eV. Blue indicates less charge, and red indicates more

charge.

 125

5.1.3 Projected density of states

PHASE has a function to calculate the projected density of states (PDOS). This section describes how to

calculate PDOS.

5.1.3.1 Input parameters

To calculate PDOS, the projector_list block is defined to specify the orbitals projected.

accuraccy{

...

projector_list{

projectors{

#tag no group radius l t

1 1 1.0 0 1

2 1 1.0 1 1

3 2 1.5 0 2

4 2 1.5 1 2

5 2 1.5 2 2

}

}

}

Here the column labeled no contains identification numbers for orbitals. This can be omitted. The group

specifies “orbital group.” Give the same numbers to the orbitals that you want to treat as the same group.

The radius indicates the orbital radius in units of Bohr. Half of the atomic distance may be appropriate; the

default is 1 Bohr. The column labeled l contains the orbital angular momentum. The values 0, 1, 2, and 3

correspond to orbitals s, p, d, and f, respectively. The column t contains the principal quantum numbers.

However, this principal quantum number is counted from the pseudopotential and is 1 in most cases. Some

pseudopotential files contain two orbitals whose angular momenta are the same. In such cases, the orbital

with a higher energy should be used when the variable t is set to 2.

Next, assign the above-defined projectors to atoms. These projectors can be assigned by adding the

proj_group attribute to the atom_list block as follows:

structure{

atom_list{

atoms{

#tag element rx ry rz mobile proj_group

Fe1 0.0 0.0 0.14783 on 1

Fe2 0.0 0.0 0.35217 on 2

Fe1 0.0 0.0 0.85217 on 1

Fe2 0.0 0.0 0.64783 on 2

...

...

}

}

}

Here is a correspondence table between magnetic quantum numbers and orbital characteristics:

index

1
2

3

 126

4

5

6

7

In this example, group 1 and group 2 are defined as orbital groups for Fe1 and Fe2, respectively. Different

groups must be assigned to different elements.

Set the sw_pdos switch in the postprocessing block to “on.”

postprocessing{

...

pdos{

sw_pdos = on

}

}

The PDOS is calculated by the same methods as normal DOS.

5.1.3.2 Output

PDOS: ia= 2 l= 1 m= 1 t= 1

No. E(hr.) dos(hr.) E(eV) dos(eV) sum

6 -1.95781 0.0000000000 -56.762838 0.0000000000 0.0000000000

16 -1.95681 0.0000000000 -56.735626 0.0000000000 0.0000000000

26 -1.95581 0.0000000000 -56.708415 0.0000000000 0.0000000000

36 -1.95481 0.0000000000 -56.681204 0.0000000000 0.0000000000

46 -1.95381 0.0085366260 -56.653992 0.0003137151 0.0000002437

56 -1.95281 0.0176460501 -56.626781 0.0006484801 0.0000254127

The first line beginning with “PDOS” indicates the beginning of PDOS data. The variables ia, l, m, and t

indicate the atom ID, angular momentum, magnetic quantum number, and principal quantum number of

the projected orbitals. The next lines contain the PDOS, which are printed in the same data format as the

normal DOS. The relationships between the magnetic quantum numbers and orbital characteristics are

shown in the previous table.

The generated PDOS file, dos.data, is processed by the script dos.pl with –mode=projected option.

% dos.pl dos.data -mode=projected -color -with_fermi

After execution, an EPS format file dos_aAAAlLmMtT.eps is written. In this filename, AAA indicates the ID

of atoms, L indicates the orbital angular momentum, M indicates the magnetic quantum number, and T

indicates the principal quantum number. If the –data=yes option is given, DOS data files are provided for

each orbital. In that case, the filename becomes dos_aAAAlLmMtT.data.

5.1.3.3 Example: PDOS of BaTiO3 crystal

Here we introduce a calculation example of PDOS for a BaTiO3 crystal. The BaTiO3 crystal forms a

perovskite structure. Strictly speaking, this crystal structure is tetragonal, but it is very similar to cubic. In

this example, this crystal was treated as cubic, as shown below.

structure{

atom_list{

atoms{

#units angstrom

#tag element rx ry rz proj_group

Ba 0.00 0.00 0.00

 127

O 0.50 0.50 0.00 2

O 0.50 0.00 0.50 2

O 0.00 0.50 0.50 2

Ti 0.50 0.50 0.50 1

}

}

unit_cell{

#units angstrom

a_vector = 4 0.00 0.00

b_vector = 0.00 4 0.00

c_vector = 0.00 0.00 4

}

}

The projector block is defined as follows:

accuracy{

projector_list{

projectors{

#tag no group radius l

1 1 1.0 2

2 2 1.0 1

}

}

}

In the above example, group 1, in which l is 2 (i.e., d-orbital), is assigned to the Ti atom, and group 2, in

which l is 1 (i.e., p-orbital) is assigned to an O atom.

The sw_pdos switch in the postprocessing block is set to “on” to calculate PDOS.

postprocessing{

dos{

sw_dos = on

method = tetrahedral

}

pdos{

sw_pdos = on

}

}

In this example, DOS is calculated by the tetrahedral method. Therefore, k-sampling must be performed by

the mesh method, and the tetrahedral method needs to be employed for smearing.

エラー! 参照元が見つかりません。 shows the total DOS for the BaTiO3 crystal, and エラー! 参照元が見つか

りません。 shows the PDOS for d-orbitals of the Ti atom.

 128

Figure 5.4 Total DOS of a BaTiO3 crystal

Figure 5.5 PDOS for a d-orbital of a Ti atom

 129

5.1.4 Positron lifetime

5.1.4.1 Functions

Since a positron is an antiparticle of the electron, it has the same mass as an electron but has a positive

charge. The positron annihilates an electron, resulting in the emission of a - y. This annihilation can be

used to study material defects, and in general, the quality of materials. To obtain useful information from

positron annihilation experiments, it is necessary to compare the experimental results with first-principles

calculations. PHASE has a function for predicting positron lifetimes by the following procedure.

(A) First, electronic-structure calculations (band calculations) are carried out. The calculations are based

on the pseudopotential and the plane-wave method that have been implemented in PHASE. From a

band calculation, the electron density of valence electrons can be obtained. The electron density

of all electrons is given by

 (1)

where denotes the density of core electrons. The published pseudopotential data file, which is

created by CIAO, contains information about electron densities of core electrons in free atoms. We

read this data to evaluate equation (1).

(B) The positron wave function is given by the following equation (in atomic units),

 ′

 ′

 ′

 ′

 (2)

where denotes the potential energy derived from the electron–positron correlation, and

represents the point charge of the nucleus. Now, since there is only one positron assumed in the solid,

it is sufficient to only calculate the most stable eigenstate. Therefore, eigenstates of the positron

belong to the point in the Brillouin zone. This wave function can be expanded by plane waves,

 (3)

Here to suppress the finite summation over the reciprocal lattice periodic vector , we need to set

an upper limit on the kinetic energy of the plane wave.

(C) The electron density of the positron is obtained from

 .

(D) Using electron and positron charge densities, the positron lifetime is evaluated by

 , (4)

where is the classical radius of an electron, and is the speed of light. The quantity is an

enhancement factor caused by electron–positron correlations. In PHASE, evaluation of the above

equation is performed under the following approximation,

 . (5)

For this approximation to hold, the overlap of the distributions of valence electrons and core electrons

should be small.

In the calculation of the correlation of electron and positron, the local density approximation is used. In

other words, based on calculation results, when there is a single positron in a homogeneous electron gas, the

correlation potential and the enhancement factor are given as functions of electron density. The following

equation has been proposed for the enhancement factor [Puska95],

where

 . In addition, in systems with a gap (dielectric), since the screening effect of electrons is

much smaller than that of the metal, it is recommended that this expression be corrected for as follows

[Puska91], [Nakamoto07].

 130

where is the dielectric constant of the electron system. If the dielectric constant has not been

determined by experiment, it can be evaluated using UVSOR, which is based on density functional theory.

For details on the calculation method, please refer to the literature [akamoto07].

5.1.4.2 Input file

Here is an example calculation for a Si crystal. In the sample of PHASE, there is a folder named positron Si,

in which there are folders named “input” and “output.” In the folder named “input,” there is the input file for

the calculation of positron lifetimes in Si crystals using PHASE.

The file that contains input parameters for the calculation of positron lifetimes is samples/positron

Si/input/nfposnew.data. Here we explain only those parts of the file that relate to the calculation of positron

lifetimes.

 Use the control tag to enable calculation of a positron lifetime,

Control{

positron = BULK

}

Declaring positron = BULK causes the electronic-structure calculation (band calculation) to be done first

followed by calculation of the positron lifetime.

 Use the accuracy tag to specify options for the positron lifetime calculation,

accuracy{
 cutoff_pwf = 50.00 rydberg
 positron_convergence{
 num_extra_bands = 8
 delta_eigenvalue = 1.d-8 rydberg
 succession = 6
 num_max_iteration = 32000
 dtim = 0.01
 epsilon_ele = 12}
}

cutoff_pwf = 50.00 rydberg Cutoff energy for expanded positron wave functions [See equation (3)]

positron_convergence｛｝ Positron wave functions are obtained by an iterative calculation; this tag

specifies options for identifying a converged solution when solving equation

(2).

num_extra_bands = 8 For the eigenstate of the positron, it is sufficient to only calculate the ground

state. However, for the converged solution obtained by the iterative

calculation, wave functions having higher energies than the ground state

should also be calculated. This tag specifies the number of those extra wave

functions. Note that the resulting wave functions all belong to points in the

Brillouin zone.

delta_eigenvalue = 1.d-8

rydberg

Refer to the explanation of line 5.

succession = 6 In the iterative calculation, if physical quantities from the previous and

current iterations (refer to line 7) are consistent within a range given by line

 131

4, and if they are continuous over the times specified by line 5, the

calculation is considered to have converged.

num_max_iteration = 32000 If the calculation has not converged by this number of iterations, the

calculation will stop.

dtim = 0.01 In the iterative calculation, dtim measures the extent of change permitted

from one wave function to the next. When dtim is large, the calculation will

converge faster. However, if it is very large, no converged solution will be

obtained. In contrast, when dtim is small, the calculation will be more stable,

but the calculation time will increase. Thus, depending to the system being

studied, it is recommended that users seek an optimum value for dtim.

epsilon_ele = 12 This tag is used when the system has a gap; hence, a correction is needed

that involves the dielectric constant of the electron system of LDA. In this

example, the tag is set to “12,” which is the dielectric constant for Si. If the

system has no gap (e.g., if it is a metal), then no value should be assigned to

this parameter, and line 8 should be deleted.

5.1.4.3 Output file

After performing the calculation for a positron lifetime, an output file and three cube files will be generated.

They are placed in the directory /samples/positron Si/output/.

13. Log outputfile, output000

The first part of this file contains information related to the calculation of the electronic bands of Si. After the

calculation of electronic bands, the charge density of electrons will be obtained, and then the calculation of

the positron lifetime will be performed.

In the output, the part related to positron calculations starts at

 “--- initial positron energy eigen values ---”

The positron wave function is determined by the iterative calculation. In the following output, at the first

iteration, there is an eigenvalue 14.6379 eV. There are also extra bands (14.9628460558–15.0292289699)

that are higher than the positron eigenvalue. In the second iteration, the eigenvalue becomes 0.0021898139

eV.

--- initial positron energy eigen values ---
 === positron eigen values ===
 14.6378982055
 -- extra_bands --
 14.9628460558 14.6842242625 14.9879179620 15.2755174303
 14.8070539395 14.6061318397 14.8086346971 15.0292289699

 === positron eigen values ===
 0.0021898139
 -- extra_bands --
 0.0892687578 0.1056325893 0.2037689630 0.2140559068
 0.3115605599 0.3359746459 0.3540270556 0.4738130045

Then, the file below contains the following output:.

 positron lifetime(ps) 220.184723312044

 132

 core rate 3.79328791767622 %

This means that, after the iterative calculation converges, the calculated positron lifetime is 220 ps. Here the

core rate is the percentage of the annihilation rate of core electrons relative to the total annihilation rate.

14. Cube file

After the calculation, the following files are created: electron.cube, positron.cube, and ep_pair.cube. These

cube files contain the charge distribution of electrons, the charge distribution of the positron, and the

distribution of the electron–positron pair, respectively. The latter can be visualized using the Biostation

viewer. (This software is not part of PHASE, but it can be downloaded from the web.)

Figure 5.6 shows distributions computed for the example Si crystal. This figure shows that the valence

electron mainly exists in the bond region, while the positron exists in the interstitial region. While the

positron wave function is energetically favorable when the kinetic energy of spreading is low, the positron

commonly tends to be in the interstitial region. The distribution of the electron–positron pair in Fig. 5.7(c)

indicates that when the distribution is high, annihilation of the positron occurs at a high rate.

Figure 5.6 Distributions of (a) electron, (b) positron, and (c) electron–positron pair computed for a Si crystal.

5.1.4.4 Notes on calculation of positron lifetimes

Summary of the notes upon the calculation of positron lifetime.

 Selection of pseudopotential

There may be a semi-core state that depends on the chemical element.

 A semi-core state arises when the overlap between the core and valence electrons cannot be neglevted..

The semi-core electrons need to be classified into valence electrons in making pseudopotentials, If no such

published pseudopotential is available for a chemical element, a pseudopotential of this element can be

created by using CIAO .

 Selection of cutoff energy

In the band calculation for the Si crystal, the input file contains the following,

accuracy{
 cutoff_wf = 50.00 rydberg ! cke_wf
 cutoff_cd = 200.00 rydberg ! cke_cd
 cutoff_pwf = 50.00 rydberg

These set the cutoff energies for electron wave function, charge density, and positron wave function. To

confirm that the positron-lifetime calculation has sufficiently converged, change these cutoff values and

 133

repeat the calculation.

 output

The positron wave function and the electron wave function are provided by the iterative calculation. For each

iteration, the output000 file, which is the output for the last iteration, contains the following:

=== positron eigen values ===
 -0.5674635596
 -- extra_bands --
 -0.0490686179 -0.0460091253 -0.0446118499 -0.0275856742
 -0.0102856694 0.0069403602 0.0274419414 0.2284487012
lifetime: 220.180365487100 220.179503204077

This output, near the end of the calculation, confirms that the positron eigenvalue is sufficiently converged.

In this output (output000) from the sample calculation, there are the eigenvalues

 -0.5674635596

 -0.5674635638

etc., suggesting that the calculation is sufficiently converged. In addition, the successive lifetime values

220.180365487100 ps and 220.179503204077 ps suggest that a converged value for the lifetime is being

approached. If the electronic band calculation is converged, and it can be observed the 3.4.4, it is considered

that this calculation is sufficient. It is recommended that you first do a calculation for a relatively simple

system and then confirm the calculation results by comparing with experimental data. After that, you can

perform calculations on the system of interest. It is fortunate that these calculations can be helpful in the

analysis of positron annihilation experiments in various systems.

 134

5.2 Atomic dynamics

5.2.2 Molecular dynamics simulation

5.2.2.1 Overview

By calculating the forces acting on atoms, molecular dynamics (MD) simulations are carried out. PHASE can

perform constant-energy and constant-temperature MD simulations.

5.2.2.2 Input parameters

The following table lists blocks and variables related to MD simulations.

1st level block 2nd, 3rd level block Tag keyword Description

structure_evolution Block for specifying a method for

updating atomic coordinates.

 method Specify a method for updating atomic

coordinates. Options are either

velocity_verlet (constant-energy MD

simulation) OR

temperature_control

(constant-temperature MD simulation).

 dt Specify the time step. Defaults to 100 au

(nearly equals 2.4 fs).

 thermostat Tabular block that defines thermostat.

 temp Specify the target temperature.

 qmass Specify the mass Q. This parameter must

be given if a constant-temperature

simulation is performed.

structure atom_list

 atoms Tabular block that defines atomic

positions.

 thermo group This column is used to assign

thermostats to atoms.

This column must be defined even if only

one thermostat is defined.

 element_list Tabular block that defines elements

 mass Specify mass of atoms. Unit is atomic

unit.

printlevel

 iprivelocity If this variable is set to 2, velocity is also

printed into the F_DYNM file.

5.2.2.3 Output

Atomic coordinates at each step are printed to the F_DYNM file. Its format is the same as that for geometry

optimization.

 Atomic coordinates

Atomic coordinates are written into the F_DYNM file (default name is nfdynm.data) defined in

file_names.data.

 135

A Perl script, animate.pl, can convert the format of this file so it can be read by the PHASE viewer.

The velocities of atoms are also printed to this file, if the iprivelocity variable in the printoutlevel block is set

to more than 2. The velocities are printed in atomic units after printing the atomic forces.

 Total energy

The total energy at each step is dumped into a file designated by the F_ENF keyword in the file_name.data

(default filename is nfefn.data). The following shows an example of this file.

 iter_ion，iter_total，etotal，ekina，econst，forcmx
 1 18 -7.8953179624 0.0000042358 -7.8953179624 0.0186964345
 2 30 -7.8953851218 0.0000665502 -7.8953185716 0.0183575424
 3 43 -7.8955768901 0.0002565396 -7.8953203505 0.0173392067
 4 56 -7.8958649874 0.0005418445 -7.8953231430 0.0156398790
 5 69 -7.8962052587 0.0008785990 -7.8953266596 0.0132645441
 6 83 -7.8965425397 0.0012120826 -7.8953304571 0.0102355854
 7 97 -7.8968179539 0.0014840140 -7.8953339398 0.0066063151
 8 111 -7.8969784478 0.0016420281 -7.8953364197 0.0024736141
 9 125 -7.8969875377 0.0016502900 -7.8953372478 0.0020111576
 10 139 -7.8968352058 0.0014992046 -7.8953360011 0.0066379641
 11 153 -7.8965440599 0.0012113794 -7.8953326806 0.0111430822

The first column indicates the number of MD steps, the second column indicates the number of total SCF

calculations, the third column indicates the total potential energy, the fourth column indicates the kinetic

energy of the system, the fifth column is the sum of the total potential energy and kinetic energy. The fifth

column contains the conserved quantity in constant-energy MD simulations.

5.2.2.4 Usage: constant-energy MD simulation

The following is an example of the input parameters for a constant-energy MD simulation. This sample file

is in sample/molecular_dynamics/NVE.

accuracy{
 cutoff_wf = 9.00 rydberg
 cutoff_cd = 36.00 rydberg
 num_bands = 8
 xctype = ldapw91
 force_convergence{
 max_force = 1.0e-8 Hartree/Bohr
 }
 initial_wavefunctions = matrix_diagon
 ksampling{
 mesh{
 nx = 4
 ny = 4
 nz = 4
 }
 }
 scf_convergence{
 delta_total_energy = 1e-12 Hartree
 succession = 3
 }
}

 136

...

...
structure{
 unit_cell_type = primitive
 unit_cell{
 a_vector = 0.0000000000 5.1300000000 5.1300000000
 b_vector = 5.1300000000 0.0000000000 5.1300000000
 c_vector = 5.1300000000 5.1300000000 0.0000000000
 }
 atom_list{
 atoms{
 #tag element rx ry rz mobile
 Si 0.130 0.130 0.130 yes
 Si -0.130 -0.130 -0.130 yes
 }
 }
 element_list{
 #tag element atomicnumber
 Si 14
 }
}
...
...
structure_evolution{
 method = velocity_verlet
 dt = 100
}
...
...

In the atoms block, the mobile attribute is set to “yes.” If “no” or “0” is given, the atom is fixed during the MD

simulation. In this example, intentionally unstable atomic coordinates are given. To be more specific, the two

silicon atoms are slightly shifted to separate one from the other in the (111) direction. The

structure_evolution block identifies the method as “velocity_verlet.” By using this method, a microcanonical

ensemble MD simulation is carried out. The dt variable sets the time step of each cycle to “100” in atomic

units. As mentioned before, this value is equivalent to 2.418 10−15 s. In the above example, the initial

velocities of all atoms are set to “0.” To give initial velocities to the atoms, the following input needs to be

prepared.

structure_evolution{
 method = velocity_verlet
 dt = 100
 temperature_control{
 thermostat{
 #tag temp
 300
 }
 }
}

Here the temp variable gives the initial temperature in Kelvin. Initial velocities, given by normalized

random numbers, correspond to this temperature such that the total momentum is 0. One can set different

initial temperatures to each atomic species. In such cases, several target temperatures are defined in the

thermostat block as follows:

structure_evolution{
 method = velocity_verlet

 137

 dt = 100
 temperature_control{
 thermostat{!#tag temp
 300
 500
 700
 }
 }
}

Next, define the thermo_group attribute in the atoms block.

structure{
 ...
 atom_list{
 atoms{
 !#tag rx ry rz element mobile weight thermo_group
 0.1159672611 0.1235205209 0.1215156388 Si 1 1 1
 -0.1329067626 -0.1264216714 -0.1225370484 Si 1 1 2
 0.1273740089 0.6305999369 0.6247606249 Si 1 1 3
 ...
 ...
 }
 }
 ...
}

The above example indicates that the initial velocities of the first, second, and third atoms are assigned to

reproduce the temperatures 300 K, 500 K, and 700 K, respectively.

Figure 5.7 shows the potential energy, kinetic energy, and total energy of this sample simulation.

Figure 5.7 Time evolution of potential energy, kinetic energy, and total energy.

 138

5.2.2.5 Usage: constant-temperature MD simulation

The following is an example of input parameters for a constant-temperature MD simulation. This sample file

is in sampe/molecular_dynamics/NVT.

 Setting the thermostat

Define the temperature_control block as below:

structure_evolution{
 method = temperature_control
 dt = 50.0
 temperature_control{
 thermostat{
 #tag temp qmass
 300 5000
 }
 }
}

In the above example, “temperature_control” is chosen for the MD method; this indicates that a

constant-temperature MD simulation is to be carried out. The dt gives the time step in atomic units. The

value “50.0” in this example is equivalent to about 1.2 fs. In addition, temperature_control is defined to give

settings for the thermostat. The temp variable sets the target temperature, and qmass sets the effective

mass Q.

To assign the above-defined temperature and mass to atoms, define the thermo_group attribute in the atoms

block as follows:

structure{
 ...
 atom_list{
 num_atoms = 8
 cooordinate_system = internal
 atoms{
 !#tag rx ry rz element mobile weight thermo_group
 0.1159672611 0.1235205209 0.1215156388 Si 1 1 1
 -0.1329067626 -0.1264216714 -0.1225370484 Si 1 1 1
 0.1273740089 0.6305999369 0.6247606249 Si 1 1 1
 -0.1152089939 -0.6164829779 -0.6221565128 Si 1 1 1
 0.6299472943 0.1341313888 0.6253193197 Si 1 1 1
 -0.6305720382 -0.1290073650 -0.6187967685 Si 1 1 1
 0.6151271805 0.6206113965 0.1333834419 Si 1 1 1
 -0.6276524003 -0.6268549639 -0.1175099372 Si 1 1 1
 }
 }
 ...
}

In this example, the thermo_group attribute is defined for all atoms. The number given to this attribute

corresponds to the order of thermostat parameters defined in the thermostat block. As well as other

attributes, the default value of the thermostat parameter can be defined by the “#default” tag. Although the

same group is given to the thermo_group in this example, you can set different groups to the atoms.

5.2.2.6 Precaution for use

There are no specific limitations for the MD simulation function. This function supports ultra-soft and PAW

 139

pseudopotentials, parallel calculations, and continuation calculations (restarting). However, note the

following.

 Masses of atoms must be correctly defined when an MD simulation is performed. The default unit of

mass in PHASE is in atomic units. For example, the mass of a proton is 1822.877333 in atomic units.

 The kinetic energy [Hartree] is given by

 , where represents the

number of atoms, represents the Boltzmann constant, and represents the instantaneous

absolute temperature. Therefore, to know the temperature of the system, divide the kinetic energy by

the number of atoms, multiply by , which is the unit conversion factor from Hartree to

 , and then finally divide by

.

 The total simulation time can be obtained by multiplying the number of MD cycles by the time step

given by the dt variable. Although the unit of time can be defined by users, the default unit is in atomic

units. One can convert the time from atomic units to seconds by multiplying by . For

example, 100 a.u. corresponds to 2.418 fs.

 In constant-temperature MD simulations, the parameter Q should be carefully chosen. If the value of Q

is very small, an artificial mode is created in the dynamics. This is caused by the thermostat and leads

to a collapse of the calculation. Alternatively, if the value of Q is very large, the system requires a large

number of steps to thermally equilibrate. Generally speaking, it is recommended to set the parameter Q

such that the period of oscillation of the thermostat is almost equivalent to or longer than the period of

characteristic oscillations of the system. The period of oscillation of the thermostat can be approximately

estimated by the equation (S. Nos ，Progress of Theoretical Physics Supplement No 103, 1991, pp.1–46):

where and represent the period and frequency of the system, is the number of degrees of

freedom of the system (3 N, where N is the number of atoms related to the thermostat), is

Boltzmann’s constant, and is the target absolute temperature of the thermostat. For example, if is

0.05 ps, the number of atoms is 8，and the target temperature is 300 K, then the parameter Q is

estimated to about 4600 in atomic units.

 140

5.3 Advanced DFT calculations

5.3.1 DFT+U Method

5.3.1.1 General features

The software PHASE, which is based on density functional theory (DFT), accurately calculates the

electronic states of most materials. However, for strongly correlated systems, high accuracy cannot be

expected owing to limitations in the local density approximation (LDA) adopted in DFT. To overcome this

drawback, PHASE also supplies the LDA+U method, or alternatively DFT+U, in which repulsive

interactions between localized electrons are incorporated as on-site Coulomb interactions.

Among various DFT+U models proposed, PHASE adopts a simplified rotationally invariant model, in which

the total energy () is written as a sum of the energy of DFT () and a “+U” correction energy. (The

latter contribution is also called the Hubbard correction.) The Hubbard correction is a function of the

occupation matrix that is calculated on each atomic site.

 ′

 ′

 ′

Here index l denotes the atomic site, m and m are magnetic quantum numbers, and is the spin index.

The quantity represents the strength of the effective Coulomb interaction.

The occupation matrix is constructed by projecting the wavefunctions onto the localized orbitals such as

atomic orbitals.

 ′

 ′

Here the index denotes the wavenumber vector and is the band index. The quantity

 denotes the

occupation number of the electronic state specified by the three indices , , and .

 The Hubbard correction causes splitting of the degenerate energy levels of the localized orbitals. In

particular, when the corresponding energy level is fully occupied (unoccupied), its energy is decreased

(increased) by

 (see Figure 5.8). The value of should be chosen so as to experimentally reproduce

observed quantities; otherwise, use values reported in previous studies.

 141

Figure 5.8 Energy level splitting caused by the Hubbard correction

5.3.1.2 Input parameters

To use the DFT+U method, the following steps are essential. First, in the “accuracy” block, you should add

the “hubbard” and “projector_list” blocks. In the former, specify the strength of the effective Coulomb

interaction (Ueff). Note that the keyword “sw_hubbard = on” is needed to declare that the Hubbard correction

will be used. In the latter part, specify the radius of the atomic orbital that will be used in calculating the

occupation matrix. The keyword “no” denotes the projector number, “group” denotes the projector group

number, “radius” denotes the radius of the atomic orbital, and “l” denotes the azimuthal quantum number.

Note that the projector number specified in the “hubbard” block corresponds to the projector number in the

“projector_list” block.

accuracy{
 ...
 hubbard{
 sw_hubbard = on
 projectors{
 #units eV
 #tag no ueff
 1 10.0
 }
 }
 projector_list{
 projectors{
 #tag no group radius l
 1 1 2.75 2
 }
 }
...
}

Next, in the “structure” block, you should specify the atoms to which the Hubbard correction is applied. The

numbers specified with the keyword “proj_group” correspond to the projector group numbers defined in the

“accuracy” block. The number “0” indicates that the Hubbard correction is not to be applied to the

corresponding atom.

structure{
 ...
 atom_list{

 142

 coordinate_system = internal ! {cartesian|internal}
 atoms{
 !#default mobile=no
 !#tag rx ry rz element proj_group
 0.0 0.0 0.0 Sr 0
 0.5 0.5 0.5 Ti 1
 0.0 0.5 0.5 O 0
 0.5 0.0 0.5 O 0
 0.5 0.5 0.0 O 0
 }
 }
...
}

Finally, in the “wavefunction_solver” block, we recommend using the Davidson method to prevent electronic

states from being trapped in a local energy minimum.

wavefunction_solver{
 solvers{
 !#tag sol till_n dts dte itr var prec cmix
 Davidson -1 0.1 0.1 100 tanh off 1
 }
}

5.3.1.3 Outputs

 Standard output file

In the standard output file, you will find the words “HE” and “HP” when you use the Hubbard correction.

The former and latter terms correspond to the Hubbard energy and Hubbard potential energy, respectively.

 TOTAL ENERGY FOR 2 -TH ITER= -79.756461901287 edel = 0.482992D+01
 KI= 45.2522902 HA= 125.6089055 XC= -43.2979227 LO= -147.0597534
 NL= 19.3280980 EW= -92.0686823 PC= 12.2272681 EN= 0.0000000
 HE= 0.2533348 HP= 0.6709743

In the same file, you will also be able to confirm the elements of the occupation matrix on each of the

atomic sites to which you apply the Hubbard correction. The keyword “is” denotes the spin index, “ia”

denotes the atom index, and “l” denotes the azimuthal quantum number. Note that the dimensions of the

occupation matrix are (2l + 1) × (2l + 1).

The (m, m)th element of this matrix indicates the occupation matrix between the atomic orbital with the

magnetic quantum numbers, m and m (1 <= m, m <= 2l + 1). The character of the mth orbital used in

PHASE is summarized in Table 5.1.

Subsequently, you will find the occupancy of the atomic orbitals by diagonalizing the occupation matrix. The

first column indicates the eigenvalues of the occupation matrix, and the numbers on the right hand side of

the colon indicate the corresponding eigenvectors.

Occupation Mattrix: is,ia,l= 1 2 2
 0.583 0.000 0.000 0.000 0.000
 0.000 0.583 0.000 0.000 0.000
 0.000 0.000 0.529 0.000 0.000
 0.000 0.000 0.000 0.529 0.000
 0.000 0.000 0.000 0.000 0.529
Diagonalizing Occupation Mattrix: is,ia,l= 1 2 2

 143

 0.529: 0.000 0.000 0.000 -1.000 0.000
 0.529: 0.000 0.000 1.000 0.000 0.000
 0.529: 0.000 0.000 0.000 0.000 1.000
 0.583: 0.000 1.000 0.000 0.000 0.000
 0.583: -1.000 0.000 0.000 0.000 0.000

occmat.data

In the file “occmat.data,” you will find the elements of the occupation matrix at the last SCF iteration before

the calculation is terminated. The first line, which contains the word “num_om,” indicates the number of

generated occupation matrices, . Below that line, you will find the elements of the occupation matrix at

each of the atomic sites to which you apply the Hubbard correction. The keyword “is” denotes the spin index,

“ia” denotes the atom index, “iproj” denotes the projector number, “it” denotes the atom species, and “l”

denotes the azimuthal quantum number. Note that the number of occupation matrices printed equals .

16 : num_om

…….

 1 3 1 3 1 : is, ia, iproj; it, l

 0.17441054E+01 -0.20464246E-02 -0.99899010E-03

 -0.20464246E-02 0.17539484E+01 -0.39442624E-02

 -0.99899010E-03 -0.39442624E-02 0.17529809E+01

 1 4 1 3 1 : is, ia, iproj; it, l

 0.17365161E+01 -0.12145064E-01 -0.11970673E-01

 -0.12145064E-01 0.17903944E+01 -0.85524320E-02

 -0.11970673E-01 -0.85524320E-02 0.17856965E+01

……

Table 5.1 Orbital character

magnetic quantum

number

1
2

3

4

5

6

7

 144

5.3.1.4 Sample : cubic SrTiO3

In the directory “sample/DFT+U/SrTiO3/cubic+u,” you will find the following samples.

 DFT+U/SrTiO3/cubic+u (is set to 10 eV for the Ti 3d orbitals.)

 DFT+U/SrTiO3/cubic (is set to 0 eV)

These two samples are compared in Figure 5.9.

Figure 5.9 Density of states for cubic SrTiO3

5.3.1.5 Sample : cubic LaVO3

 DFT+U/LaVO3/cubic+u (is set to 20 eV for the La 4f orbitals.)

 DFT+U/LaVO3/cubic (is set to 0 eV)

In the latter, the 4f band appears at 1.5 eV above the Fermi level.

In the former, this band appears at 8.0 eV above the Fermi level.

5.3.1.6 Sample : orthrombic LaVO3

 DFT+U/LaVO3/orthrombic+u

(is set to 5 for the V 3d orbital and to 20 eV for La 4f orbital.)

 DFT+U/LaVO3/orthrombic (is set to 0 eV)

In the former, the magnetic moments on the V atoms are aligned in an anti-ferromagnetic manner..

5.3.1.7 Sample : cubic FeO

 145

 DFT+U/FeO/gga+u (is 5 eV for the Fe 3d orbital.)

 DFT+U/FeO/gga (is set to 0 eV)

Note that these two samples use the data in file occmat.data as initial values for the occupation matrix. For

the up-spin component, the diagonal elements of the occupation matrix are set to 1. For the down-spin

component, these elements are set to 0 except for the orbital.

In the former, the d-band with the character appears above the Fermi level. In the latter, this

band occurs below the Fermi level, which indicates that a band gap is opened.

 146

5.3.2 Hybrid functionals

5.3.2.1 Overview

The exact exchange energy is given by

where

 is a wavefunction of the -th spin. Note that the summation over only applies to

occupied states. Here we define the hybrid exchange-correlation functional:

where
 represents the PBE exchange functional, and

 represents the PBE correlation functional.

When

, the

 corresponds to the PBE0 functional.

5.3.2.2 Input parameters

To calculate the electronic states by the PBE0 functional, input parameters are set as follows:

accuracy{
 ksampling{
 method = gamma
 base_reduction_for_GAMMA = OFF
 base_symmetrization_for_GAMMA = OFF
 }
 xctype = ggapbe
 hybrid_functional{
 sw_hybrid_functional = ON
 alpha = 0.25
 }
}

In addition, wavefunctions and the charge density calculated by the PBE functional are given as initial

guesses for the PBE0 functional calculation:

accuracy{
 initial_wavefunctions = file
 initial_charge_density = file
}

Make sure that the wavefunction file (zaj.data) and charge-density file (nfchgt.data) obtained by the PBE

calculation are copied into the work directory. Note that for the hybrid functional, only the MSD method can

be used as the wavefunction solver, and only norm-conserving pseudopotentials can be used as

pseudopotentials.

Hartree–Fock calculations can also be performed by the following input.

accuracy{
 hybrid_functional{
 sw_hybrid_functional = ON
 sw_exchage_only = ON
 alpha = 1.00
 }

 147

}

However, convergence of a Hatree–Fock calculation is significantly slower than that for a PBE0 calculation.

5.3.2.3 Examples: a hydrogen molecule

Sample input files of PBE, PBE0, and Hartree–Fock calculations of a hydrogen molecule are in the directory

samples/hybrid/H2. By executing go_h2.sh, these calculations are executed in order. The results of these

calculations and reference data obtained by Gaussian03 are compared in Figure 5.10.

Figure 5.10 Energy levels of HOMO and LUMO of the hydrogen molecule,

calculated by PBE functional, PBE0 functional, and the Hartree–Fock method.

The results obtained from PHASE and Gaussian03 are compared.

5.3.2.4 Examples: a water molecule

Sample input files for PBE and PBE0 calculations for a water molecule are in the directory

samples/hybrid/H2O. By executing go_h2o.sh, these calculations are executed in order. The results of these

calculations and reference data obtained by Gaussian03 are compared in Figure 5.11.

 148

Figure 5.11 Energy levels of HOMO and LUMO of the water molecule

calculated by the PBE functional and PBE0 functional.

The results obtained from PHASE and Gaussian03 are compared.

 149

5.3.3 Non-local correlation term (van der Waals interaction)

5.3.3.1 Introduction for the van der Waals interaction

 PHASE can calculate total energies and electronic states, including the van der Waals (vdW) interaction. In

this section, the function used for the vdW term is explained. The vdW interaction is calculated by a

nonempirical method. It is based on the van der Waals density functional (vdW-DF) given by Dion et al. [*1]

It is widely known that the generalized gradient approximation (GGA) fails to reproduce the vdW interaction.

Therefore, GGA cannot be used for systems in which the vdW interaction makes a large contribution, such

as for interlayer interactions of stacked graphene sheets. The function described in this section avoids this

defect. It can provide total energies and electronic states more accurately than GGA. The function contains

no experimental parameters; thus, it is appropriate for any type of system.

 This function is implemented via two Fortran 90 programs, vdW.F90 and vc_nl.F90. One program,

vdW.F90, is used for “1-shot calculations (post-calculations)” to determine total energies, including the vdW

interaction. The other, vc_nl.F90, is self-consistently implemented into the main program “PHASE.” This

program computes the vdW potential and directly implements it into the Kohn–Sham equation; hence,

electronic states will be calculated with the vdW interaction included

5.3.3.2 Total energy (1-shot calculation)

15. Basic formula

The program vdW.F90 calculates the nonlocal correlation term
 (i.e., the vdW term) and the local

correlation term
 . The total exchange-correlation term, including the vdW interaction, is obtained by

adding the local and nonlocal terms to the GGA exchange term. Thus, the total exchange-correlation energy

is written as

 (1)

The third term on the right hand side of Eq. (1) is the most difficult to calculate. This is what we call the van

der Waals interaction; to calculate this term, we use the vdW-DF given by Dion et al. [*1]. They write
 as

(2)

Equation (2) contains two spatial variables: and . This means that Eq. (2) considers nonlocal interactions

between electron densities at points and . This is the main difference between Eq. (2) and the formula

used in GGA and LDA. The function containing these two variables, , is given by

(3)

Here

(4)

and

(5)

The remaining variables are given by

 150

(6)

 (7)

(8)

 (9)

The coefficient is determined by a first-principle calculation, and it does not change with a

change in system. From these equations, we can see that the electron density is the only input data to

the functional . The quantity
 in (8) is the exchange-correlation energy density in LDA [*2].

These formulas are based on the plasmon-pole model, and because of this, the vdW interaction can be

obtained with a relatively low computational cost.

16. Algorism

The total energy, including the vdW interaction, is calculated using output files obtained from a GGA

calculation implemented through PHASE. However, to avoid double counting, the GGA correlation term

must be excluded from the original GGA. Thus, we represent the total energy obtained by this

GGA-exchange-only calculation as
 . The correlation term, which will be calculated by vdW.F90,

consists of two parts: a “local” part and a “nonlocal” part. These are determined in a 1-shot (post-) calculation

by using the charge density file “nfchr.cube” generated by PHASE. The total energy including the vdW

interaction
 is obtained by adding these energy terms:

 (10)

Here
 is the local correlation term, and

 is the nonlocal correlation term. Figure 5.12 shows the

calculation flow to obtain
 from the 1-shot program vdW.F90. The green box represents the vdW

routine, while the blue box represents the GGA (exchange-only) routine. Before running vdW.F90, we need to

run PHASE to obtain two output files: “nfchr.cube” for the electron density and “nfefn.data” for

 .

Figure 5.12 Calculation flow for vdW.F90

 151

17. Execution of 1-shot calculations

 Running PHASE in advance

The program vdW.F90 is designed to perform a 1-shot (post-) calculation. This program needs two input files:

“nfchr.cube” and “nfefn.data’. (See Fig.*1.) Here “nfchr.cube” contains the charge density and “nfefn.data”

contains the total energy
 ; both files are obtained by running PHASE.

To obtain “nfchr.cube” from PHASE, we need to set parameters in “nfinp.data”. Here are representative

examples for “file_names.data” and “nfinp.data.”

file_names.data (PHASE)：

F_ENF = ‘./nfefn.data’

F_CHR = ‘./nfchr.cube’

nfinp.data (PHASE)

accuracy{

xctype = ggapbex

}

postprocessing{

charge{

sw_charge_rspace = ON

filetype = cube

 }

}

Although a “ggapbe”-type pseudopotential will be used in PHASE, the correlation term must be excluded to

avoid double counting. To exclude this term, a new word “ggapbex” is added as a possible value for “xctype”

in PHASE. By setting “xctype = ggapbex,” only the exchange term in ggapbe will be calculated. The same

pseudopotential files are available for “ggapbex” with “ggapbe.”

 Compiling vdW.F90

The program vdW.F90 is parallelized with OpenMP and is compiled by a Fortran 90 compiler. Add the

“-openmp” option when compiling for parallel calculations,

$ ifort -openmp -o vdW vdW.F90

 Executing ‘vdW’

Put the two input files “nfchr.cube” and “nfefn.data” into the same directory with the execution file “vdW”

and do not change their names. These two files will be read automatically; hence, no additional input is

needed for “vdW.”

 Writing output from “vdW”

Output data from “vdW” will be written in the format shown below. The units are all in Hartree, the same

as in PHASE.

 152

Output example:

 These results were calculated by a serial calculation using the output files “nfchr.cube” and “nfefn.data” in

phase/samples/vdW/input_scf_Si.data.

E_total(GGA exchange) = -7.5363221703000

Ec(LDA) = -0.5429739815997

Ec(nl) = 0.0203272639208

Ec (= Ec(LDA) + Ec(nl)) = -0.5226467176789

E_total(vdW-DF) = -8.0589688879789

Given in Hartree atomic units

Calculation time 0 : 11 : 33.7280

Meaning of each variable:

E_total(GGA exchange) Total energy of GGA (exchange only)

Ec(LDA) Local correlation term from LDA

Ec(nl) Non-local correlation term

Ec (= Ec(LDA) + Ec(nl)) Total correlation term

E_total(vdW-DF) Total energy including the vdW-DF

Calculation time Hours : minutes : seconds

Here “E_total(vdW-DF)” is the main objective in “vdW.”

5.3.3.3 Example: Silicone Diamond

These results can be tested by using files in “phase/samples/vdW/.” First, execute PHASE with

“file_names.data” and “input_scf_Si.data”; two output files “nfchr.cube” and “nfefn.data” will be

automatically created. Next, compile the vdW.F90 program prepared in the same directory and execute it.

Thus, use the following commands:

$ cd phase/samples/vdW/ (Change directory to samples/vdW/)

$../../bin/phase (Execute PHASE and do the GGA (exchange only) calculation)

$ ifort -openmp -o vdW vdW.F90 (Compile vdW.F90 and prepare the execution file ‘vdW’)

$./vdW (Execute ‘vdW’ at the same directory)

Outputs

E_total(GGA exchange) = -7.5363221703000

Ec(LDA) = -0.5429739815997
Ec(nl) = 0.0203272639208
Ec (= Ec(LDA) + Ec(nl)) = -0.5226467176789

E_total(vdW-DF) = -8.0589688879789

Given in Hartree atomic units

Calculation time 0 : 11 : 33.7280

5.3.3.4 Electron state calculation (self-consistent field calculation)

18. Basic formula

 153

To calculate electronic states, considering the vdW interaction, the vdW potential term must be directly

implemented into the Kohn–Sham equation that is used in self-consistent field (SCF) calculations. The

functional derivatives with respect to the charge density of the energy terms
 and

 (i.e., the

potential terms) will be calculated by

(10)

Then, self-consistent implementation will be done by adding each potential term,

 (11)

Equation (3) shows that
 and

 include in a relatively simple manner; thus, those derivations

can be obtained analytically.

The total energies should be calculated with SCF; however, the difference between the 1-shot result and the

SCF result is confirmed to be negligible. [3] Therefore, for calculating only total energies, we recommend

using only the 1-shot calculation since the CPU cost will be much lesser than when using SCF calculations.

19. Execution of SCF calculations

This routine self-consistently solves the Kohn–Sham equation by adding the local
 and nonlocal

correlation potentials
 to the GGA exchange potential

 . Calculation of electronic states, including

the vdW interaction, are performed only by running PHASE similar to normal GGA or LDA calculations.

Note that a unit cell of a system needs to be cuboid in this version. There is no such limitation in the 1-shot

program; e.g., rhombic unit cells can be used in vdW.F90.

To implement the vdW term in the self-consistent calculations, “nfinp.data” needs to be written as follows.

nfinp.data (PHASE) :

accuracy{

xctype = vdwdf

}

The program vc_nl.F90, which is used for the self-consistent implementation of the vdW term, is located in

directory src_phase/. It is parallelized by OpenMP and is automatically compiled by executing the command

“make” for compiling a normal PHASE.

5.3.3.5 References

[1] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist: Phys. Rev. Lett. 92 (2004) 246401:

Erratum, ibid, 95 (2005) 109902.

[2]O. Gunnarsson and B. I. Lundqvist: Phys. Rev. B 13 (1976) 4274.

[3] L. X. Benedict, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, and V. H. Crespi: Chem. Phys. Lett. 286

(1998) 490.

[4] Y. Baskin and L. Mayer: Phys. Rev. 100, (1955) 544.

[5] H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S. I. Simak, D. C. Langreth, and B. I.

Lundqvist: Phys. Rev. Lett. 91 (2003) 126402.

[6] T. Thonhauser, Valentino R. Cooper, Shen Li, Aaron Puzder, Per Hyldgaard, and David C. Langreth: Phys.

Rev. B 76, 125112 (2007).

 154

5.3.4 Van der Waals corrected DFT

5.3.4.1 Overview

 Williams method (R.W. Williams, et al., Chemical Physics 327 (2006) 54–62)

)(
6

6
ij

ij ij

ij

vdw Rf
R

C
E 

4
7

0

exp1)(













































ij

ij

R

R
dRf

j

j

i

i

ji

ji

C

ij

CpCp

ppCC
SC

6

2

6

2

66

6

2


 ,

   
   20

2

0

3

0

3

0

0
jjii

jjii

R

ij

RR

RR
SR




 ,

iii RR 00 2

Parameters:

vdw radius 20.0 bohr

scaling factor CS 0.8095 (PHASE), RS 0.80 reference PBE CS 0.85 RS 0.80

damping factor d 3.0

 polarizabilities

A3

vde coef C6

Hartree*bohr6

vdw radius

 polarizabilities

A3

vde coef C6

Hartree*bohr6

vdw radius

H 0.387 2.831179918 1.17 NTE 0.964 20.89758657 1.50

F 0.296 3.94987377 NTR2 1.030 23.08003267 1.50

Cl 2.315 3.94987377 NPI2 1.090 25.12582491 1.50

Br 3.013 128.2756865 NDI 0.956 20.63799109 1.50

I 5.415 309.0603852 OTE 0.637 11.86370812 1.40

CTE 1.061 22.67403316 1.70 OTR4 0.569 10.01566303 1.40

CTR 1.352 32.61525204 1.70 OPI2 0.274 3.346856941 1.40

CAR 1.352 49.790/Sc 1.70 STE 3.000 121.2531939 1.80

CBR 1.896 54.16430826 1.70 STR4 3.729 168.0350502 1.80

CDI 1.283 30.15058105 1.70 SPI2 2.700 103.5277919 1.80

 PTE 1.538 42.11289383 1.80

 Grimme method (DFT-D2) (S. Grimme, J. Comp. Chem. 27 (2006) 1787)

)(
6

6

6 ij

ij ij

ij

disp Rf
R

C
sE 
































1exp1

1
)(

0

ij

ij

R

R
d

Rf

jiij CCC 666  ,
jiij RRR 000 

 155

Parameters:

vdw radius 30.0A

scaling factor 6s 0.75, damping factor d 20.0

C6

Jnm6/mol

R0

A

C6

Jnm6/mol

R0

A

H 0.14 1.001 K 10.80 1.485
He 0.08 1.012 Ca 10.80 1.474
Li 1.61 0.825 Sc-Zn 10.80 1.562
Be 1.61 1.408 Ga 16.99 1.650
B 3.13 1.485 Ge 17.10 1.727
C 1.75 1.452 As 16.37 1.760
N 1.23 1.397 Se 12.64 1.771
O 0.70 1.342 Br 12.47 1.749
F 0.75 1.287 Kr 12.01 1.727
Ne 0.63 1.243 Rb 24.67 1.628
Na 5.71 1.144 Sr 24.67 1.606
Mg 5.71 1.364 Y-Cd 24.67 1.639
Al 10.79 1.716 In 37.32 1.672
Si 9.23 1.716 Sn 38.71 1.804
P 7.84 1.705 Sb 38.44 1.881
S 5.57 1.683 Te 31.74 1.892
Cl 5.07 1.639 I 31.50 1.892
Ar 4.61 1.595 Xe 29.99 1.881
1 J/mol = 3.8088e-7 hartree, 1 bohr = 0.5291772480 A

5.3.4.2 Input parameters

A list of tag keyword related to the vdW correction

1st level block 2nd, 3rd level block Tag keyword Description

Control sw_vdw_correction *

Accuracy vdw_method williams

grimme or dft-d2

default

 vdw_radius 20 Bohr

30 A (Grimme DFT-D2)

 vdw_scaling_factor 0.805 (Williams)

0.75 (Grimme DFT-D2)

 vdw_scaling_factor_r 0.8 (Williams)

 vdw_damping_factor 3.0 (Williams)

20.0 (Grimme DFT-D2)

Structure atom_list

 atoms * a type of vdW correction

is specified by #tag vdw

 vdw_list parameters for each

element for vdW

correction are defined

Williams

#tag type c6 r0 p

Grimme

 #tag type c6 r0

* required for the vdW correction

 156

Parameters for the vdW correction for each element

Parameters in the William’s method and Grimme method (DFT-D2) for each element are internally defined

in PHASE and used as default values. The type attribute in the vdw_list must correspond to the type of vdW

in the atom_list.

Williams method
 vdw_list{

 #tag type c6 r0 p

 H 2.831179918 1.17 0.387

 CTE 22.67403316 1.70 1.061

 }

Grimme method (DFT-D2)
 vdw_list{

 #tag type c6 r0

 H 0.14 1.001

 C 1.75 1.452

 }

Example of input parameters

Input data for vdW corrections are illustrated below.

Methane Dimer by the Williams method
Control{

 sw_vdw_correction = ON

}

accuracy{

 vdw_method = williams

 vdw_radius = 20.0

 vdw_scaling_factor = 0.8095

 vdw_scaling_factor_r = 0.8

 vdw_damping_factor = 3.0

}

structure{

 atom_list{

 coordinate_system = cartesian ! {cartesian|internal}

 atoms{

 #units angstrom

 #default mobile=on

#tag element rx ry rz vdw

C 0 0 0 CTE

H 0 1.093 0 H

H 1.030490282 -0.364333333 0 H

H -0.515245141 -0.364333333 0.892430763 H

H -0.515245141 -0.364333333 -0.892430763 H

C 0 -3.7 0 CTE

H 0 -4.793 0 H

H -1.030490282 -3.335666667 0 H

H 0.515245141 -3.335666667 -0.892430763 H

H 0.515245141 -3.335666667 0.892430763 H

 }

 }

 vdw_list{

 #tag type c6 r0 p

 H 2.831179918 1.17 0.387

 CTE 22.67403316 1.70 1.061

 }

}

Methane Dimer by the Grimme method (DFT-D2)
Control{

 157

 sw_vdw_correction = ON

}

accuracy{

 vdw_method = grimme

 vdw_radius = 30.0

 vdw_scaling_factor = 0.75

 vdw_damping_factor = 20.0

}

structure{

 atom_list{

 coordinate_system = cartesian ! {cartesian|internal}

 atoms{

 #units angstrom

 #default mobile=on

#tag element rx ry rz vdw

C 0 0 0 C

H 0 1.093 0 H

H 1.030490282 -0.364333333 0 H

H -0.515245141 -0.364333333 0.892430763 H

H -0.515245141 -0.364333333 -0.892430763 H

C 0 -3.7 0 C

H 0 -4.793 0 H

H -1.030490282 -3.335666667 0 H

H 0.515245141 -3.335666667 -0.892430763 H

H 0.515245141 -3.335666667 0.892430763 H

 }

 }

 vdw_list{

 #tag type c6 r0

 H 0.14 1.001

 C 1.75 1.452

 }

}

5.3.4.3 Calculation examples

 Water_Dimer (Williams, Grimme(DFT-D2))

 Methane_Dimer (Williams, Grimme(DFT-D2))

 Ethane_Dimer (Williams, Grimme(DFT-D2))

 ATstack (Williams)

 158

5.4 Analysis of chemical reactions

5.4.1 The NEB method

5.4.1.1 Outline of the feature

The nudged elastic band (NEB) method and the climbing image (CI)–NEB method enable us to obtain the

minimum energy path for a chemical reaction (or more generally, for any process having finite activation

energy).

In reaction-path calculations based on the NEB and CI–NEB methods, we assume that the atomic

configurations of the initial state (and final state () are known in advance. The atomic configurations

and energies of the intermediate states (), hereafter referred to as either “images” or

“replicas,” are obtained by performing structural optimization under the constraint that adjacent images are

coupled by hypothetical “springs.” Here denotes the atomic coordinates of the i-th image. Initial

intermediate images can be arbitrarily generated, although they are usually built by a simple linear

interpolation between the initial and final states.

 Ordinary NEB method

In the ordinary NEB method, forces acting on each image are calculated by

Here
 is the component of the spring force that is parallel to the reaction path; it is calculated by

Here k is the spring constant, and is the unit vector along the reaction path, which is calculated from

 is the component of the atomic forces that is perpendicular to the reaction path; it is calculated by

 CI–NEB method

The CI–NEB method is a revision of the NEB method, in which the forces of the image with the highest

energy (the image closest to the transition state) are modified. First, the reaction-path calculations are

advanced to a certain extent by the ordinary NEB method. Then, the image with the highest energy is

identified, and the forces acting on it are modified by

 159

Using this formula, the highest-energy replica will “climb” the reaction path toward the transition state.

When convergence is reached, the highest-energy replica will be exactly located at the transition state.

 Calculation method for the spring constants

When calculating the minimum energy path of a reaction, it is preferable to increase the accuracy of the

states in the vicinity of the saddle point. Thus, it is preferable to increase the “density” of images near the

saddle point and accurately calculate the tangent to the path. One way to do this is to strengthen the spring

constant of images near the saddle point. To this end, the following formula for the spring constant has been

suggested in the literature:

Here is the maximum value of the spring constant, is the difference between the maximum and

minimum spring constants, denotes the higher of the energies between the two images connected to the

i-th spring, is the highest energy among the images, and is the higher of the energies between

the initial and final states.

5.4.1.2 Input parameters

20. Specification of the input parameter file

The tags related to the NEB method are tabulated below.

1st level block 2nd, 3rd level block identifiers description

Control

 multiple_replica_mode Set this switch to “ON” to

operate PHASE in the NEB

mode.

 multiple_replica_max_iteration Specify the maximum number

of NEB iterations.

multiple_replica

 accuracy

 dt Specify the time step for NEB

optimization.

 neb_time_integral Specify the integration

method (either quench or

steepest_descent) for the NEB

method. Defaults to

steepest_descent.

 penalty_function Specify whether to enable the

penalty function. Defaults to

NO.

 neb_convergence_condition Specify the convergence

condition for NEB

optimization (further details

will be given in the

explanations below)

 neb_convergence_threshold Specify the threshold for

convergence.

 constraint

 ci_neb Switch to whichever specifies

 160

whether the CI–NEB should

be enabled. Defaults to NO.

 sp_k_init Specify the initial value of the

spring constant.

 sp_k_min Specify the minimum value of

the spring constant.

 sp_k_max Specify the maximum value of

the spring constant.

 sp_k_variable Switch to whichever specifies

whether the spring constants

should be variable. Defaults to

NO.

 structure

 number_of_replicas Specify the number of replicas

excluding the initial and final

states.

 replica Block to specify information

regarding the replicas.

 endpoint_images Specify the method (either

“directin” or ”file”) used to

specify the atomic coordinates

of the initial and final states.

When “directin” is specified,

the coordinates are specified

within the F_INP file. When

“file” is specified, the

coordinates are supplied from

a separate file. Defaults to

“directin.”

 atom_list_end0 Block whichever specifies the

atomic coordinates for the

initial state.

 atom_list_end1 Block whichever specifies the

atomic coordinates for the

final state.

Now, we use concrete examples to illustrate the configuration of input parameters for the NEB method.

The following must be configured when performing NEB calculations.

 Enable the NEB method.

 Configure the convergence condition and threshold specific to the NEB method.

 Specify the atomic coordinates for the initial and final states.

 Specify the atomic coordinates of the intermediate images. (You can instruct PHASE to automatically

build the intermediate images by a linear interpolation between the initial and final states.)

 Enable the NEB method

To instruct PHASE to perform NEB calculations, define the variable “multiple_replica_mode” under the

“control” block and set its value to “on.”

control{
 multiple_replica_mode = on
}

 Configure the convergence condition and threshold specific to the NEB method

The convergence condition is configured by the “neb_convergence_condition” variable under the “accuracy”

 161

block under the “multiple_replica” block.

multiple_replica{
accuracy{

 neb_convergence_condition = energy_e

}

}

The value for the “neb_convergence_criteria” can be specified by either an integer or a string. The

correspondence is as follows.

integer string description

1 energy_e dE < threshold

2 phase_force maximum force from PHASE threshold

3 neb_force maximum NEB force threshold

4 force_at_transition_state maximum force from PHASE for the highest-energy image <

threshold

5 phase_force_normal maximum of the PHASE force component perpendicular to

the tangent of the reaction path threshold

The threshold value is specified by the “neb_convergence_threshold” variable, definable under the same

block as the “neb_convergence_criteria” variable. Note that the unit for this variable changes according to

the value specified for the “neb_convergence_criteria” variable. Thus, the unit for this variable cannot be

explicitly specified: the default units (atomic units) must be used.

 Specify the atomic coordinates for the initial and final states: direct specification

To directly specify atomic coordinates for the initial and final states in the F_INP file, set the

“endpoint_images” variable to “directin” and define the “atom_list_end0” and “atom_list_end1” block. Here is

an example.

multiple_replica{

 structure{

 endpoint_images = directin
 atom_list_end0{
 coordinate_system = cartesian ! {internal|cartesian}
 atoms{
 #units angstrom
 #tag element rx ry rz
 Si 0.000000000000 0.000000000000 0.000000000000
 Si 2.751721694800 2.751721694800 0.000000000000

 }
 }
 atom_list_end1{
 coordinate_system = cartesian ! {internal|cartesian}
 atoms{
 #units angstrom
 #tag element rx ry rz
 Si 0.000000000000 0.000000000000 0.000000000000
 Si 2.751721694800 2.751721694800 0.000000000000

 }

 162

 }

 }

The atomic coordinates for the initial and final states are specified under the “atom_list_end0” block and the

“atom_list_end1” block, respectively. The format of the specification is the same as that for the usual atomic

coordinates, i.e., the specification under the “atom_list” block under the “structure” block.

 Specify the atomic coordinates for the initial and final states: specification from external files.

To specify atomic coordinates for the initial and final states from external files, set the value of the

“endpoint_images” variable to “file.”

multiple_replica{
 ...
 ...
 structure{
 endpoint_images = file
 }
 ...
 ...
}

The names of the external files are specified in the “file_names.data” file as usual. The corresponding file

pointers are F_IMAGE (–1) and F_IMAGE (0). Here is an example.

&fnames
...
...
/
&nebfiles
F_IMAGE(0) = './endpoint0.data'
F_IMAGE(-1) = './endpoint1.data'
...
...
/

Note that the F_IMAGE (0) and F_IMAGE (–1) pointers can only be used under the “&nebfiles” section.

The file formats of the F_IMAGE (0) and F_IMAGE (–1) files are as follows.

coordinate_system=cartesian

#units angstrom

Si 0.000000000000 0.000000000000 0.000000000000
Si 2.751721694800 2.751721694800 0.000000000000
Si 1.375860847400 1.375860847400 1.375860847400
Si 4.127582542200 4.127582542200 1.375860847400
Si 0.000000000000 2.751721694800 2.751721694800
Si 2.751721694800 0.000000000000 2.751721694800
Si 1.375860847400 4.127582542200 4.127582542200
Si 4.127582542200 1.375860847400 4.127582542200
Si 0.000000000000 0.000000000000 5.503443389600

 163

Si 2.751721694800 2.751721694800 5.503443389600
Si 1.375860847400 1.375860847400 6.879304237000
H 1.644706293661 1.095414892118 11.000000000000
H 1.095414929519 1.644706317263 11.000000000000

 Specify the intermediate images from a linear interpolation

The atomic coordinates of intermediate images can be specified by a linear interpolation of the initial and

final states. This is done as follows.

multiple_replica{

structure{

number_of_replicas = 6

replicas{

#tag replica_number howtogive_coordinates end0 end1

 1 proportional 0 -1 ! 0: end0, -1:end1

 2 proportional 0 -1

 3 proportional 0 -1

 4 proportional 0 -1

 5 proportional 0 -1

 6 proportional 0 -1

 }

}

}

 Specify the intermediate images from external files

To specify intermediate images from external files, the value of the “howtogive_coordinates” variable is set to

“file.” Here is an example.

multiple_replica{
 ...
 ...
 structure{
 number_of_replicas = 3
 replicas{
 #tag replica_number howtogive_coordinates end0 end1
 1 file 0 -1 ! 0: end0, -1:end1
 2 file 0 -1
 3 file 0 -1
 }
 }
}

The names of the external files are specified in the “file_names.data” file. The corresponding file pointers are

F_IMAGE(N), where N is the ID for the intermediate image. Note that, only for initial and final images,

F_IMAGE(N) file pointers must be defined under the “&nebfiles” section.

&fnames
...
...
/
&nebfiles
F_IMAGE(0) = './endpoint0.data'
F_IMAGE(-1) = './endpoint1.data'
F_IMAGE(1) = './image1.data'
F_IMAGE(2) = './image2.data'
F_IMAGE(3) = './image3.data'

/

 164

The file format for intermediate images is the same as that for the initial and final images described above.

Finally, we present an example of the full input parameter file.

Control{
 condition = initial ! {initial|continuation|automatic}
 cpumax = 1 day ! {sec|min|hour|day}
 max_iteration = 10000000
 multiple_replica_mode = ON
 multiple_replica_max_iteration = 2000
}
accuracy{
 cutoff_wf = 10.00 rydberg
 cutoff_cd = 40.00 rydberg
 num_bands = 28
 ksampling{
 method = monk ! {mesh|file|directin|gamma}
 mesh{ nx = 2, ny = 2, nz = 1 }
 }
 smearing{
 method = parabolic ! {parabolic|tetrahedral}
 width = 0.001 hartree
 }
 xctype = ggapbe
 scf_convergence{
 delta_total_energy = 0.5e-7 hartree
 succession = 2 !default value = 3
 }
 initial_wavefunctions = matrix_diagon !{random_numbers|matrix_diagion}
 matrix_diagon{
 cutoff_wf = 3.00 hartree
 }
}
structure{
 unit_cell_type = primitive
 unit_cell{
 a_vector = 10.400 0.000 0.000
 b_vector = 0.000 10.400 0.000
 c_vector = 0.000 0.000 30.200
 }
 symmetry{
 sw_inversion = off
 }
 atom_list{
 coordinate_system = cartesian ! {cartesian|internal}
 atoms{
 #units angstrom
 #tag element rx ry rz mobile
 Si 0.000000000000 0.000000000000 0.000000000000 0
 Si 2.751721694800 2.751721694800 0.000000000000 0
 Si 1.375860847400 1.375860847400 1.375860847400 0
 Si 4.127582542200 4.127582542200 1.375860847400 0
 Si 0.000000000000 2.751721694800 2.751721694800 0
 Si 2.751721694800 0.000000000000 2.751721694800 0
 Si 1.375860847400 4.127582542200 4.127582542200 0
 Si 4.127582542200 1.375860847400 4.127582542200 0
 Si 0.000000000000 0.000000000000 5.503443389600 0
 Si 2.751721694800 2.751721694800 5.503443389600 0
 Si 1.375860847400 1.375860847400 6.879304237000 0

 165

 H 1.644706293661 1.095414892118 11.000000000000 1
 H 1.095414929519 1.644706317263 11.000000000000 1
 }
 }
 element_list{
 #tag element atomicnumber mass zeta dev
 #units atomic_mass
 Si 14 28.085
 H 1 1.008
 }
}
multiple_replica{
 method = nudged_elastic_band_method
 accuracy{
 dt = 40 au_time
 neb_time_integral = quench
 penalty_function = off
 neb_convergence_condition = 3
 neb_convergence_threshold = 5.0e-04
 }
 constraint{
 ci_neb = OFF
 sp_k_init = 0.03
 sp_k_min = 0.03
 sp_k_max = 0.03
 sp_k_variable = OFF
 }
 structure{
 number_of_replicas = 6
 replicas{
 #tag replica_number howtogive_coordinates end0 end1
 1 proportional 0 -1 ! 0: end0, -1:end1
 2 proportional 0 -1
 3 proportional 0 -1
 4 proportional 0 -1
 5 proportional 0 -1
 6 proportional 0 -1
 }
 endpoint_images = directin ! {no or nothing | file | directin}
 howtogive_coordinates = from_endpoint_images
 atom_list_end0{
 coordinate_system = cartesian ! {internal|cartesian}
 atoms{
 #units angstrom
 #tag element rx ry rz
 Si 0.000000000000 0.000000000000 0.000000000000
 Si 2.751721694800 2.751721694800 0.000000000000
 Si 1.375860847400 1.375860847400 1.375860847400
 Si 4.127582542200 4.127582542200 1.375860847400
 Si 0.000000000000 2.751721694800 2.751721694800
 Si 2.751721694800 0.000000000000 2.751721694800
 Si 1.375860847400 4.127582542200 4.127582542200
 Si 4.127582542200 1.375860847400 4.127582542200
 Si 0.000000000000 0.000000000000 5.503443389600
 Si 2.751721694800 2.751721694800 5.503443389600
 Si 1.375860847400 1.375860847400 6.879304237000
 H 1.644706293661 1.095414892118 11.000000000000
 H 1.095414929519 1.644706317263 11.000000000000
 }
 }

 166

 atom_list_end1{
 coordinate_system = cartesian ! {internal|cartesian}
 atoms{
 #units angstrom
 #tag element rx ry rz
 Si 0.000000000000 0.000000000000 0.000000000000
 Si 2.751721694800 2.751721694800 0.000000000000
 Si 1.375860847400 1.375860847400 1.375860847400
 Si 4.127582542200 4.127582542200 1.375860847400
 Si 0.000000000000 2.751721694800 2.751721694800
 Si 2.751721694800 0.000000000000 2.751721694800
 Si 1.375860847400 4.127582542200 4.127582542200
 Si 4.127582542200 1.375860847400 4.127582542200
 Si 0.000000000000 0.000000000000 5.503443389600
 Si 2.751721694800 2.751721694800 5.503443389600
 Si 1.375860847400 1.375860847400 6.879304237000
 H 2.22686927 0.48813212 7.65400988
 H 0.48813224 2.22686933 7.65400957
 }
 }
 }
}
wavefunction_solver{
 solvers{
 #tag sol till_n dts dte itr var prec cmix submat
 lmMSD -1 0.2 0.2 1 linear on 1 on
 }

}
charge_mixing{
 mixing_methods{
 #tag no method rmxs rmxe itr var prec istr nbmix update
 1 broyden2 0.10 0.10 1 linear on 1 0 RENEW
 }
}
printoutlevel{
 base=1
}

21. specification of the files related to the NEB method

Files related to the NEB method is specified in the ‘file_names.data’ file as usual. Here is an example.

&fnames
F_INP='./nfinp.data'
F_POT(1)='./Si_ggapbe_nc_01.pp'
...
...
/
&nebfiles
F_IMAGE(0) = './endpoint0.data'
F_IMAGE(-1) = './endpoint1.data'
F_NEB_OUT = './output_neb'
F_NEB_ENF = './nfnebenf.data'
F_NEB_DYNM = './nfnebdynm.data'
/

Note that the “&nebfiles” section is used to specify NEB-related files. In Table 5.2, the file pointers usable

 167

under the “&nebfiles” section are tabulated.

Table 5.2 NEB-related files

file pointer unit

number

default value notes

F_IMAGE(-1:99) 201 ./endpoint0.data (F_IMAGE(0))

./endpoint1.data (F_IMAGE(1))
Atomic coordinates of the

images.
F_NEB_STOP 202 ./nfnebstop.data File used to terminate

NEB calculations.
F_NEB_OUT 203 ./output_neb Log file for the NEB

calculations.
F_NEB_CNTN 204 ./neb_continue.data Restart file for the NEB

calculations.
F_NEB_ENF 205 ./nfnebenf.data File that records energy

and forces specific to the

NEB method.
F_NEB_DYNM 206 ./nfnebdynm.data Output the history of the

atomic coordinates

5.4.1.3 Execution

NEB calculations are typically executed by the following command.

% mpirun -n NP phase ne=NE nk=NK nr=NR

Note the presence of the “nr=NR” argument. This argument specifies the number of replicas to be handled in

parallel. The “ne=NE” and “nk=NK” arguments specify band parallelization and point parallelization as

usual. Note that the relation NP = NR x NE x NK must be met.

5.4.1.4 Output of the results

When NEB calculations are executed, several extra files will be obtained, along with those obtained from

usual PHASE calculations. First, the log file (output000 file) and the restart files (such as the “continue.data”

file) will be obtained for all images. To identify each file, the string “_rxxx” will be appended to the original

file name, where xxx is the ID for the replica. Further, the following files specific to NEB calculations are

obtained.

 output_neb_pxxx

This is the log file for the NEB calculations (xxx will be replaced by the MPI process number).

 nfnebenf.data

File that records energy and force specific to the NEB method. The format of this file is as follows.
 #step image image_distance energy force_org force_neb force_normal
 1 1 0.0000000000E+00 -0.4399458479E+02 0.1112676571E-01 0.1112676571E-01 0.0000000000E+00
 1 2 0.1323772380E+01 -0.4397221867E+02 0.5212041989E-01 0.4899393390E-01 0.4899393390E-01
 1 3 0.2640972887E+01 -0.4393533860E+02 0.5368141337E-01 0.5023308254E-01 0.5023308254E-01
 1 4 0.3958252743E+01 -0.4389613534E+02 0.4830449879E-01 0.4474348402E-01 0.4474348402E-01
 1 5 0.5277489255E+01 -0.4389237657E+02 0.4486782793E-01 0.4486782793E-01 0.4486782793E-01
 1 6 0.6594794555E+01 -0.4396965451E+02 0.8881334200E-01 0.8881334200E-01 0.8881334200E-01
 1 7 0.7911999993E+01 -0.4404244254E+02 0.5849229655E-01 0.5849229655E-01 0.5849229655E-01
 1 8 0.9229437211E+01 -0.4405831588E+02 0.2414216682E-01 0.2414216682E-01 0.0000000000E+00
 2 1 0.0000000000E+00 -0.4399458479E+02 0.1112676571E-01 0.1112676571E-01 0.0000000000E+00
 2 2 0.1356841287E+01 -0.4398451885E+02 0.4270600251E-01 0.4018848625E-01 0.4018734489E-01
 2 3 0.2677587331E+01 -0.4394948430E+02 0.5479419750E-01 0.5096369018E-01 0.5096445426E-01
 2 4 0.4004269114E+01 -0.4390739111E+02 0.5004508819E-01 0.4463448973E-01 0.4464878761E-01
 2 5 0.5328036512E+01 -0.4389409127E+02 0.4291037894E-01 0.4291037894E-01 0.4291037894E-01
 2 6 0.6642907129E+01 -0.4397034020E+02 0.8879366098E-01 0.8879366098E-01 0.8879366098E-01

 168

 2 7 0.7959713712E+01 -0.4404290631E+02 0.5713917408E-01 0.5713917408E-01 0.5713917408E-01
 2 8 0.9278358213E+01 -0.4405831588E+02 0.2414216682E-01 0.2414216682E-01 0.0000000000E+00
 3 1 0.0000000000E+00 -0.4399458479E+02 0.1112676571E-01 0.1112676571E-01 0.0000000000E+00
 3 2 0.1356624500E+01 -0.4399408010E+02 0.1114085905E-01 0.1114085905E-01 0.1114085905E-01
 3 3 0.2730952540E+01 -0.4397302719E+02 0.5096325231E-01 0.4680553493E-01 0.4683808222E-01
 3 4 0.4090362450E+01 -0.4392669466E+02 0.5272530274E-01 0.4351975945E-01 0.4355359239E-01
 3 5 0.5418808773E+01 -0.4389735067E+02 0.3886543373E-01 0.3886543373E-01 0.3886543373E-01
 3 6 0.6726370673E+01 -0.4397144829E+02 0.8809362538E-01 0.8809362538E-01 0.8809362538E-01
 3 7 0.8041492838E+01 -0.4404354368E+02 0.5543086596E-01 0.5543086596E-01 0.5543086596E-01

In each row, the force and energy for a single replica are recorded. The first column is the number of NEB

steps, the second column is the ID of the replica, the third column is the hypothetical distance from the

initial state, the fourth column is the energy of the replica, the fifth column is the maximum force acting on

the replica, the sixth column is the maximum NEB force, and the seventh column is the maximum

component of the force from the system.

 nfnebdynm.data

The history of the atomic coordinates is recorded in this file. Compared with the format of the “nfdynm.data”

file obtained from usual PHASE calculations, a simpler format is adopted. Below is a typical example.

 #step image atom cps
 0 1 1 0.0000000000 0.0000000000 0.0000000000
 0 1 2 5.2000000098 5.2000000098 0.0000000000
 0 1 3 2.6000000049 2.6000000049 2.6000000049
 0 1 4 7.8000000147 7.8000000147 2.6000000049
 0 1 5 0.0000000000 5.2000000098 5.2000000098
 0 1 6 5.2000000098 0.0000000000 5.2000000098
 0 1 7 2.6000000049 7.8000000147 7.8000000147
 0 1 8 7.8000000147 2.6000000049 7.8000000147
 0 1 9 0.0000000000 0.0000000000 10.4000000197
 0 1 10 5.2000000098 5.2000000098 10.4000000197
 0 1 11 2.6000000049 2.6000000049 13.0000000246
 0 1 12 3.1080442326 2.0700339938 20.7869859136
 0 1 13 2.0700340645 3.1080442772 20.7869859136
 0 2 1 0.0000000000 0.0000000000 0.0000000000
 0 2 2 5.2000000098 5.2000000098 0.0000000000
 0 2 3 2.6000000049 2.6000000049 2.6000000049
 0 2 4 7.8000000147 7.8000000147 2.6000000049
 0 2 5 0.0000000000 5.2000000098 5.2000000098
 0 2 6 5.2000000098 0.0000000000 5.2000000098
 0 2 7 2.6000000049 7.8000000147 7.8000000147
 0 2 8 7.8000000147 2.6000000049 7.8000000147
 0 2 9 0.0000000000 0.0000000000 10.4000000197
 0 2 10 5.2000000098 5.2000000098 10.4000000197
 0 2 11 2.6000000049 2.6000000049 13.0000000246
 0 2 12 3.2652054480 1.9060914168 19.8836995566
 0 2 13 1.9060915098 3.2652055024 19.8836994729

Each row corresponds to an atom belonging to some replica at some NEB step. The first column is the NEB

step, the second column is the ID of the replica to which the atom belongs, the third column is the ID of the

atom, and the fourth, fifth, and sixth columns are the Cartesian x, y, z coordinates of the atom, respectively,

in Bohr units.

In usual PHASE calculations, the “nfefn.data” file and “nfdynm.data” file contain the history of the energies

and atomic coordinates, respectively. In contrast, in NEB calculations, the energies and atomic coordinates

corresponding to the most recent set of images are recorded; in other words, the energies and the atomic

coordinates of the most recent reaction path are recorded in these files.

 169

5.4.1.5 Example calculation: dissociative adsorption process of a hydrogen molecule on a silicon surface

Here we present an example calculation in which the dissociative adsorption process of a hydrogen molecule

on a silicon surface is analyzed. The input files for this example can be found under the directory

samples/neb.

The initial state for this example is a system with a surface and an H2 molecule located far from the surface.

The final state is a system with two hydrogen atoms adsorbed at the surface. The atomic configurations of

the initial and final states are shown in Figure 5.13 and Figure 5.14, respectively. Since this is only an

example calculation, structural optimizations for the initial and final states were not performed.

Figure 5.13 Initial state of the present example.

Figure 5.14 Final state of the present example.

22. input parameter file

Here we inspect the sample input parameter file. Under the control block, the overall conditions of the

calculation are configured.

Control{
 condition = initial ! {initial|continuation|automatic}
 cpumax = 1 day ! {sec|min|hour|day}
 max_iteration = 10000000

 170

 multiple_replica_mode = ON
 multiple_replica_max_iteration = 2000
}

By setting the “multiple_replica_mode” variable to “ON,” it is possible to perform NEB calculations. Also, the

upper limit for the number of NEB iterations is set to 2000 by the “multiple_replica_max_iteration” variable.

Atomic configurations for the images are specified under the “structure” block under the “multiple_replica”

block as follows.

multiple_replica{

 structure{
 number_of_replicas = 6
 replicas{
 #tag replica_number howtogive_coordinates end0 end1
 1 proportional 0 -1 ! 0: end0, -1:end1
 2 proportional 0 -1
 3 proportional 0 -1
 4 proportional 0 -1
 5 proportional 0 -1
 6 proportional 0 -1
 }
 endpoint_images = directin ! {no or nothing | file | directin}
 howtogive_coordinates = from_endpoint_images
 atom_list_end0{
 coordinate_system = cartesian ! {internal|cartesian}
 atoms{
 #units angstrom
 #tag element rx ry rz
 Si 0.000000000000 0.000000000000 0.000000000000
 ...
 ...
 }
 }
 atom_list_end1{
 coordinate_system = cartesian ! {internal|cartesian}
 atoms{
 #units angstrom
 #tag element rx ry rz
 Si 0.000000000000 0.000000000000 0.000000000000
 ...
 ...
 }
 }
 }

}

We set the value of the “number_of_replica” variable (number of replicas) to six. Note that this number is the

number of intermediate images. In this example, the atomic coordinates for all intermediate images are

constructed by a linear interpolation of the initial and final states. Under the “atom_list_end0” block and

“atom_list_end1” block, the atomic coordinates for the initial and final states are specified. The format for

this specification is the same as that for the usual atomic coordinate specification.

Under the “accuracy” block under the “multiple_replica” block, the optimization method and the convergence

threshold are configured.

 171

multiple_replica{
 ...
 accuracy{
 dt = 40 au_time
 neb_time_integral = quench
 penalty_function = off
 neb_convergence_condition = 3
 neb_convergence_threshold = 5.0e-04
 }
}

The time step is set to 40 au, the optimization method adopted is the “quench” method, the convergence

method adopted is 3 (which means that the NEB force will be used to judge convergence), and the threshold

for this convergence condition is 5(10)–4.

23. results

We now present the results that are obtained from the example. In Figure 5.15, the changes of the maximum

NEB force with the number of NEB iterations are shown. The maximum force at the beginning of the

simulation is significantly larger, but as the simulation proceeds, it becomes smaller. At the 41st iteration, the

maximum force met the convergence criterion, and the calculation terminated normally.

Figure 5.15 History of the maximum NEB force.

 172

Figure 5.16 Energy of each converged image.

Figure 5.17 shows the atomic configuration of the transition state. As is clear from this figure, at the

transition state, the H2 molecule is located right above the Si surface.

Figure 5.17 Atomic configuration of the transition state.

5.4.1.6 Notes

 Replica parallelization

The NEB method supports replica parallelization. To use this feature, an extra argument, nr=NR, must be

supplied along with the usual parameters ne=NE and nk=NK. Here NR is the number of replica

parallelizations, whose default value is 1. Note that the number of MPI processes must be equal to

NE x NK x NR. Typically, PHASE is executed by the following command.

% mpirun -n N phase ne=NE nk=NK nr=NR

 Termination and restart of a calculation

 173

The NEB method supports termination and restart of a calculation. Note that a slightly different

termination procedure is adopted in comparison with ordinary calculations.

 Termination of a calculation

The calculation will terminate if the number of NEB iterations exceeds the value specified by the

“multiple_replica_max_iteration” variable or the value specified in the “nfnebstop.data” file. The NEB

calculation will also terminate if the termination conditions are met in each electronic-structure calculation

of the images. In all cases, it is possible to restart the calculation from where it terminated.

The difference between the usual PHASE and NEB calculations is that the calculation will terminate right

after the SCF iteration in progress is completed in the former, while in the latter, the calculation will not

terminate unless all images have been processed at least once. This is needed because data for all images are

required on restart.

 Restart calculation

To restart a calculation, set the “condition” variable under the “control” block to “continuation,” similar to a

usual PHASE calculation.

Control{
 condition = continuation
 ...
 ...
}

Files necessary to restart a calculation are as follows:

・Restart file for the NEB method: neb_continue.data

・Restart files for the electronic-structure calculation: restart files associated to each replica; their file names

are continue.data_r*, continue_bin.data_r*, zaj.data_r*, and nfchgt.data_r* where * stands

for the ID of each replica.

 174

5.4.2 Constrained dynamics and free-energy analysis by the Blue Moon approach

5.4.2.1 Outline of the feature

One way to analyze a chemical reaction is to introduce a “reaction coordinate” that characterizes the reaction

(examples of reaction coordinates are bond length, bond angle, and dihedral angle), constrain the reaction

coordinate to a certain value, and then perform constrained structural optimization or molecular dynamics

(MD). Since the reaction coordinates are constrained, it is possible to simulate states that would otherwise be

unstable. By sequentially changing the reaction coordinate along a supposed reaction path and repeating the

constrained optimization or MD, it is possible to obtain insight into the reaction. When structural

optimization is performed, it is possible to obtain the minimum energy path, as in the NEB method. When a

constant-temperature MD is performed, it is possible to obtain the free-energy difference between the initial

and final states. In this section, we describe the method for following constrained dynamics by PHASE.

5.4.2.2 Input parameters

Tags related to this feature are tabulated in Table 5.3.

Table 5.3 List of tags related to constrained dynamics

1st level block 2nd, 3rd level block identifiers description

control

 driver Select the type of dynamics by this variable. Set this

variable to “constraints” to use the constrained-dynamics

feature.
structure Block used to specify the atomic coordinates

 constrainablexx Block in which constraints are defined.

xx is the identifier for the constraint and must be an

integer beginning from 1.

 type Specify the “type” of constraint from one of the following:

bond_length, bond_angle, dihedral_angle

bond_length_diff, bond_angle_diff, distance_from_pos,

plane, center_of_mass, or coordination_number

 atomx Specify the ID of the atom to which this constraint is

associated. x is an integer that identifies the atom. For

example, when type = bond_length, two atoms will be

involved; thus, the ID of the atom is specified by the

variable atom1 and atom2.

 mobile Specify whether this constraint is “mobile.” The default

value is “off.” This variable is mainly for debugging

purposes.

 monitor Specify whether to “monitor” this constraint. When set to

“on,” the value of the reaction coordinate will be output to

the log file after each update of the atomic coordinates.

The default value is “off.”

 reaction_coordinate Block used to configure a reaction path.

 sw_reaction_coordinate If set to “on,” the constraint will be regarded as a reaction

coordinate.

 init_value Initial value of the reaction path.

 final_value Final value of the reaction path.

 increment Increment for the change in the reaction coordinate.

 plane Block used to configure the “plane” when type=plane.

 normx,normy,normz x,y,z component of the normal of the plane.

 distance_from_pos Block used to configure the “distance_from_pos”

constraint.

 posx,posy,posz x, y, z coordinate of the target position

 coordination_number Block used to configure the “coordination_number”

constraint.

 kappa_inv Specify the parameter in units of length

 175

 kappa Specify the parameter in units of 1/Bohr

 rcut Specify the parameter in units of length

 center_of_mass Block used to configure the “center of mass” constraint.

Direction in which the center of mass will change can be

configured under this block.

 directionx x-direction

 directiony y-direction

 directionz z-direction

structure_evolution Block used to configure the method used for the update of

atomic coordinates.
 method Specify the method of the atomic coordinates update. For

constrained dynamics, one of the following—quench,

damp, velocity_verlet, or temperature_control—can be

used.

To activate the constrained-dynamics feature, the “driver” variable under the “control” block must be set to

“constraints.”

condtion{
 ...
 driver=constraints
 ...
}

Next, the “constrainablexx” block must be defined under the “structure” block. Here xx stands for an integer

beginning from 1.

structure{
 ...
 ...
 constrainable1{
 type=bond_length
 atom1=1
 atom2=2
 mobile = off
 monitor = off
 reaction_coordinate{
 sw_reaction_coordinate=on
 init_value = 2.4 angstrom
 increment = 0.1 angstrom
 final_value = 8.0 angstrom
 }
 plane{
 normx=1
 normy=0
 normz=0
 }
 coordination_number{
 kappa = 5.0
 rc = 2.0 angstrom
 }
 }
 ...
 ...
}

There are no upper limits on the number of constraints that can be defined. Note that consecutive integers

must be used for xx. For example, if three blocks “constrainable1,” “constrainable2,” and “constrainable4” are

defined, only the first two will be interpreted. Also, note that if inconsistent constraints are defined, the

program will abort.

 176

Under the constrainablexx block, the following variables/blocks can be defined.

“type” variable Specify the “type” of the constraint.

 bond_length Constrain the distance between two atoms.

 bond_angl Constrain the angle among three atoms.

 dihedral_angle Constrain the dihedral angle among four atoms.

 bond_length_diff Constrain the difference between a pair of bond lengths

 bond_angle_diff Constrain the difference between a pair of bond angles.

 distance_from_pos Constrain the distance between an atom and a specified

position.

 plane Constrain the atom within a specified plane.

 center_of_mass Constrain the center of mass of the specified atoms.

 coordination_number Constrain the coordination number of a specified atom.

Here the coordination number of atom 0 is defined by

 
 c

1

exp 1
S r

r r


   

 are parameters that should be defined so the

function S becomes sufficiently small at the first

coordination shell.

“atomx” variable Specify the atoms involved in the current constraint. x is

an integer that identifies the atoms; for example, when

the “type” is “bond_length,” specify the ID of the first

atom by the “atom1” variable and that of the second atom

by the “atom2” variable. If the “type” is

“coordination_number,” then the central atom for which

the coordination number is calculated is specified by the

“atom1” variable.

“mobile” variable Specify whether the constraint is “mobile.” If “on” is

specified, the constraint is considered to be “mobile,” and

thus will not be constrained. The default value is “off.”

“monitor” variable Specify whether to “monitor” the constraint. When set to

“on,” the value of the constraint will be calculated and

written to the log file. The default value is “off.”

“reaction_coordinate”

block

 Block used to specify that the constraint is a “reaction

coordinate” (i.e., can be sequentially varied).

 sw_reaction_coordinate When set to “on,” the constraint is regarded as a “reaction

coordinate.”

 init_value Specify the initial value of the reaction coordinate in the

corresponding units. If unspecified, then the value

calculated from the input atomic coordinates will be used

as the initial value.

If the value specified by the “init_value” variable and that

calculated from the input atomic coordinates are

different, then the input atomic coordinates are first

adjusted to fulfill the input specification. Thus, the

maximum force (which includes the force of constraint)

for the first ionic iteration can become significantly large,

but this is normal.

 final_value Specify the final value for the reaction coordinates in the

corresponding units.

 increment Specify the increment for the change of the reaction

coordinate. The number of reaction coordinates

considered will approximately be

(final_value − init_value)/increment

 When the reaction coordinate is sequentially varied, the

 177

situations below are special cases. These cases should be

handled with caution.

 case when type=plan In this case, the origin of the plane is varied. The origin of

the plane will automatically be resolved from the normal

vector and the atomic coordinates; the origin thus

resolved will be varied along the direction of the normal

vector when “sw_reaction_coordinate” is set to on. The

“init_value” variable should be set to 0, and the

“increment” and “final_value” variables should be chosen

so that the desired shift of the origin is realized.

 case when

type=center_of_mass

In this case, the center of mass will be shifted in the

specified direction. The “init_value” variable should be set

to 0, and the “increment” and “final_value” variables

should be chosen so that the desired shift for the center of

mass is realized.

“plane” block

 normx coordinate for the normal of the plane.

 normy coordinate for the normal of the plane.

 normz coordinate for the normal of the plane.

“distance_from_pos”

block

 Specify a point in real space. This block is used when

type=distance_from_pos is specified.

 posx Specify the coordinate of the target point.

 posy Specify the coordinate of the target point.

 posz Specify the coordinate of the target point.

“coordination_numbe

r” block

 Block used to specify the parameters in the formula

for the calculation of the coordination number. The

following variables can be defined.

 kappa_inv Specify the value of in units of length.

 kappa Specify the value of itself in 1/Bohr units. This variable

will be preferred over kappa_inv. Note that the unit

cannot be explicitly specified for this variable, since the

unit 1/length is not registered in the PHASE unit list.

 rcut Specify the value of in units of length.

“center_of_mass”

block

 When type=center_of_mass and

sw_reaction_coordinate=on, configure the direction of the

shift for the center of mass at this block.

 directionx Specify the x coordinate of the abovementioned direction.

 directiony Specify the y coordinate of the abovementioned direction.

 directionz Specify the z coordinate of the above-mentioned direction.

After specification of the constraints, the algorithm used for ion dynamics is specified. As in usual PHASE

calculations, this is done under the “structure_evolution” block

structure_evolution{
 method=quench
 dt=40
 ...
}

For the “method” variable, the following values are supported: quench, damp, velocity_verlet, and

temperature_control. Note that the BFGS, GDIIS, and CG optimizers are not available when constraints are

imposed. The value “damp” is used to perform optimization by the damped molecular dynamics method. In

many cases, this method allows a larger time step than the “quench” method, leading to a faster

convergence.

Variation of a single reaction coordinate can be done by specifying the “init_value,” “final_value,” and the

 178

“increment” variable under the “reaction_coordinate” block. In this case, the reaction coordinate will simply

change from the “init_value” to “final_value” uniformly. However, the behavior is more complicated when

multiple reaction coordinates are allowed to vary.

 Method to vary multiple reaction coordinates

Here we describe the behavior of the program when multiple reaction coordinates are defined. For example,

consider the following input specification.

structure{

 constrainable1{
 mobile = off
 monitor = on
 type = dihedral_angle
 atom1 = 2
 atom2 = 4
 atom3 = 3
 atom4 = 1
 reaction_coordinate{
 sw_reaction_coordinate = on
 init_value = -179 degree
 final_value = -1 degree
 increment = 5 degree
 }
 }
 constrainable2{
 type=bond_length
 monitor=on
 atom1=3
 atom2=4
 reaction_coordinate{
 sw_reaction_coordinate=on
 init_value = 1.2 angstrom
 final_value = 1.6 angstrom
 increment = 0.05 angstrom
 }
 }

}

Under the “constrainable1” block, the dihedral angle is specified to change from –179° to –1° in increments of

5°. Under the “constrainable2” block, the bond length is configured to change from 1.2 Å to 1.6 Å in

increments of 0.05 Å. In this case, the bond length will first be fixed at 1.2 Å, and the dihedral angle will be

changed from –179° to –1°. After the optimization or MD is done at –1°, the bond length is increased to 1.25

Å, and the dihedral angle is then changed from –1° to –179°. This variation scheme prevents radical changes

between adjacent sets of reaction coordinates.

When reaction coordinates are constrained, where denotes the type of constraint, the number of

reaction coordinates will be . This may lead to a massive number of reaction coordinates that need to

be considered. If a more flexible specification of the reaction coordinates is desired, it is possible to specify the

manner in which the reaction coordinates change via an external file. This is described in the next section.

 179

 Method to vary the reaction coordinates through an external file

The method of varying the reaction coordinate is basically defined under the “reaction_coordinate” block. By

this method, only uniform variations in reaction coordinates can be specified. If a more flexible specification

is desired, reaction coordinates can be read from an external file. To use this feature, first configure the

constrainablexx block as usual. Under the “structure” block, set the following variable.

structure{

 reac_coord_generation = via_file

}

Finally, create a “reac_coordinate.data” file under the working directory and edit its contents as follows.

 1 -1.9373154697 2.2676711906
 2 -1.7627825445 2.2676711906
 3 -1.5882496193 2.2676711906
 4 -1.4137166941 2.2676711906
 5 -1.2391837689 2.2676711906
 6 -1.0646508437 2.2676711906
 7 -0.8901179185 2.2676711906
 8 -0.7155849933 2.2676711906
 9 -0.7155849933 2.3621574902
 10 -0.8901179185 2.3621574902
 11 -1.0646508437 2.3621574902
 12 -1.2391837689 2.3621574902
 13 -1.4137166941 2.3621574902
 14 -1.5882496193 2.3621574902
 15 -1.7627825445 2.3621574902
 16 -1.9373154697 2.3621574902
 17 -1.9373154697 2.4566437898
 18 -1.7627825445 2.4566437898
 19 -1.5882496193 2.4566437898
 20 -1.4137166941 2.4566437898
 21 -1.2391837689 2.4566437898
 22 -1.0646508437 2.4566437898
 23 -0.8901179185 2.4566437898
 24 -0.7155849933 2.4566437898

Each line corresponds to a “reaction coordinate set.” In the first column, specify the integer that identifies

each reaction coordinate set. In the remaining columns, the reaction coordinate is specified in the same order

as that used in the input parameter file. In this example, two types of reaction coordinates are considered. In

the first reaction coordinate set, the first reaction coordinate will take the value “–1.9373154697,” while the

second reaction coordinate will take the value “2.26711906.” These values must be in PHASE default units,

i.e., Bohr for length, radian for angle.

5.4.2.3 Execution

When using the constrained-dynamics feature, PHASE should be executed by the following command.

% mpirun -np NP phase ne=NE nk=NK nr=NR

Here NP is the number of MPI processes, NE is the number of band parallelizations, NK is the number of

point parallelizations, and NR is the number of reaction coordinates to be handled in parallel. The relation

 180

NP = NE x NK x NR must hold. The default values are ne=NP, nk=1, and nr=1, but it is strongly

recommended to explicitly specify each parameter.

5.4.2.4 Output of the results

When the reaction coordinates are not allowed to vary, the output data are the same as those obtained from

the usual PHASE calculations. The history of the energy and force will be recorded in the file specified by the

F_ENF file pointer in the “file_names.data” file, while the history of atomic coordinates will be recorded in

the file specified by the F_DYNM file pointer in the “file_names.data” file. Note that the maximum force

recorded includes the contribution from the force of constraint.

However, when the reaction coordinates are allowed to vary, the following files will be output. (We assume

here that the file name for the F_ENF file is “nfefn.data,” while that for the F_DYNM file is “nfdynm.data.”)

nfefn.data.reacxx F_ENF file for the xxth reaction coordinate.

nfefn.data.converged

(structural optimization only)

This file records the converged energy at each reaction

coordinate. Each line of the file corresponds to a reaction

coordinate. The value of the reaction coordinate itself,

converged energy, and the maximum force acting on the atoms

are written. By plotting the relation between the reaction

coordinate and the converged energy, it is possible to analyze

the relation between the reaction path and energy.

nfdynm.data.reacxx F_DYNM file for the xxth reaction coordinate.

nfdynm.data.converged

(structural optimization only)

This file records the converged atomic configuration at each

reaction coordinate.

nfbluemoon.data.reacxx

(molecular dynamics only)

The Lagrange multiplier, which is necessary for the

calculation of the free energy, is recorded for the xxth reaction

coordinate.

In addition, the restart files, wave function files, and charge files are generated for each reaction coordinate.

5.4.2.5 Free-energy calculation by the Blue Moon approac

24. Outline of the feature

By using data obtained from the constrained MD, it is possible to calculate the free-energy difference along

the reaction path. [?]。The free-energy difference when the reaction coordinate changes from to can be

calculated from

The derivative of the free energy with respect to the reaction coordinate,

, is called the mean force. It is

related to the derivative of the Hamiltonian with respect to the reaction coordinate by

Here is the “conditional statistical average.” The conditional statistical average and the statistical

average obtained from the constrained MD are not simply related. However, (21) can be obtained from the

Lagrange multiplier that is calculated during the constrained MD,

 181

To be exact, (22) has a correction term, but in practice, the correction is not important.

To calculate the free-energy difference from the results obtained from the constrained MD by PHASE, it is

necessary to use the “bluemoon” program included in the PHASE package. Note that the bluemoon program

can be applied only to the case of a single reaction coordinate.

25. Compilation of the bluemoon program

The source code for the bluemoon program is located under the “src_bm” directory under the PHASE

installation directory. The bluemoon program requires a Fortran90 and a C compiler. To complile the

bluemoon program, set the environment variable F90 to your Fortran90 compiler and the environment

variable CC to your C compiler and then type “make.” The example below assumes that the shell in use is

bash, the command for the Fortran90 compiler is f90, and the command for the C compiler is cc.

% cd phase_v1000
% cd src_bm
% export F90=f90
% export CC=cc
% make
% make install

If the environment variables F90 and CC are not defined, “gfortran” and “gcc,” respectively, will be used by

default. By issuing the command % make install, it is possible to move the created program to the “bin”

directory.

26. Input parameter file for the bluemoon program

The input parameter file for the bluemoon program is the same as that for PHASE. The bluemoon program

is configured under the thermodynamic_integration block. The following is a typical example.

thermodynamic_integration{
 nsteps=2000
 nequib=1000
 istart_reac_coords=1
 nreac_coords=14
 nsample=10
 smooth=off
 basedir=.
}

Under the “thermodynamic_integration” block, it is possible to define the following variables.

nsteps Total MD steps performed for each reaction coordinate. The default value is 2,000; set

it according to the calculation performed.

nequib Specify the number of steps to be ignored for equilibration.

istart_reac_coords Specify the ID of the reaction coordinate that should be considered first. The default

value is 1.

nreac_coords Specify the ID of the reaction coordinate that should be considered last.

nsample Specify the number of samples to be used for estimating statistical errors.

smooth Specify whether the results should be smoothed by a cubic spline. The default value is

“off.”

basedir Specify the directory in which the results should be written. The default is the current

 182

directory.

27. Execution of the bluemoon program

After the input parameter file is configured, run the bluemoon program as follows.

% bluemoon inputfile

The argument is the input parameter file. If no argument is given, the string “nfinp.data” will be adopted.

28. Output of the results

Calculations by the bluemoon program should finish within a few seconds. The following files will be created.

 potential_of_mean_force.data

The calculated free energy is written. The file format is as follows.

#value, potetial of mean force in Hartree, eV, kcal/mol, kJ/mol
2.4566437898 -0.0215821952 0.0003443042 -0.5872816633 0.0093689992 -13.5430301648

0.2160541460 -56.6640534911 0.9039707906
2.2676711910 -0.0224669448 0.0003796767 -0.6113569350 0.0103315334 -14.0982188431

0.2382507016 -58.9869635475 0.9968412043
2.0786985910 -0.0226882285 0.0004435350 -0.6173783747 0.0120692073 -14.2370764737

0.2783223931 -59.5679440305 1.1645012069

Each line corresponds to one reaction coordinate. The first column is the value of the reaction coordinate, the

remaining correspond to the free energy and estimated statistical error. The second and third columns

contain the free energy and the error in Hartree units, the fourth and fifth columns contain the free energy

and error in eV units, the sixth and seventh columns contain the free energy and error in kcal/mol units, and

the eighth and ninth columns contain the free energy and error in kJ/mol units, respectively..

 mean_force_raw.data

This file contains the mean force for the considered reaction coordinates. The format of the file is as follows.

 2.4566437898 0.0066082098 0.0188118786
 2.2676711910 0.0034758686 0.0099291734
 2.0786985910 -0.0009537509 0.0028573953
 1.8897259920 -0.0074922663 0.0213420952
 1.7007533930 -0.0098143395 0.0279585555
 1.5117807940 -0.0157974842 0.0449758051
 1.3228081950 -0.0161451965 0.0459534340

As in the “potential_of_mean_force.data” file, each line corresponds to one reaction coordinate. The first

column is the value of the reaction coordinate, the second column is the mean force (the unit is Hartree/unit

of the corresponding reaction coordinate), and the third column is the statistical error.

 mean_force_smoothed.data

If the data were smoothed by cubic splines, the mean force is first smoothed and then the integration is done.

This file contains the results for the smoothed mean force. The format of the data is the same as that in the

“mean_force_raw.data” file, but without the statistical error column.

5.4.2.6 Example calculation: rotation barrier of H2O2 and H2S2 molecules

 183

As an example of the constrained-dynamics feature, we present an analysis of the rotational barrier for H2O2

and H2S2 molecules. H2O2 and H2S2 are simple molecules whose structures are shown in Figure 5.18. It is

known that the rotational potential of the dihedral angle formed by HOOH (HSSH) atoms is a W-type

potential. This originates from competition between the H–H interaction and H–O(S) interaction. By

performing structural optimization with the constrained dihedral angle, we determine whether such

behavior can be reproduced.

Figure 5.18 Molecular structure of H2O2 and H2S2 molecules.

The input data for this example are located under the subdirectories of the samples/constraints directory,

H2O2 and H2S2. Under the “structure” block, the following settings can be found.

structure{
 constrainable1{
 type = dihedral_angle
 atom1 = 2
 atom2 = 4
 atom3 = 3
 atom4 = 1
 reaction_coordinate{
 sw_reaction_coordinate = on
 init_value = 9 degree
 final_value = 179 degree
 increment = 10 degree
 }
 }
 ...
 ...
}

The “constrainable1” block is defined, and the constraint is configured. In this example, only a single

constraint is defined; any number of constraints can be defined, provided that they are consistent with one

another. In this example, the dihedral angle is constrained; thus, the “type” variable has the

value ”dihedral_angle.” Also, the four atoms needed to calculate the dihedral angle are specified by the

variables “atom1” through “atom4.” Further, the “reaction_coordinate” block is defined, and the variation of

the constraint is defined. The “sw_reaction_coordinate” variable is set to “on,” and the “init_value” is set to 9°,

the “final_value” is set to 179°, and the “increment” is set to 10°.

Figure 5.19Figure 5.19 shows the changes in the computed energy with the dihedral angle. The figure also

includes experimental results. From this figure, we see that the calculated results are in good agreement

with experimental results (the difference is about 1 kcal/mol). There are two main differences between the

results obtained for H2O2 and H2S2. The first is the value of the stable dihedral angle. For H2O2, the stable

dihedral angle is around the tetrahedral angle of 109.5°, while for H2S2, the stable dihedral angle is close to

 184

90°. The second difference is the height of the trans barrier (the barrier close to 180°). Compared with H2O2,

the trans barrier for H2S2 is about six times higher. Both points are well reproduced, supporting the validity

of this example calculation.

Figure 5.19 Relation between the energy and dihedral angle for H2O2 and H2S2 molecules.

5.4.2.7 Notes

 Constrained dynamics can be used with any type of pseudopotential.

 Restart calculations are supported.

 When varying the reaction coordinate, the reaction coordinates can be handled in parallel by the

following command, as in the case for the NEB method:

% mpirun -n NP phase ne=NE nk=NK nr=NR

 185

5.4.3 Metadynamics

5.4.3.1 Outline of the feature

Metadynamics is a method to efficiently analyze processes that have finite activation barriers, such as

chemical reactions. [?,?] In the metadynamics method, “collective variables” (denoted by) are

introduced. These “collective variables” are a set of reaction coordinates defined from the atomic

configuration under interest. Each collective variable is assigned a fictitious “particle,” and metadynamics

refers to the dynamics of this fictitious “particle.” By aptly designing the algorithm of metadynamics, it is

possible to efficiently explore the free-energy surface spanned by the considered collective variables. In this

section, we describe the use of the metadynamics method implemented in PHASE.

In the metadynamics method, history-dependent bias potentials are added at intervals (usually a few ten to

a few hundred MD steps). By this operation, points in the free-energy space once visited will be disfavored. If

a sufficient number of bias potentials are added, the will fill the free-energy space, and the reaction

under consideration will freely occur. The negative of the accumulated that realizes such a situation

is regarded as the free energy itself.

A schematic of the metadynamics simulation is shown in Figure 5.20. In this figure, the simulation starts

from the valley numbered 1. After the bias potentials labeled 2 and 3 are added, the system escapes from the

valley and evolves to a new local minimum (the left-most valley in the figure). Further, after the bias

potentials 4, 5, and 6 are added, the system escapes from the second valley and evolves to the state with the

lowest energy (the right-most valley in the figure). Finally, after the bias potentials 7 and 8 are added, the

collective variables freely evolve in the space spanned by the collective variables. By changing the sign of the

accumulated bias potential, the free-energy surface is obtained.

Figure 5.20 Schematic illustration of a metadynamics simulation.

The marked characteristic of metadynamics is that it follows the trajectories of the dynamic variables

associated with the reaction coordinates. With this idea, it is expected that the dynamic variable itself will

automatically search for a plausible reaction path. Further, it is much easier to consider multiple reaction

coordinates, compared with other methods, such as the blue moon approach. Therefore, the method is

suitable when the reaction path is not obvious or when multiple reaction coordinates must be considered.

Depending on the addition of the bias potentials, it is possible either to perform an approximate exploration

 186

of the free-energy surface or to obtain a detailed and accurate free-energy profile. A metadynamics

simulation proceeds by adding the bias potentials at predetermined intervals. When a bias potential is added,

the potential must be accumulated for every bias potential added at that point; thus, the construction of the

accumulated bias potential requires an operation (although in first-principle calculations, this should

not be a problem).

In metadynamics, the Hamiltonian is written as

Here is a variable that distinguishes the collective variables, and are the mass and coordinate of

the hypothetical particle, respectively, is the value of , is the spring constant for the spring that

binds the coordinate of the hypothetical particle, and is the bias potential. By recording the

accumulated bias potential, it is possible to obtain the free-energy surface. The dynamics derived from the

above Hamiltonian can be summarized as follows.

 The system will be loosely tied to the coordinates of the fictitious particles via the collective variables.

 The point in free space where the fictitious particles have already visited will be disfavored by the effect

of the bias potential.

If the time scale for the dynamics of the fictitious particles is sufficiently longer than that for the system, it is

expected that the dynamics of the system will be decoupled from that of the fictitious particle. Therefore, over

a shorter time scale, the system will follow the correct dynamics, while over a longer time scale, the system

will slowly explore the free-energy space spanned by the collective variables. Therefore, the mass of the

collective variables should be chosen such that the vibrational modes of the collective variables are slower

than those of the system.

Metadynamics simulations have also been performed in another manner, in which fictitious particles are not

used. Instead, the bias potentials directly affect the system, not indirectly through fictitious particles [?]. In

this approach, the mass and spring constant of the collective variables need not be defined, leading to a

simpler execution of the method.

5.4.3.2 Input parameters

Table 5.4 identifies tags related to the metadynamics method.

Table 5.4 List of tags related to the metadynamics method

1st level block 2nd, 3rd level block identifiers description
control

 driver Select the type of dynamics by this

variable. Set this variable to

“meta_dynamics” to use the metadynamics

feature.
meta_dynamics Block used to configure meta dynamics.

 meta_dynamics_type Select the “type” of metadynamics from one

of the following: “bias_and_fictitious,”

“bias_only,” or “bias_generation.” The

default value is “bias_only.”
 max_bias_update Set the maximum number of bias potential

 187

updates. If the number of bias potential

updates exceeds this specification, the

program will terminate. The default value

is −1; note that when a negative value is

specified for this variable, the program will

not terminate by this condition.

 extensive_output Set this option to “on” to obtain debug

output in the log file. “Off” (default value) is

recommended.
 output_per_rank When set to “on,” the output per replica will

be obtained when replica parallelization is

enabled. “Off” (default value) is

recommended.
 collective_variable Block to define collective variables.

 type Variable that specifies the “type” of the

collective variable. The choices are the

same as those for the constrained dynamic,

namely:

“bond_length,” “bond_angle,”

“dihedral_angle”

“bond_length_diff,” “bond_angle_diff,”

“distance_from_pos,”

“plane,” or “center_of_mass,”

“coordination_number”

 atomx Specify the ID of the atom to which this

constraint is associated. x is an integer. For

example, when type = bond_length, two

atoms will be involved; thus, the ID of the

atom is specified by the variables atom1

and atom2.

 k Variable to specify the spring constant.

 delta_s Variable to specify the “width” of the bias

potential， .

 smin Variable to specify the minimum value for

the bias potential output.

 smax Variable to specify the maximum value for

the bias potential output.

 ds Variable to specify the increment for the

bias potential output.

 control_velocity When set to “on,” control_velocity will

control the velocity of the collective

variables.

 mass_thermo Mass of the thermostat when

“control_velocity” is “on”

 target_KE Target kinetic energy of the collective

variables.

 plane Block used to configure the “plane” when

type=plane.

 normx,normy,normz x,y,z component for the normal of the plane

 distance_from_pos Block used to configure the

“distance_from_pos” constraint.

 posx,posy,posz x, y, z coordinate of the target position

 coordination_number Block used to configure the

“coordination_number” constraint.

 kappa_inv Specify the parameter in units of

length

 kappa Specify the parameter in units of

1/Bohr

 rcut Specify the parameter in units of

length

 bias_potential Block used to configure the properties of

the bias potential.

 height Set the “height” of the bias potential in

units of energy.

 update_frequency Specify the interval of the bias potential

update. For example, if this variable is set

to 10, the bias potential will be added after

every 10 MD steps. The default value is 20.

 output_frequency When “meta_dynamics_type” is

“bias_generation,” then this variable is

used to specify the interval of the bias

 188

potential output. The default value is 10.

 continuation_strategy Block to configure the method to perform

restart calculations when replica

parallelization is enabled.

 randomize_velocity When set to “on,” the initial velocity for

restart calculations will be calculated from

the random normal distribution.

 scale_velocity When set to “on,” the initial velocities for

restart calculations will be scaled according

to the value of “velocity_scaling_factor”

described below.

 velocity_scaling_factor Scaling factor for the velocity, as described

above. The default value is 1.

 configuration_from_input When set to “on,” configuration_from_input

will read the coordinates for restart

calculations from the input parameter file,

not from the restart files. The default value

is “off.”

We now describe in detail the configurations necessary to perform metadynamics simulations. The following

configurations are required.

 Enable the metadynamics method.

 Configure the behavior of the method (the method to be used for the dynamics, format of the output,

etc.).

 Configure constant-temperature MD.

 Configure the collective variables (definitions are needed for all reaction coordinates that are included in

the collective variables).

 Configure the bias potential (height and width of the bias potential and the update frequency must be

configured).

 If replica parallelization is to be enabled, configure replica parallelization-related variables.

 Enable the metadynamics method

To enable metadynamics, the “driver” variable under the “control” block is set to “meta_dynamics.”

control{
 driver = meta_dynamics
}

By this specification, PHASE will call the main routine of the metadynamics method instead of the usual

PHASE main routine.

 Configure the overall behavior of metadynamics

To configure the overall behavior of the metadynamics method, create a “meta_dynamics” block and define

variables and blocks under it. Here is an example:

meta_dynamics{
 meta_dynamics_type = bias_only
 max_bias_update = -1
 extensive_output=on
 output_per_rank=on
 output_cvar_every_step=off
 continuation_strategy{
 randomize_velocity=on
 scale_velocity=off
 velocity_scaling_factor=0.7
 configuration_from_input=off
 ...
 ...
 }

 Under the “meta_dynamics” block, the following blocks and variables can be defined.

“meta_dynamics_type” Select the dynamics type for meta dynamics.

 189

variable The choices are “bias_and_fictitious,”

“bias_only,” or “bias_generation.” When

“bias_and_fictitious” is chosen, the dynamics of

the system and fictitious particles are followed.

When “bias_only” is chosen, metadynamics will

be performed without fictitious particles. When

“bias_generation” is chosen, metadynamics will

not be performed; only the construction and

output of the bias potential using files under the

current directory will be performed.

“max_bias_update” variable This variable is used to specify the maximum

number of bias potential updates. If the number

of bias potential updates exceeds the value

specified here, the simulation will terminate. If

a negative value is specified, the program will

not terminate by this condition. This is the

default behavior.

“output_per_rank” variable By setting this variable to “on,” it is possible to

obtain output data per MPI process rank when

replica parallelization is enabled. The default

value is “off.”

“extensive_output” variable By setting this variable to “on,” it is possible to

output data that are usually not important,

such as the velocity and force of the fictitious

particles.

“continuation_strategy”

block

 Block to configure how restart calculations

should be performed when replica

parallelization is enabled. If the number of

replica parallelizations is changed from

consecutive simulations, it is not possible to

rigorously reproduce the situation of the last

run. Under this block, we configure the method

to resolve restart data in such situations.

 “randomize_velocity”

variable

If set to “on,” the velocity will be created from a

random normal distribution instead of being

read from the restart file. The default value is

“off.”

 “scale_velocity” variable If set to “on,” the velocity will be scaled by the

value of the “velocity_scaling_factor” variable

explained below. The default value is “off.”

 “velocity_scaling_factor”

variable

The scaling factor used to scale the velocity

when the “scale_velocity” variable is set to “on.”

The default value is 1.

 “configuration_from_input”

variable

When set to “on,” the atomic coordinates will be

read from the input parameter file instead of

the restart file. The default value is “off.”

 Define the collective variables

Collective variables are, in short, a set of reaction coordinates. Specification of collective variables is done

under the “meta_dynamics” block. A typical example follows.

meta_dynamics{

 collective_variable{
 mass=1000

 190

 k=100
 delta_s = 0.08
 control_velocity=on
 mass_thermo = 50
 target_KE = 0.1
 }
 collective_variable1{
 type=bond_length
 atom1=5
 atom2=4
 delta_s=0.05 angstrom
 smin=1 angstrom
 smax=5 angstrom
 ds = 0.1 angstrom
 }

}

First, we create a “collective_variable” block under the “meta_dynamics” block. Under the

“collective_variable” block, we configure settings that are common to all collective variables. The preferred

settings under the “collective_variablexx” block are described below.

Next, we define the “collective_variablexx” block to the extent needed. Here xx is the ID for the collective

variable. Any number of collective variables can be defined, but consecutive integers beginning from 1 must

be specified for xx. For example, if three blocks “collective_variable1,” “collective_variable2,” and

“collective_variable4” are defined, only “collective_variable1” and “collective_variable2” will be interpreted.

The following variables can be defined under the “collective_variable” and “collective_variablexx” blocks, as

in the case of constraints.

“type” variable “Type” of the collective variable is specified.

 bond_length Distance between two atoms will be used as the

collective variable.

 bond_angle Angle among three atoms will be used as the collective

variable.

 dihedral_angle Dihedral angle among four atoms will be used as the

collective variable.

 bond_length_diff Difference between two bond lengths will be used as

the collective variable.

 plane Position of an atom in some plane will be used as the

collective variable.

 center_of_mass Center of mass for a group of atoms will be used as the

collective variable.

 coordination_number Coordination number of the specified atom will be

used as the collective variable.

 distance_from_pos Distance between a specified atom and a specified

position in space will be used as the collective variable.

“atomx” variable Specify the atom(s) associated to the collective variable

under consideration. x is a number that identifies the

atoms. For example, if the distance between two atoms

is the collective variable, the ID of the first atom is

specified by “atom1,” while that of the second atom is

specified by “atom2.” When “coordination_number” is

specified for the “type” variable, the atom whose

coordination number is to be calculated is specified by

 191

the “atom1 variable.

“plane” block Block used to specify the normal vector of the plane

when type=plane. The following values can be defined.

 normx x-coordinate of the normal vector.

 normy y-coordinate of the normal vector.

 normz z-coordinate of the normal vector.

“coordination_number”

block

 In case of coordination number constraints, the

coordination number of atom i, ni is defined as

 . This block is used to

specify the value of used in the definition above.

 kappa_inv Specify the value of

 in units of length.

 kappa Specify the value of in 1/bohr units. This will be

preferred over kappa_inv.

 rcut Specify the value of in units of length.

“mass” variable Specify the mass of the fictitious particle. It will be

interpreted only when the value of

“meta_dynamics_type” is “bias_and_fictitious.”

“k” variable Specify the spring constant that determines the

coupling between the collective variable and the

coordinate of the fictitious particle. It will be

interpreted only when the value of

“meta_dynamics_type” is “bias_and_fictitious.”

“delta_s” variable Specify the value of in eq. (23)

“smin” variable Specify the minimum value for the bias potential

output.

“smax” variable Specify the maximum value for the bias potential

output.

“ds” variable Specify the interval for the bias potential update.

“control_velocity”

variable

 When set to “on,” the velocity of the fictitious particle

will be controlled by a thermostat. It will be

interpreted only when the value of

“meta_dynamics_type” is “bias_and_fictitious.”

“mass_thermo”

variable

 Specify the “mass” of the thermostat when the

“control_velocity” is set to “on.”

“target_KE” variable Specify the target “temperature” of the fictitious

particle when the “control_velocity” is set to “on.”

 Configure the bias potential

The bias potential can be configured by the “bias_potential” block, definable under the “meta_dynamics”

block. A typical example is as follows.

 bias_potential{
 height = 0.02 eV
 update_frequency=20
 output_frequency=100
 }

 Variables definable under the “bias_potential” block include the following.

“height” variable Specify the “height” of the bias potential, update in units of energy, to be added at each

bias potential. Note that the “width” of the bias potential is a quantity specific to each

collective variable; therefore, it is to be specified under the “collective_variablexx” block

described above.

“output_frequency” Specify the frequency of the bias potential output. For example, if 100 is specified, the

 192

variable bias potential will be written to file once every 100 bias potential updates. This

variable will be interpreted only when “meta_dynamics_type” is “bias_generation.”

“update_frequency”

variable

Specify the frequency of bias potential updates. For example, if 20 is specified for this

variable, the bias potential will be updated once every 20 MD steps. The default value

is 20.

 Configure replica–parallelization-related variables

 Resolution of the initial atomic coordinates and velocities when replica parallelization is enabled

When replica parallelization is enabled, the initial coordinates are all the same, and only the initial velocities

differ among the replicas if no special configurations are performed. Since each replica starts from a different

point in a phase space, each replica will follow a distinct trajectory, despite the fact that their atomic

coordinates were all the same at the beginning of the simulation. Note that at early stages of the simulation,

atomic coordinates of each replica are obviously very similar.

 Method to change the initial atomic coordinates per rank

It is possible to specify the atomic coordinates per replica in the input parameter file. This can be done by

defining the atomsxx block (where xx is the MPI rank) and specifying the coordinates under that block. For

example, to specify different initial atomic coordinates for rank0 replica and rank1 replica, insert the

following in the input parameter file.

structure{
 atom_list{

 atoms0{
 #units angstrom
 #default weight = 1, element = Si, mobile = 1
 #tag element rx ry rz mobile weight
 C 5.0157363043 5.6563796505 5.8043454319 1 1
 C 4.7499007526 4.2727134018 5.7364572058 1 1
 ...
 ...
 }
 atoms1{
 #units angstrom
 #default weight = 1, element = Si, mobile = 1
 #tag element rx ry rz mobile weight
 C 4.5897384578 5.5998560107 5.7723226564 1 1
 C 5.1658344359 4.3217914066 5.6857269157 1 1
 ...
 ...
 }
 }
}
}

5.4.3.3 Execution

To perform metadynamics simulations, the following command is issued as in standard PHASE calculations.

mpirun -n NP phase ne=NE nk=NK nr=NR

Here NP is the number of MPI processes, NE is the number of band parallelizations, NK is the number of

point parallelizations, and NR is the number of replicas to be handled in parallel. The relation

NP = NE x NK x NR must hold. The default values are ne=NP, nk=1, and nr=1, but it is strongly

 193

recommended to explicitly specify each parameter.

Usually, only the most recent bias potential will be output when metadynamics is performed. It is possible to

rebuild the bias potential and output it to a file. To use this feature, specify “bias_generation” for the

“meta_dynamics_type” variable defined under the “meta_dynamics” block. In this case, the

“bias_output_frequency” variable definable under the “bias_potential” block is used to specify the frequency

of output. For example, if 10 is specified for “bias_output_frequency” and the total number of bias updates is

100, then the bias potential at the 10th, 20th, 30th, … , 100th updates will be obtained, with each written to a

separate file. The file name will be “bias_potential_dataxx,” where xx is the number of bias potential updates.

After the above configuration is done, run PHASE under the directory where the metadynamics simulation

was performed. This operation only reads the collective variable from the file and builds the bias potential;

thus, it is not necessary to run PHASE in parallel.

5.4.3.4 Output of the results

When a metadynamics simulation is performed, extra files will be obtained in comparison with standard

PHASE calculations. We now describe the files specific to a metadynamics simulation.

 ‘curr_bias_potential.data’ file

This file records the current bias potential. The format of the file is as follows.

 1.2000000000 -3.1400000000 0.0000000000
 1.3000000000 -3.1400000000 0.0000000000
 1.4000000000 -3.1400000000 0.0000000000
 1.5000000000 -3.1400000000 0.0000000000
 1.6000000000 -3.1400000000 0.0000000000
 1.7000000000 -3.1400000000 0.0000000000

 1.2000000000 -3.0400000000 0.0000000000
 1.3000000000 -3.0400000000 0.0000000000
 1.4000000000 -3.0400000000 0.0000000000
 1.5000000000 -3.0400000000 0.0000000000
 1.6000000000 -3.0400000000 0.0000000000
 1.7000000000 -3.0400000000 0.0000000000

Each line corresponds to a “collective variable set.” First, all collective variables defined are recorded and

then the value of the corresponding bias potential is recorded.

 “bias_potential.dataxx” file

This file records the bias potential at bias potential update number xx. This file is obtained when

“meta_dynamics_type” is set to “bias_only.” The file format is exactly the same as that for the

“curr_bias_potential.data” file.

 ‘nfdynm.data_at_bias’ file

This file records the atomic coordinates at bias potential updates. The file format is the same as that for the

F_DYNM file, the standard coordinate data file format of PHASE.

 ‘nfefn.data_at_bias’ file

This file records the total energy at bias potential updates. The file format is the same as that for the F_ENF

file, the standard energy data file format of PHASE.

 194

 ‘collective_variables.data’ file

This file records the value of the collective variable at bias potential updates. The file format is as follows.

 2 1.6399047278 0.0906233310
 3 1.6933783940 0.2327954221
 4 1.6487636847 0.0655806009
 5 1.7510381463 -0.1403803460
 6 1.7880912692 -0.2122517967
 7 1.7558411086 -0.2557274737
 8 1.7939362867 -0.0296094373
 9 1.7595919709 0.1959354384
 10 1.7773637731 0.3761827029
 11 1.7657919080 0.3998392061
 12 1.7604309483 -0.0107912799
 13 1.6218441177 -0.3366407543

Each line corresponds to a bias potential update. The first column gives the number of bias potential updates,

and the second column and others contain values of the collective variables that are recorded in the order

defined in the input parameter file.

 ‘bias_potential_parameters.data’ file

This file records the bias potential parameters. This file is needed when bias potential parameters are

changed on restart calculations, since there is no way of resolving the parameters in the previous run

without the information recorded in this file. The file format is as follows.

 2 0.0200000000 0.1000000000 0.1000000000
 3 0.0200000000 0.1000000000 0.1000000000
 4 0.0200000000 0.1000000000 0.1000000000
 5 0.0200000000 0.1000000000 0.1000000000

Each line corresponds to a bias potential update. The first column gives the number of the bias potential

update, the second column contains the value of in eq. (23), and the third column and others correspond

to the value of for each collective variable.

5.4.3.5 Example calculation: energy surface of hydrocarbon molecules

29. Outline

To illustrate use of the metadynamics method, we explore the energy surface for the hydrocarbon molecule

C4H6. The C4H6 molecule has three stable molecular structures—trans-1,3-butadiene, cis-1,3-butadiene, and

cyclobutene. Cyclobutene is a cyclic molecule. trans-1,3-butadiene is planar, while cis-1,3-butadiene is not;

the stable structure for cis-1,3-butadiene is a structure in which the dihedral angle is twisted by about 30°

(the so-called gauche conformation). The molecular structures for these molecules are depicted in Figure 5.21.

Cyclobutene has the highest energy, followed by cis-1,3-butadiene, and trans-1,3-butadiene has the lowest

energy. Possible reactions of the molecule are the “electric cyclic” reaction, in which the closing (opening) of

the ring for 1-3 butadiene (cyclobutene) leads to cyclobutene (1-3 butadiene) or a cis–trans transformation

between the two 1-3 butadienes. Since the electrocyclic reaction leads to the breaking a chemical bond, the

activation barrier is expected to be high, on the order of 1 eV. However, the cis–trans transformation should

have a lower activation barrier, on the order of 100 meV. Note that this problem is difficult to analyze by

classical force fields because the electronic structures of the two 1,3-butadienes and cyclobutene are

completely different (for example, the number of double bonds differ). We confirm that PHASE can correctly

 195

describe the properties of this molecule.

Figure 5.21 Molecular structure of the C4H6 molecule.

Figure 5.22 Molecular structure of the cyclobutene molecule

 196

30. Input parameter file

First, the metadynamics method is enabled. This is done by specifying “meta_dynamics” for the “driver”

variable under the “condition” block.

condition{
 driver = meta_dynamics

}

Next, the collective variables are defined. In this example, the following collective variables are adopted.

1. The distance between atoms 1 and 2 shown in Figure 5.22. Values for the variables “ds” and “delta_s_s”

are 1 Å and 0.05 Å, respectively.

2. The dihedral angle formed by atoms 1, 4, 3, and 2 shown in Figure 5.22. Values for the variables “ds”

and “delta_s” are 10°and 5°, respectively.

The above configuration can be realized by the following.

meta_dynamics{
....
....
 collective_variable1{
 type=bond_length
 atom1=5
 atom2=4
 delta_s=0.05 angstrom
!for bpot output
 smin=1 angstrom
 smax=5 angstrom
 ds = 0.1 angstrom
 }
 collective_variable2{
 type=dihedral_angle
 atom1=5
 atom2=3
 atom3=2
 atom4=4
 delta_s = 5 degree
!for bpot output
 smin = -180 degree
 smax = +180 degree
 ds = 10 degree
 }
}

For the bias potential, the height is set to 0.02 eV (0.46 kcal/mol), and it is set to be updated once every 20

MD steps. This configuration is done by the variables “height” and “update_frequency” under the

“bias_potential” block under the “meta_dynamics” block.

meta_dynamics{

 bias_potential{
 update_frequency = 20
 height=0.02 eV
 }
}

 197

The number of bias potential updates is arbitrary, but to obtain a reliable free-energy surface, we need an

ample number of updates.

31. Results

We present the results obtained from this simulation. Figure 5.23 shows the contour plot of the energy

surface obtained after 18,140 bias potential updates.

Figure 5.23 Free-energy surface of the C4H6 molecule at 300 K.

From this figure, four stable points are found in the energy contour: the point at which (i) the atomic distance

is about 1.5 Å and the dihedral angle is 0 radian, (ii) the atomic distance is about 3.3 Å and the dihedral angle

is around 0 radian, and (iii, iv) the atomic distance is about 3.7 Å and the dihedral angle is around 3

radians. These stable points correspond to cyclobutene, cis-1,3-butadiene, and trans-1,3-butadine,

respectively. In a calculation at absolute zero, the gauche conformation instead of the cis conformation is

stable, but in the metadynamics simulation at 300 K, the two conformations were not clearly resolved. The

difference in energy between cyclobutene and trans-1,3-butadiene is about 16 kcal/mol, while the diffference

in energy between cyclobutene and cis butadiene is about 12 kcal/mol. These values are larger than those

obtained from calculations at absolute zero.

Figure 5.23 and Figure 5.24 show the variation of collective variables-dihedral angle and carbon-carbon

distance-against the number of bias potential updates, respectively. The simulation starts from cyclobutene

(carbon–carbon distance of about 1.5 Å, and dihedral angle of about 0 radian). After about 700 bias potential

updates, the system overcomes the saddle point, and the molecule transforms to butadiene. Then, from this

point to about 18,000 bias potential updates, a wide exploration of the energy surface occurs. From Figure

5.23, it is understood that besides cyclobutene, the range of the dihedral angle is significantly broad. Thus,

many bias potential updates are required to fill the potential valley. Finally, after about 18,000 bias potential

updates, the system returned to cyclobutene; thus, we terminated the simulation at that point.

 198

Figure 5.24 Variations in the dihedral angle with the number of bias potential updates.

Figure 5.25 Variations in the carbon–carbon distance with the number of bias potential updates.

In Figure 5.26 (a)–(d), snapshots of atomic configurations obtained during the metadynamics simulation are

shown. From these figures, we see that, because of the effect of the bias potential, various molecular

structures are obtained during the metadynamics simulation.

 199

Figure 5.26 Snapshots of atomic configurations obtained from the metadynamics simulation. Molecular

structure obtained after (a) 2 bias potential updates, (b) 690 bias potential updates, (c) 1,500 bias potential

updates, (d) 18,070 bias potential updates.

5.4.3.6 Notes

The metadynamics method can be used in conjunction with all pseudopotentials. It is possible to perform

calculations in parallel, including replica parallelization. To obtain meaningful results, a large calculation

burden is required. When restart calculations are performed with replica parallelization enabled, it is

possible that the corresponding restart files do not exist for a certain replica. In this case, the restart file for

the neighboring replica is read, and the initial replica is built according to the specifications defined under

the “continuation_strategy” block.

 200

5.5 Time-dependent density functional theory (TDDFT) calculations

5.5.1 Optical spectrum calculations of molecules by real-time TDDFT (RT-TDDFT)

5.5.1.1 Calculation methods

Based on RT-TDDFT, electron dynamics simulations are performed by solving time-dependent

one-electron equations for given initial one-electron wave functions,

Here nk is the one-electron wave function for wave vector k and band index n, and H is the one-electron

Hamiltonian. Time evolutions of one-electron wave functions are formally written as

An efficient numerical computation requires approximations for the time integral and for the exponential

parts. Many approximations are possible, but this code uses the simplest one. If the time step t is

sufficiently small, the time integral can be approximated by

The exponential can be approximated by a Taylor expansion,

Input parameters, which need to be set carefully to balance accuracy against computation time, are the time

step t and the number of terms in the Taylor expansion Nmax.

Because one-electron wave functions at time t = 0− are prepared by ground-state wave functions, we need to

perform DFT ground-state calculations before starting RT-TDDFT calculations. The initial wave function at

t = 0+ is generated by

This is equivalent to applying an impulsive electric field for a molecule at t = 0. During RT-TDDFT

calculations, dipole moments or current densities [d(t) or J(t)] are calculated at each time step, and after

RT-TDDFT simulations, optical spectra can be obtained by Fourier transformation of d(t) or J(t).

5.5.1.2 Input parameters

An input example is shown below. RT-TDDFT simulations will start only if the DFT ground-state

calculation has converged.

postprocessing{

 rttddft{

 sw_rttddft = on

 time_step_delta = 0.1

 time_step_max = 1000

 ext_pulse_epsilon = 0.01, ext_pulse_kx = 1.0, ext_pulse_ky = 0.0, ext_pulse_kz =

0.0

 }

}

 ℏ

 , =
 ,

 , + = exp

ℏ
 ′ ′

 +∆

 ,

 , + exp

ℏ
∆

 ,

exp

ℏ
∆ =

1

 !

ℏ
∆

 ∞

 =0

 , = 0+ = 𝒒∙

 , = 0

 201

Input parameter Default value Description

sw_rttddft OFF ON or OFF

time_step_delta 0.1 (in atomic unit) Time interval

(Total simulation time equals to

time_step_delta*time_step_max.)

time_step_max 100 Number of time step

For generating initial states by applying an impulsive electric field , the input parameters

are as follows:

Input parameter Default value Description

ext_pulse_epsilon 0.0d0 Field magnitude

ext_pulse_kx 0.0d0 Field x-direction

ext_pulse_ky 0.0d0 Field y-direction

ext_pulse_kz 0.0d0 Field z-direction

5.5.1.3 Notes

 Use only norm-conserving pseudopotentials for RT-TDDFT calculations. We cannot use ultra-soft-type

pseudopotentials.

 Set molecular positions to the middle of unit cells. Do not set molecule positions across unit-cell

boundaries.

 Set “base_reduction_for_GAMMA = off” and “base_symmetrization_for_GAMMA = off” in the

“ksampling{ }” tag.

 Set “method = manual” and “sw_inversion = off” in the “symmetry{ }” tag.

 This code does not support bulk-system simulations.

 The current version of our code is limited to systems having fixed-ion positions.

 202

5.6 Structure optimization

5.6.1 Optimizing a unit cell by using the stress tensor

5.6.1.1 Input parameters

First, prepare an input parameter file as usual. If parameters for structure optimization are specified as

usual, atomic positions are also optimized at every step after optimizing the unit cell. Add the lattice block

shown below to optimize the unit cell.

structure_evolution{

 lattice{

 sw_optimize_lattice = on

 }

}

Optimization of the unit cell is enabled by setting the variable sw_optimize_lattice to “on.” The following

variables can be defined in the lattice block.

sw_optimize_lattice If on, the unit cell of the system will be optimized. Defaults to off.

Note that if this switch is on, sw_stress is also automatically set to on.

sw_uniform If on, the three axes of the unit cell are uniformly varied. In that case, the

volume of the unit cell is changed by the average value of the diagonal

elements of the stress tensor.

Defaults to off.

method Specify a method of optimization. Options are bfgs, quench, and sd.

Defaults to bfgs.

delta_stress When the method is quench or sd, this variable sets the step size for

updating. Defaults to 1.

max_stress Specify the convergence criterion for the maximum stress. Defaults to 1.e−6

Hartree/Bohr3. If sw_uniform is set to on, this criterion applies to the

average value of the diagonal elements of the stress tensor.

sw_optimize_coordinates_once If on, optimization of atomic position is performed at the first step only.

As described below, the stress tensor will not converge when the cutoff energy is not sufficiently large (i.e., a

small cutoff energy does not give accurate results). If minima in the stress and total energy are inconsistent,

the cutoff energy may not be sufficiently large.

5.6.1.2 Calculation results

Calculation results are dumped into output000, nfefn.data, and nfdynm.data. The stress tensor is printed

into output000. The values can be extracted by the following command.

% grep –A3 ‘STRESS TENSOR$’ output000

 STRESS TENSOR

 0.0002326236 0.0000000000 0.0000000000

 0.0000000000 0.0002326236 0.0000000000

 0.0000000000 0.0000000000 0.0002142790

--

 STRESS TENSOR

 0.0002272841 0.0000000000 0.0000000000

 0.0000000000 0.0002272841 0.0000000000

 0.0000000000 0.0000000000 0.0002077216

 203

--

 ……..

 ……..

Although the stress tensor is normally printed only once, optimization of the unit cell outputs the history of

the stress tensor calculation.

 Maximum value of stress tensor (or averaged value of diagonal elements if sw_uniform=on) for each step is

also printed into nfefn.data file in addition to total energy and maximum atomic force etc. The example is

shown below:
iter_unitcell, iter_ion, iter_total, etotal, forcmx, stressmx

 1 1 18 -181.4043211413 0.0020128619

 1 2 27 -181.4043355689 0.0015666906

 1 3 36 -181.4043464493 0.0011267018

 1 4 44 -181.4043509953 0.0008837770

 1 5 53 -181.4043582176 0.0000137026 0.0002326236

 2 1 73 -181.4044226903 0.0000645338 0.0002272841

 ………..

 ………..

The nfdynm.data file is almost the same as usual, but the header, which is normally printed only once, is

printed at every step when the cell vectors are changed.

a_vector = 8.6795114819 0.0000000000 0.0000000000

b_vector = 0.0000000000 8.6795114819 0.0000000000

c_vector = 0.0000000000 0.0000000000 5.5916992108

ntyp = 2 natm = 6

(natm->type) 2 2 1 1 1 1

(speciesname) 1 : O

(speciesname) 2 : Ti

 cps and forc at (iter_ion, iter_total = 1 18)

 1 0.000000000 0.000000000 0.000000000 0.000000 0.000000 0.000000

 2 4.339755741 4.339755741 2.795849605 0.000000 0.000000 0.000000

 3 2.643779197 2.643779197 0.000000000 -0.001423 -0.001423 0.000000

 4 6.983534938 1.695976544 2.795849605 -0.001423 0.001423 0.000000

 ……

 ……

a_vector = 8.7672856463 0.0000000000 0.0000000000

b_vector = 0.0000000000 8.7672856463 0.0000000000

c_vector = 0.0000000000 0.0000000000 5.6429940606

ntyp = 2 natm = 6

(natm->type) 2 2 1 1 1 1

(speciesname) 1 : O

(speciesname) 2 : Ti

 cps and forc at (iter_ion, iter_total = 1 111)

 1 0.000000000 0.000000000 0.000000000 0.000000 0.000000 0.000000

 2 4.383642823 4.383642823 2.821497030 0.000000 0.000000 0.000000

 3 2.663907294 2.663907294 0.000000000 0.001773 0.001773 0.000000

 4 7.047550117 1.719735530 2.821497030 0.001773 -0.001773 0.000000

 5 1.719735530 7.047550117 2.821497030 -0.001773 0.001773 0.000000

 6 -2.663907294 -2.663907294 0.000000000 -0.001773 -0.001773 0.000000

 ……

 ……

5.6.1.3 Examples: rutile type TiO2

In the input parameter file

 The cutoff energy was set to 80 Rydberg.

 204

 The pseudopotential files Ti_ggapbe_us_02.pp and O_ggapbe_us_02.pp, which can be downloaded from

the website of CISS, were used.

 In optimizing atomic positions, the BFGS method was employed. Convergence criterion for the

maximum force was set to 2e−4.

 Initial atomic positions and lattice parameters for rutile-type TiO2 were downloaded from the Inorganic

Material Database AtomWork (http://crystdb.nims.go.jp/).

 Default settings were used for the wavefunction solver and the charge-density mixer.

The adopted cutoff energy, 80 Rydberg, is relatively large, but TiO2 requires such a large cutoff energy, as

discussed latter.

The following shows the content of the nfefn.data file.
 iter_unitcell, iter_ion, iter_total, etotal, forcmx, stressmx

 1 1 18 -181.4043211413 0.0020128619

 1 2 27 -181.4043355689 0.0015666906

 1 3 36 -181.4043464493 0.0011267018

 1 4 44 -181.4043509953 0.0008837770

 1 5 53 -181.4043582176 0.0000137026 0.0002326236

 2 1 73 -181.4044226903 0.0000645338 0.0002272841

 3 1 92 -181.4044839579 0.0001241955 0.0002222588

 4 1 111 -181.4056948858 0.0025074070 0.0002222588

 4 2 120 -181.4057176163 0.0020195652 0.0002222588

 4 3 130 -181.4057600852 0.0000156213 0.0000444895

 ……

 ……

 9 1 248 -181.4058191217 0.0001647915 0.0000332105

 10 1 268 -181.4058328662 0.0000709369 0.0000119789

 11 1 287 -181.4058349707 0.0000268520 0.0000015502

 12 1 306 -181.4058351835 0.0000244918 0.0000006790

In the above example, atomic positions were optimized five times. Meanwhile, the stress tensor was not

calculated, and hence, the sixth column of these steps is empty. In the fifth step, the maximum atomic force

become smaller than the threshold, and then the stress tensor was calculated, and cell vectors were changed.

At that time, the number in the first column, which represents the number of steps for optimizing the unit

cell, increased to 2, and the maximum value of the stress tensor was printed in the sixth column. Although

optimization of atomic positions was not performed in the second and third steps because the calculated

atomic force was smaller than the threshold, optimization was carried out in the fourth step. In this manner,

optimizations of atomic positions and the unit cell were alternately performed, until finally the maximum

value of the stress tensor converged in the 12th iteration. The following figure shows the convergence

progress for optimizing the unit cell.

 205

Figure 5.27 Convergence progress for optimizing a unit cell. Total energy (red)

and maximum value of stress tensor (green) are displayed.

Optimized lattice constants can be obtained from the cell vectors in the final step printed in the nfdynm.data

file. In this example, a = 8.7934 Bohr and c = 5.6164 Bohr are the optimized lattice constants.

Stress tensor and cutoff energy

Compared to the total energy or atomic force, the stress tensor does not converge well when a small cutoff is

used for the energy. The following figure shows the relationship between stress tensor and cutoff energy for

rutile-type TiO2. Here lattice parameters are taken from experimental data.

 206

Figure 5.28 Relationship between stress tensor and cutoff energy for rutile-type TiO2

As shown in this figure, a negative value was obtained for the stress tensor when the cutoff energy was

around 50 Rydberg. The figure shows that the cutoff energy should be larger than 80 Rydberg to obtain an

adequate value for the stress tensor of TiO2.

 207

6. Calculation by the PAW method

6.1 Overview

The projector-augmented wave (PAW) method is strongly related to the ultrasoft pseudopotential (USPP)

method. However, compared with the USPP method, the PAW method is superior in terms of accuracy,

particularly when spin polarization is considered, or when a large charge transfer is expected to occur. Here

we describe how to perform calculations using the PAW method in PHASE.

6.2 How to use the PAW method

To perform calculations based on the PAW method, we use the corresponding PAW potential files. The PAW

potential files reside in the pseudopotential directory by the following name.

elementname_ggapbe_paw_xxx.pp

The potential files are specified by the F_POT identifier in the “file_names.data” file, in the same way as

USPP and norm-conserving pseudopotential files..

PAW potentials can be used for both PAW and non-PAW calculations. To perform non-PAW calculations using

PAW potentials, specify the following in the input parameter file.

accuracy{
 paw = off
}

If the above specification is not present (or if “paw” is set to “on”), calculations with the PAW method will be

performed.

When using the PAW method, it is possible to improve convergence by changing the way the deficit charge is

handled. In many cases, convergence can be improved by including the following in the input parameter file.

charge_mixing{
 ...
 sw_mix_charge_hardpart = on
}

When performing fixed-charge calculations using the “ekcal” program, it is necessary to specify a data file

specific to the PAW method. This is done by the F_CNTN_BIN_PAW identifier in the “file_names.data” file.

For example, if the directory in which the corresponding SCF calculation was performed is the parent

directory, the following line must be added in the “file_names.data” file.

&fnames
...
...
F_CNTN_BIN_PAW='../continue_bin_paw.data'
/

6.3 Example

To illustrate the PAW method, we calculate the lattice constant and bulk modulus for bcc chromium. When

the USPP method is employed for this problem, the lattice constant is overestimated, while the bulk

modulus is underestimated.

The input data for this example can be found under samples/Cr. Under this directory, the following

files/directories exist.

 208

Cr_ggapbe_paw_002.gncpp2

Cr_ggapbe_us_02.pp

paw/

us/

The PAW potential file is “Cr_ggapbe_paw_002.gncpp2,” while the USPP file is “Cr_ggapbe_us_02.pp.” Input

files for PAW calculations are under the directory “paw,” while those for USPP calculations are under the

directory “us.” Under both “paw” and “us” directories, the following file/subdirectories exist.

catenergy.sh

vol20/

vol21/

......

The simple shell script “catenergy.sh” concatenates the energy data files after all calculations are done.

Under directories “vol20,” “vol21,” …, input files corresponding to unit-cell volumes of 20Å3, 21Å3, …,

respectively, exist. After calculations for all directories are completed, you can run the “catenergy.sh” script

and get the “energy.data” file in which energies are recorded for all volumes that were considered in the

calculation.

The following lines can be found in the “file_names.data” file under each subdirectory of the “paw” directory.

 F_POT(1) = '../../Cr_ggapbe_paw_002.gncpp2'
 F_POT(2) = '../../Cr_ggapbe_paw_002.gncpp2'

Because of these specifications, the PAW potential file is used for the calculations. The “file_names.data” file

under the “us” directory points to the “Cr_ggapbe_us_02.pp file” in the same manner.

The EV curves obtained for bcc chromium are depicted inFigure 6.1. Obviously, the results from the PAW

and USPP methods differ completely. In Table 6.1, we tabulate the lattice constants and bulk moduli

obtained from the two EV curves. Clearly, there is a better agreement with experiment for the PAW method.

Figure 6.1 EV curves for bcc chromium. Red curve: PAW method, green curve: USPP method.

 209

Table 6.1 Lattice constants, bulk moduli, and cohesive energies for bcc chromium.

 US PAW experiments

a (Å) 2.994 2.886 2.88

B (GPa) 89.2 150.5 190.1

Ecoh (eV/atom) 4.01 3.065 4.10

6.4 Supported features

Features that can be used with PAW include the following.

 total energy

 symmetry

 spin polarization

 structural optimization

 output of charge densities

 calculation of various densities of states

 band structure

 stress tensor

 work function

 phonon

 molecular dynamics

 DFT+U

 ESM method

 constrained dynamics

 meta dynamics

 NEB

 unit cell optimization

 non-collinear magnetization

 spin-orbit coupling

 features provided by UVSOR-Epsilon

 features provided by UVSOR-Berry-Phonon

 210

7. Appendix

7.1 Calculation accuracy

7.1.1 Cutoff energy

In DFT calculations using a plane-wave basis set, a larger cutoff energy always leads to a more exact total

energy. As an example, Figure 7.1 shows the relationship between cutoff energy and total energy for a

face-centered cubic aluminum crystal.

Figure 7.1 Relationship between cutoff energy and total energy for a face-centered cubic aluminum crystal

This figure clearly shows that a larger cutoff energy gives a lower total energy, and the total energy

converges to certain value. This behavior depends on the pseudopotentials that are used. In this example,

the total energy converges in the range of about 1 meV when the cutoff energy is 36 Rydberg. Although the

required accuracy depends on the purpose of the calculation, normally it is sufficient if the total energy

converges in the range of about 10 meV. Moreover, if you focus on the relative energy rather than absolute

energy, a much smaller cutoff energy may be sufficient.

7.1.2 k-point sampling

Since PHASE employs plane-wave functions, it can only treat periodic systems. Therefore, physical

quantities need to be integrated over the first Brillouin Zone (BZ). The k-point sampling determines the

resolution of the integration in k-space taken over the entire volume of the first BZ. Figure 7.2 shows the

relationship between total energy and the number of k-points in the irreducible BZ for an aluminum crystal.

 211

Figure 7.2 Relationship between total energy and the number of k-points

for a face-centered cubic aluminum crystal

Note that the total energy does not monotonically decrease because the variational principle is not satisfied

on increasing the number of k-points. In the above example, the total energy converges after passing through

a minimum. As in the case of the cutoff energy, if you focus on relative energy rather than absolute energy, a

much smaller number of k-points may be sufficient.

7.1.3 Convergence criterion

Strict convergence criteria for SCF calculations enable us to calculate atomic forces more accurately. In

normal structure optimizations, Hartree is usually sufficient for the SCF convergence threshold.

However, MD simulations require a smaller convergence threshold to conserve total energy or temperature.

Figure 7.3 shows the relationship between the convergence criterion and the maximum atomic force for a

SiO2 crystal. This figure indicates that a strict convergence criterion, less than Hartree, is required

for the atomic force to satisfactorily converge.

 212

Figure 7.3 Relationship between convergence criterion and maximum atomic force for SiO2

 213

7.1.4 Benchmark calculation (comparison of wavefunction solver)

7.1.4.1 FCC-Cu

Here we examine how well each wavefunction solver performs for FCC-Cu. The sample input data

introduced here are in the directory samples/sol_cmix_test/Cu.

32. Input data

Input data, excluding the wavefunction_solver block, are shown below.
Control{
 condition = initial
 cpumax = 1 day
}
accuracy{
 cutoff_wf = 25.0 rydberg
 cutoff_cd = 225.0 rydberg
 num_bands = 10
 ksampling{
 mesh{
 nx = 10
 ny = 10
 nz = 10
 }
 }
 scf_convergence{
 delta_total_energy = 1.e-10 hartree
 succession = 3
 }
 initial_wavefunctions = atomic_orbitals
 initial_charge_density = atomic_charge_density
}
structure{
 unit_cell_type = primitive
 unit_cell{
 !#units bohr
 a_vector = 0.0000000 3.4704637 3.4704637
 b_vector = 3.4704637 0.0000000 3.4704637
 c_vector = 3.4704637 3.4704637 0.0000000
 }
 symmetry{
 method = automatic
 tspace{
 lattice_system = fcc
 }
 sw_inversion = on
 }
 atom_list{
 atoms{
 !#tag rx ry rz weight element mobile
 0.000 0.000 0.000 1 Cu 0
 }
 }
 element_list{
 #tag element atomicnumber
 Cu 29
 }
}
wavefunction_solver{
 See later section
}
charge_mixing{
 mixing_methods{
 !#tag method rmxs rmxe itr var prec istr nbmix update
 broyden2 0.60 0.60 * * on 3 15 RENEW
 }
}
printlevel{
 base = 1

 214

}

Examples of the wavefunction_solver block are shown below:

 matrix diagonalization
wavefunction_solver{
 solvers{
 !#tag id sol till_n dts dte itr var prec cmix submat
 1 matrixdiagon -1 * * * * on 1 off
 }
}

 lm+msd, partial space diagonalization is performed after updating wavefunctions
wavefunction_solver{
 solvers{
 !#tag id sol till_n dts dte itr var prec cmix submat
 1 lm+msd 1 * * * * on 1 on
 }
 submat{
 before_renewal=off
 }
}

 lm+msd, partial space diagonalization is performed before updating wavefunctions
wavefunction_solver{
 solvers{
 !#tag id sol till_n dts dte itr var prec cmix submat
 1 lm+msd 1 * * * * on 1 on
 }
 submat{
 before_renewal=on
 }
}

 lm+msd → rmm3, partial space diagonalization is performed after updating wavefunctions
wavefunction_solver{
 solvers{
 !#tag id sol till_n dts dte itr var prec cmix submat
 1 lm+msd 1 * * * * on 1 on
 2 rmm3 -1 * * * * on 1 on
 }
 rmm{
 edelta_change_to_rmm = 5.0e-3
 }
 submat{
 before_renewal=off
 }
}

 lm+msd → rmm3, partial space diagonalization is performed before updating wavefunctions
wavefunction_solver{
 solvers{
 !#tag id sol till_n dts dte itr var prec cmix submat
 1 lm+msd 1 * * * * on 1 on
 2 rmm3 -1 * * * * on 1 on
 }
 rmm{
 edelta_change_to_rmm = 5.0e-3
 }
 submat{
 before_renewal=on
 }
}

 215

 Davidson → rmm3, partial space diagonalization is performed after updating wavefunctions
wavefunction_solver{
 solvers{
 !#tag id sol till_n dts dte itr var prec cmix submat
 1 davidson 1 * * * * off 1 off
 2 rmm3 -1 * * * * on 1 on
 }
 rmm{
 edelta_change_to_rmm = 5.0e-3
 }
 submat{
 before_renewal=off
 }
}

 Davidson → rmm3, partial space diagonalization is performed before updating wavefunctions
wavefunction_solver{
 solvers{
 !#tag id sol till_n dts dte itr var prec cmix submat
 1 davidson 1 * * * * off 1 off
 2 rmm3 -1 * * * * on 1 on
 }
 rmm{
 edelta_change_to_rmm = 5.0e-3
 }
 submat{
 before_renewal=on
 }
}

 Davidson
wavefunction_solver{
 solvers{
 !#tag id sol till_n dts dte itr var prec cmix submat
 1 davidson -1 * * * * off 1 off
 }
}

33. Results

Figure 7.4 shows the results from the benchmark calculations, and Table 7.1 lists the calculation times. In

these benchmark tests, the PHASE program was compiled using the Intel Fortran Compiler 11.1 on Linux,

and a computer cluster equipped with a 2.4GHz Opteron280 processor was used. The degree of parallelism

for k-points was set to 4.

 216

Figure 7.4 Convergence progress for each wavefunction solver

エラー! 参照元が見つかりません。 contains the calculation time for each wavefunction solver. Here the

number of iterations indicates the number of charge mixings performed before convergence occurs. Note that

the calculation times, obtained on the computer cluster equipped with an Opteron 280 2.4GHz processor, are

tabulated here just for reference.

Table 7.1 Calculation times for each wavefunction solver

method

(when partial space diagonalization is performed)

number of

iteration

calculation time (sec)

matrix diagonalization 13 19.2

lm+msd, (after updating wavefunctions) 67 22.2

lm+msd, (before updating wavefunctions) 105 32.4

lm+msd rmm3, (after updating wavefunctions) 34 12.4

lm+msd rmm3, (before updating wavefunctions) 16 8.4

Davidson rmm3, (after updating wavefunctions) 23 11.2

Davidson rmm3, (before updating wavefunctions) 15 9.5

Davidson 17 11.8

In Figure 7.4, the horizontal axis contains the number of iterations, and the vertical axis gives the energy

relative to the converged energy. Since the variational principle holds in the SCF calculation, the lower

energy is more accurate.

Here matrix diagonalization seems to converge faster, but the amount of calculation for one step is generally

large, and it cannot be applied to large systems. In these results, the methods that switch to rmm3 converge

faster. In particular, the RMM3 method, in which partial space diagonalization is performed before

wavefunctions are updated, converges much faster. Depending on the systems being studied, speed and

stability of convergence change accordingly. It is recommended to select the best optimization method in each

case. In most cases, LM+MSD→RMM3, Davidson’s, and Davidson→RMM3 are stable and converge faster. If

the RMM3 method is employed, partial space diagonalization should be applied before updating

wavefunctions. If Davidson’s method is employed, post-processing (precon) should be set to “off.”

 217

7.1.4.2 Fe(100) surface

A sample calculation for an Fe(100) surface is introduced here to illustrate spin-considered calculations. In

this example, the same wavefunction solver was used, and several charge-mixing methods were tested. The

input data introduced here are in the directory samples/sol_cmix_test/Fe100.

34. Input data

Input data, excluding the charge_mixing block, are shown below.
control{
 condition = initial
 max_iteration = 200
}
accuracy{
 num_bands = 52
 ksampling{
 method=monk
 mesh{
 nx = 6
 ny = 6
 nz = 1
 }
 }
 cutoff_wf = 30 rydberg
 cutoff_cd = 300 rydberg
 initial_wavefunctions = atomic_orbitals
 initial_charge_density = atomic_charge_density
 scf_convergence{
 delta_total_energy = 1e-9
 succession = 3
 }
 force_convergence{
 max_force = 0.0005 hartree/bohr
 }
}
structure{
 atom_list{
 atoms{
 #tag element rx ry rz mobile weight
 Fe 0.5 0.5 0 off 1
 Fe 0 0 0.0948333333333 off 2
 Fe 0 0 0.2845 off 2
 Fe 0.5 0.5 0.189666666667 off 2
 }
 }
 ferromagnetic_state{
 sw_fix_total_spin=off
 total_spin=14
 spin_fix_period=5
 }
 unit_cell{
 a_vector = 5.3762704477 0.0 0.0
 b_vector = 0.0 5.3762704477 0.0
 c_vector = 0.0 0.0 28.3458898822
 }
 element_list{
 #tag element atomicnumber mass zeta deviation
 Fe 26 101802.230406 0.375 1.83
 }
 symmetry{
 method = automatic
 sw_inversion = on
 }
 magnetic_state=ferro
}

 218

structure_evolution{
 method = gdiis
 gdiis{
 initial_method = cg
 c_forc2gdiis = 0.005 hartree/bohr
 }
}
wavefunction_solver{
 solvers{
 #tag sol till_n prec cmix submat
 davidson 1 off 1 off
 rmm3 -1 on 1 on
 }
 rmm{
 edelta_change_to_rmm = 5e-3 hartree
 }
 submat{
 before_renewal = on
 }
}
charge_mixing{
 See later section
}
printoutlevel{
 base = 1
}

Examples of the charge_mixing block are shown below.

Case 0: Different mixing ratios are adopted for the sum and difference of the charge density. The Broyden2

method is employed for the charge-mixing algorithm.
charge_mixing{
 spin_density_mixfactor=4
 mixing_methods{
 #tag no method rmxs rmxe itr var prec istr nbmix update
 1 broyden2 0.1 0.1 40 linear on 3 5 renew
 }
}

Case 1: Different mixing ratios are adopted for the sum and difference of the charge density. The Pulay

method is employed for the charge-mixing algorithm.
charge_mixing{
 spin_density_mixfactor=4
 mixing_methods{
 #tag no method rmxs rmxe itr var prec istr nbmix update
 1 pulay 0.1 0.1 40 linear on 3 15 renew
 }
}

Case 2: The same mixing ratios are adopted for the sum and difference of the charge density. The Broyden2

method is employed for the charge-mixing algorithm.
charge_mixing{
 spin_density_mixfactor=1
 mixing_methods{
 #tag no method rmxs rmxe itr var prec istr nbmix update
 1 broyden2 0.1 0.1 40 linear on 3 15 renew
 }
}

Case 3: The same mixing ratios are adopted for the sum and difference of the charge density. The Pulay

method is employed for the charge-mixing algorithm.
charge_mixing{
 spin_density_mixfactor=1
 mixing_methods{

 219

 #tag no method rmxs rmxe itr var prec istr nbmix update
 1 pulay 0.1 0.1 40 linear on 3 15 renew
 }
}

35. Results

The results of the benchmark tests are listed in Table 7.2. The total energies for these methods are also

shown to ensure that these results converge to the same electronic state. In this example, case3 (different

mixing ratios and the Pulay method) converges in the least number of iterations. Although case3 usually

gives the best convergence, the Broyden2 method should be employed in some cases, or larger mixing ratios

for the difference in charge density may be better in some problems. Moreover, if spin is considered,

convergence is affected by whether initial spin polarization is fixed. When the calculation does not converge,

find an optimal charge-mixing method by referring to these benchmark tests.

Table 7.2 Number of SCF iterations required for convergence

and the resulting total energy for an Fe (100) surface

 number of SCF iterations total energy (ha.)

case0 36 -153.877775988322

case1 32 -153.877775991437

case2 34 -153.877775825592

case3 29 -153.877775990755

 220

7.2 Structure optimization

7.2.1 Optimization methods

7.2.1.1 Calculation examples

To examine the behavior of the optimization algorithms implemented in PHASE, we applied each algorithm

to the following systems.

• case1: cis-dichlorohexane

• case2: rutile-type TiO2

• case3: SiO2

• case4: Si(001) surface

Input files for these examples are in the directory samples/strevl_test.

In all cases, the convergence criterion for the maximum atomic force was set to Hartree/Bohr (This

threshold is relatively strict.), and the convergence criterion for SCF calculations was set to Hartree

(succession=1). Updating atomic positions was carried out up to 200 times. The optimization calculations

that exceed this limit were regarded as not converging. Each optimization algorithm was specified as follows:

36. quenched MD method

structure_evolution{
 method = quench
}

37. CG method

structure_evolution{
 method = cg
}

38. GDIIS method

structure_evolution{
 method = gdiis
 gdiis{
 initial_method = cg
 c_forc2gdiis = 0.01 hartree/bohr
 }
}

By the above input, the optimization is first processed by the CG method, and then the algorithm switches to

the GDIIS method when the maximum atomic force became smaller than the threshold given by the

c_forc2gdiis variable. Note that the first three steps are processed by the CG method even if the maximum

force is smaller than the threshold.

39. BFGS method

structure_evolution{
 method = bfgs
 gdiis{
 initial_method = cg
 c_forc2gdiis = 0.01 hartree/bohr
 }
}

 221

For the BFGS method, the optimization is first processed by the CG method, and the algorithm switches to

the BFGS method when the maximum atomic force became smaller than the threshold given by the

c_forc2gdiis variable. Note that the first three steps are processed by the CG method even if the maximum

force is smaller than the threshold.

7.2.1.2 Results

エラー! 参照元が見つかりません。 lists the results of these benchmark tests. These results indicate that the

quenched MD method converges slowly or not at all. In these tests, the time step was set to 100 au (default

value). Convergence might improve by changing this value. Although the GDIIS method converges faster for

SiO2, it does not work well in the other cases. The behavior of the GDIIS method may be improved by

changing c_forc2gdiis to a smaller value or by giving a more precise SCF convergence threshold. The CG

method was relatively stable. The BFGS method converged in all cases, and it required fewer iterations, on

average.

Table 7.3 Comparisons of the numbers of iteration required for convergence of the optimization algorithms.

The label “unconverged” means the optimization did not converge to less than 10−4 within 200 cycles. Case1

is dichlorohexane, case 2 is rutile-type TiO2, case 3 is SiO2, and case 4 is the Si(001) surface.

 case 1 case 2 case 3 case 4

quenched MD unconverged 115 166 unconverged

cg 195 62 28 124

GDIIS unconverged 71 13 176

BFGS 87 38 16 67

 222

7.3 Units in PHASE

The units used in PHASE are basically Hartree atomic units. The following table lists conversion factors

from atomic units to other units.

energy 1 Hartree = 2 Rydberg = 27.21139615 eV = 4.359745836 J

length 1 Bohr = 0.5291772480 Å = 0.5291772480 m

mass 1 au mass = 1822.877333 amu = 9.1093897 kg

volume 1 au volume = 0.1481847426 Å = 1.48184726 m

velocity 1 au velocity = 2.187691417 Å /s = 2.187691417 m/s

force 1 Hartree/Bohr = 51.42208259 eV/Å = 8.238725025 N

time 1 au time = 2.418884327 fs = 2.418884327 s

stress 1 au stress = 2.903628623 atm = 2.942101703 Pa

density 1 au density = 1.23013834 amu/Å = 9.1093897 g/cm = 9.1093897

 kg/m

7.4 FAQ

Questions and answers are summarized below.

Q: Band dispersion calculated by ekcal program seems wrong. What is a possible cause of the problem?

A: Check if the calculated wavefunctions converged sufficiently. See the log file output000.

Q: An error, which warns charge density is negative, occurs during a SCF calculation. How can I solve the

error? (e.g., ** WARN CHG.DEN 0.0 AT 1 - 0.8220751D-1)

A: Please check if the accuracy of the charge mesh is sufficient, and use a larger cutoff energy for the

cutoff_cd variable. (Note: if the above warning appears only during the initial steps of an SCF calculation,

it can be ignored.)

Q: How should I determine values for cutoff_wf and cutoff_cd?

A: An appropriate value for cutoff_wf mainly depends on the pseudopotentials used in the calculation.

Normally, one should calculate a target crystal using several cutoff energies and then adopt cutoff

energies that can reproduce experimental values of equilibrium lattice parameters or the bulk modulus.

For normal TM potentials, cutoff_cd is determined by cutoff_cd＝4 cutoff_wf. However, cutoff_cd needs

to be larger than this if pseudopotentials using PCC or ultra-soft potentials are employed in the

calculation.

Q: mpirun command does not work. What is a possible cause of the problem?

A: Please check if the hostnames and user IDs are correctly written in .rhost.

Q: Optimization of electronic states (i.e., an SCF calculation) does not work well (i.e., charge density does not

get converged). How can I solve the problem?

A: Try different options for the optimization algorithm by referring to Section 10.

Q: I specified xctype in the input parameter file. Is it necessary to use pseudopotentials generated by the

same xctype functional?

A: Yes. It is basically necessary for consistency. If xctype is not specified in the input file, xctype defined in the

pseudopotential files is employed. If xctype variables written in pseudopotential files employed are not

consistent, the job will not execute.

 223

Q: I plotted the band structure for a metal system using band.pl, but the Fermi level in this figure slipped

out of the correct position. How can I fix this?

A: Change the Fermi energy written in nfenergy.data to that obtained by the SCF calculation.

Q: band.pl (or dos.pl) does not work. What is a possible cause of the problem?

A: Please check if the Perl scripts are executable. Try again after executing “chmod +x dos.pl.” See chapter 9

for use of these scripts.

Q: SCF calculation was terminated, but it seems like the SCF convergence criterion was not satisfied. Why

did the calculation terminate?

A: An SCF calculation terminates if the energy per an atom becomes lower than the threshold. However, the

energy printed to standard output output000 is the total energy, not the energy per an atom. Therefore, it

is necessary to divide the total energy by the number of atoms to check whether the convergence criterion

is satisfied.

Q: How can I ensure that the calculation converged?

A: If an SCF calculation converges, you can find the results in nfefn.data or nfdynm.data. If structure

optimization converges, you can find the following description at the end of the file continue.data.

convergence
 2

Q: How can I visualize the unit cell that is shown by the blue line in Figure 3 of the tutorial.

A: After making the mol2 file shown below, read it with the PHASE Viewer.

@<TRIPOS>MOLECULE
Si8 frame
 8 12 0
 0 0 0 0

grid file
@<TRIPOS>ATOM
 1 N 0.000000 0.000000 0.000000 N.4 1 GLY 0.0000
 2 N 5.430000 0.000000 0.000000 N.4 1 GLY 0.0000
 3 N 0.000000 5.430000 0.000000 N.4 1 GLY 0.0000
 4 N 0.000000 0.000000 5.430000 N.4 1 GLY 0.0000
 5 N 0.000000 5.430000 5.430000 N.4 1 GLY 0.0000
 6 N 5.430000 0.000000 5.430000 N.4 1 GLY 0.0000
 7 N 5.430000 5.430000 0.000000 N.4 1 GLY 0.0000
 8 N 5.430000 5.430000 5.430000 N.4 1 GLY 0.0000
@<TRIPOS>BOND
 1 1 2 1
 2 1 4 1
 3 1 3 1
 4 2 6 1
 5 2 7 1
 6 3 5 1
 7 3 7 1
 8 4 5 1
 9 4 6 1
 10 5 8 1
 11 6 8 1
 12 7 8 1

 224

8. Installation of PHASE

8.1 Operating environment

PHASE works at various computer environments from PCs to advanced supercomputers. The PHASE

program is written in Fortran90 and C; thus, compilers of these languages are required. The MPI library is

also necessary if parallel processing is required.

The required and optional software and libraries are as follows:

 Fortran90 compiler and C compiler (required)

 MPI library (required for parallel calculations)

 Libraries for matrix operations: LAPACK, BLAS (optional)

 FFT library: FFTW (optional)

 Perl (optional, but required for PHASE tools)

 Gnuplot (optional, but required for PHASE tools)

The computer platforms that support PHASE are tabulated below.

Computer platforms that support PHASE

platform compilers available libraries

Linux GNU Compiler

Intel Compiler

PGI Compiler

LAPACK, BLAS, ScaLAPACK

MKL, ACML

FFTW3

Windows XP GNU Compiler

Intel Compiler

PGI Compiler

MKL, ACML

FFTW3

Intel ver. Mac OS X GNU Compiler

Intel Compiler

MKL, ACML

FFTW3

Oracle Solaris GNU Compiler

SUN Compiler

Sun Perf.(LAPACK)

ACML

FFTW3

SGI Altix Intel Compiler SCSL, MKL

FFTW3

IBM AIX IBM XL ESSL(LAPACK)

FFTW3

Hitachi SR11000 HITACHI

IBM XL

MATRIX/MPP(FFT)

HITACHI LAPACK

ESSL(LAPACK)

NEC SX Series Fortran90/SX Mathkeisan(LAPACK)

ASL(FFT)

Fujitsuu FX10 Fujitsu Compiler

 MPICH1, MPICH2, and OpenMPI are available for the MPI library.

 The newest AMD Core Math Library for various platforms is available at http://developer.amd.com/.

 The GNU compiler (gfortran, gcc) must be newer than ver. 4.1. The newest GNU Compiler (Windows

ver., MacOS ver., Linux ver.) can be downloaded from http://gcc.gnu.org/.

 The PGI compiler must be newer than ver. 6.2.

 The Intel compiler must be newer than ver. 9.1.

http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www-unix.mcs.anl.gov/mpi/mpich2/index.htm
http://www.open-mpi.org/

 225

8.2 Installation

This section introduces installation of PHASE in a Linux environment. In this example, the Intel Fortran

compiler is employed for installation. If another compiler is used for the installation, choose that compiler

when the installer asks you which compiler is used. In this example, OpenMPI is employed for the MPI

library. If “Serial” is chosen in the interactive installation process, you can compile the PHASE program

without the MPI library.

First, decompress the PHASE package file phase_v1200.tar.gz at the directory in which PHASE is installed.

$ tar zxf phase_v1200.tar.gz

Go into the directory phase_v1100 and run the installer.

$ cd phase_v1000
$./install.sh

 === PHASE installer ===
 Do you want to install PHASE? (yes/no) [yes]

The installer asks you whether to install PHASE. Press the Enter key to start the installation.

Supported platforms

 0) GNU Linux (IA32)

 1) GNU Linux (EM64T/AMD64)

 2) NEC SX Series

 x) Exit

Enter number of your platform. [0]

Supported platforms are displayed. Input “0,” which corresponds to GNU Linux (AI32), and press the Enter

key.

Supported compilers

 0) GNU compiler collection (gfortran)

 1) Intel Fortran compiler

 x) Exit

Enter number of a desired compiler. [0]

Supported compilers are displayed. Input “2,” which corresponds to the Intel Fortran compiler 9.x, and press

the Enter key.

Supported programming-models
 0) Serial
 1) MPI parallel
 x) Exit
Enter number of a desired programming-model. [0]

Supported programming models are displayed. Input “1,” which corresponds to MPI parallel, and press the

Enter key.

Supported MPI libraries

 0) MPICH1/MPICH2/Open MPI

 1) Intel(R) MPI

 x) Exit

Enter number of a desired MPI library. [0]

Supported MPI libraries are displayed. Input “0” which corresponds to OpenMPI, and press the Enter key.

Supported BLAS/LAPACK

 0) Netlib BLAS/LAPACK

 1) Intel Math Kernel Library (MKL)

 x) Exit

Enter number of a desired library. [0]

Supported BLAS/LAPACK libraries are displayed. Input “0,” which corresponds to Netlib BLAS/LAPACK,

and press the Enter key.

 226

Supported FFT libraries

 0) Built-in FFT subroutnes

 1) FFTW3 library

 x) Exit

Enter number of a desired library. [0]

Supported FFT libraries are displayed. Input “0,” which corresponds to built-in FFT subroutines, and press

the Enter key

Do you want to edit the makefile that has been generated? (yes/no/exit) [no]

The installer asks you whether to edit the generated Makefile. Press the Enter key if you do not need to edit

the Makefile.

 Do you want to make PHASE now? (yes/no) [yes]

Press the Enter key to start the installation of PHASE.

PHASE was successfully installed.
Do you want to check the installed programs? (yes/no) [no]

After the message “PHASE was successfully installed,” the installer asks you whether to execute a test

calculation. Input “yes” and press the Enter key if you want to run the test calculations. If the installed

PHASE program works correctly, the following results will be obtained.

Do you want to check the installed programs? (yes/no) [no]
yes
Checking total-energy calculation.
 Total energy : -7.897015156331 Hartree/cell
 Reference : -7.897015156332 Hartree/cell
Checking band-energy calculation.
 Valence band maximum : 0.233846 Hartree
 Reference : 0.233846 Hartree

PHASE is executed using the mpirun or mpiexec command in the MPI library.

If you add the directory $HOME/phase_v1200/bin to the environmental variable PATH, you can execute

PHASE programs without entering the path to these programs.

For the Bourne shell, add the following line to $HOME/.bashrc.

export PATH=$HOME/phase_v1200/bin:$PATH

In the C shell, add the following line to $HOME/.cshrc.

setenv PATH $HOME/phase_v1200/bin:$PATH

Also, add the bin directory of the MPI library to the PATH.

For the Bourne shell, add the following line to $HOME/.bashrc.

export PATH=$HOME/openmpi/bin:$PATH

In the C shell, add the following line to $HOME/.cshrc.

setenv PATH $HOME/openmpi/bin:$PATH

Now, mpirun and phase can be executed simply as follows:

$ mpirun -np 2 phase ne=1 nk=2

 227

8.3 Notice for each platform

8.3.1 Linux

Make the FFTW3 interface of the Intel Math Kernel Library by using the Intel C++ compiler as follows.

cd /opt/intel/mkl/9.1/interfaces/fftw3xf
make lib32

In the EM64T environment, use libem64t instead of lib32 above. The library file libfftw3xf_intel.a will be

generated in

/opt/intel/mkl/9.1/lib/32 (IA32 environment)

or in

/opt/intel/mkl/9.1/lib/em64t (EM64T environment)

Note: if the MKL library was installed into a directory other than /opt/intel, the library file is also installed in

that directory.

8.3.2 Windows XP

On a Windows platform, a Linux-compatible environment is required. Please install MSYS/MinGW or

Cygwin. In case of Cygwin, the make command also needs to be installed.

If the MPI parallel version is necessary, install the MPI library for Windows DeinoMPI in advance.

Make the FFTW3 interface of the Intel Math Kernel Library using the nmake command with ’F=ms’

and ’MKL_SUBVERS=serial’ options (Use Microsoft C++ compiler).

The makefile is in

C:¥Program Files¥Intel¥MKL¥9.1¥interfaces¥fftw3xf

To correctly make the serial version of the library, remove the ‘/MT’ option in the second-to-last line of this

makefile. After modifying the makefile, open an MS-DOS command prompt and make the library as below:

C:¥Program Files¥Intel¥MKL¥9.1¥interfaces¥fftw3xf
nmake lib32 F=ms MKL_SUBVERS=serial

In the EM64T environment, use libem64t instead of lib32 above. The library file fftw3xf_ms.lib will be

generated in

C:¥Program Files¥Intel¥MKL¥9.1¥lib¥_serial¥ia32¥lib (IA32 environment)

or in

C:¥Program Files¥Intel¥MKL¥9.1¥lib¥_serial¥em64t¥lib (EM64T environment)

8.3.3 Mac OS X (Intel ver.)

Use the Intel Fortran compiler ver. 10.

Make the FFTW3 interface of the Intel Math Kernel Library using the Intel C++ compiler as follows:

cd /Library/Frameworks/Intel_MKL.framework/Version/9.1/interfaces/fftw3xf
make lib32 MKL_SUBVERS=serial

In the EM64T environment, use libem64t instead of lib32 above. The library file libfftw3xf_intel.a will be

generated in

/Library/Frameworks/Intel_MKL.framework/Version/9.1/lib_serial/32 (IA32）

or in

/Library/Frameworks/Intel_MKL.framework/Version/9.1/lib_serial/em64t (EM64T)

To make the MPI-parallelized version, install OpenMPI in advance.

http://www.mingw.org/download.shtml
http://sourceforge.net/project/showfiles.php?group_id=2435
http://cygwin.com/
http://mpi.deino.net/index.htm
http://www.open-mpi.org/

 228

9. Usage of programs and tools

9.1 Program phase

9.1.1 Executing phase

One can use PHASE to perform SCF calculations or MD simulations. Density of states (DOS) or band

structures can also be calculated from charge-density distributions.

Prepare an input parameter file and pseudopotential files and put them into an execution directory. Put

file_names.data into the execution directory as well, if it is needed.

When you run serial calculations using a single processor (1 core), execute the phase program as below.

Here “../../phase_v1200/bin/” indicates the directory in which PHASE was installed.

% ../../phase_v1200/bin/phase

When you run PHASE in parallel, use the execution command in the MPI library. Usually, the mpirun or

mpiexec command is used. For more details, see the manuals for your platform.

% mpirun -np NP ../../phase_v1200/bin/phase ne=NE nk=NK

Here NP is the number of MPI processes, while NE and NK are the degrees of parallelism for bands and

k-points, respectively.

9.1.2 Options for parallel calculations

9.1.2.1 Parallelization over bands and parallelization over k-points

In parallel calculations, you need to specify the degree of parallelism for bands NE and for k-points NK.

Note that NE × NK must equal NP. If ne and nk are omitted, NE = NP and NK = 1 are employed.

% mpirun -np NP ../../phase_v1200/bin/phase ne=NE nk=NK

Normally, parallelization over k-points is more effective than parallelization over bands. Therefore, it is

usually better to maximize the number of k-points for parallelization. However, the number of k-points is

normally reduced for large systems, and the actual number of k-points may not be divisible by the number of

available processors. An error occurs if NK is larger than the number of actual k-points. Sufficient efficiency

is not achieved if the number of k-points is not divisible by NK. Use band parallelization at the same time

when needed.

9.1.2.2 Parallelization of replica method

“Parallelization of replica method” is available for some methods such as NEB, constrained dynamics, and

metadynamics. To use replica parallelization, execute PHASE as below:

% mpirun -np NP ../../phase_v1200/bin/phase nr=NR ne=NE nk=NK

Here NR indicates the degree of parallelism for replicas. The relationship NP = NR × NE × NK must hold.

Although parallelization of replicas is more effective than that of k-points, the most slowly converging replica

can be a hindrance to the whole calculation.

 229

9.1.3 Parallelization over G points (beta version)

PHASE supports not only band parallelization and k-point parallelization but also parallelization over G

points for plane-wave functions. However, this function is still under testing, and the following restrictions

are applied for the parallelization.

 G-point parallelization is not available with k-point parallelization

 Post-processing is not available with parallelization

The source codes supporting G-point parallelization are in the directory src_phase_3d. Go into the directory

and execute the following command to generate the Makefile.

% sh configure

To generate the Makefile, the installer asks you questions similar to those described in the installation

section. After generating the Makefile, modify the Makefile if needed and execute the make command as

below:

% make

Before executing the calculation, prepare a file named nml.lst in the execution directory. The following is an

example of this file.

&decomp3d

ng=NG

ne=NE

nk=1

/

Here NG gives the degree of parallelization over G points, and NE gives the degree of parallelization for

bands. NG × NE must be equal to the number of MPI processes.

% mpirun -np NP ../../phase_v1200/bin/phase

 230

9.2 Program ekcal

9.2.1 Executing ekcal

The program ekcal is used to calculate DOS or band structures from charge-density distributions obtained

from SCF calculations done by PHASE.

First, copy the charge-density file nfchgt.data into an execution directory or specify this file by the keyword

F_CHG in file_names.data.

For band-structure calculations, prepare the file for setting k-point sampling kpoint.data.

Execute the program ekcal as below. Here “phase_v1100/bin/” indicates the directory in which PHASE was

installed.

% ../../phase_v1100/bin/ekcal

9.2.2 Options for ekcal

 231

9.3 Program uvsol

 232

9.4 dos.pl: a tool for plotting DOS

PHASE generates data for the DOS in file dos.data. See another section of this manual or the tutorial for

more details. The Perl script dos.pl can visualize the dos.data. The way to plot the DOS is described below.

First, copy the dos.data in the example directory into the work directory.

$ cd PHASE_INST_DIR/samples/tools/work

$ cp ../example/dos.data .

Make sure that the dos.data file is copied in this directory by using the ls command.

$ ls dos.*

dos.data

To visualize the dos.data, execute the Perl script by the following command:

$ dos.pl dos.data -erange=-13,5 -color

This generates an EPS file density_of_states.eps. In UNIX, you can see this file by using ghostview or gv etc.

as follows:

$ ghostview density_of_states.eps

or

$ gv density_of_states.eps

Figure 9.1 DOS of bulk Si

Here the –erange option gives the energy range to be plotted, and the –color option indicates that the figure

is output in color.

9.4.1 Options for dos.pl

Usage of the dos.pl script is printed if it is executed without any arguments.

$ dos.pl

Version: 3.00
Usage: dos.pl DosData -erange=Emin,Emax -einc=dE -dosrange=DOSmin,DOSmax -dosinc=dDOS
-title=STRING -with_fermi -width=SIZE -font=SIZE -color -mode={total|layer|atom|projected}

 233

-epsf={yes|no} -data={yes|no}

The DOS data file, normally dos.data, is given to the first argument DosData. The options for the dos.pl are

listed below:
-erange=Emin,Emax Specify the energy range to be plotted in units of eV.

For example, -erange = -10,5 indicates that DOS is plotted

from -10.0 eV to 5.0 eV.

If the option is not given, the energy range is automatically

determined by the minimum and maximum of the data given.
-einc=dE Specify the scale resolution for the horizontal axis.

For example, -einc=2 indicates that the scale interval is

2.0 eV.
-dosrange=DOSmin,DOSmax Specify the range of DOS to be plotted.

For example, -dosrange=0,12 indicates that the DOS is

plotted from 0 states/eV to 12 states/eV.

-dosinc=dDOS Specify the scale resolution for the vertical axis (DOS).

For example, -dosinc=2 indicates that the scale interval is

2 states/eV.
-title=STRING Give a title to the graph.

For example, -title="Total DOS"
-with_fermi If this option is given, a dotted line is drawn at the Fermi

level for metals or at the level of the highest valence band

for insulators and semiconductors.

-width=SIZE Give the width of this figure. Defaults to 1.0.

For example, -width=0.8

-font=SIZE Specify the font size. Defaults to 14.

For example, -font=28
-color If this option is given, the graph is dumped in color.
-mode={total|layer|atom} Options are as follows:

total: plot total DOS (default)

layer: plot layer-divided PDOS
atom: plot atom-divided PDOS

projected: plot atomic-orbital-divided PDOS

-epsf={yes|no} If no, a postscript file is not generated. Defaults to yes.

-data={yes|no} If yes, instead of generating an eps file, the PDOS data for

each layer or atom are separately dumped into files.

 234

9.5 band_kpoint.pl: a tool for generating k-points

To plot the band structure, many k-points along symmetrical lines are required. The program ekcal

calculates eigenvalues at these k-points. The Perl script band_kpoint.pl generates these k-points, and the

generated k-points data are dumped into kpoint.data, and then this file is given to ekcal. The format of the

input file of this script is shown below.

dkv
b1x b2x b3x
b1y b2y b3y
b1z b2z b3z
n1 n2 n3 nd # Symbol
...

The variable dkv gives the interval between k-points; b1x, b1y, b1z indicate the x, y, z components of the

reciprocal vector , and similarly for the reciprocal vectors , . The fifth line defines a special k-point

and its symbol. Although the specification of the symbol is not required, it is used as a label when the band

structure is plotted. The vectors of these k-points are specified by integer numbers as

The symbols are written after the #. An example for a face-centered cubic lattice is shown below.

0.02 <---- interval of k-points
-1.0 1.0 1.0
1.0 -1.0 1.0 <---- reciprocal lattice vector
1.0 1.0 -1.0
0 1 1 2 # X <---- n1 n2 n3 nd # Symbol
0 0 0 1 # {/Symbol G}
1 1 1 2 # L
5 2 5 8 # U
1 0 1 2 # X

The above input is in the example directory. Copy this file and execute band_kpoint.pl as below:

$ cd PHASE_INST_DIR/samples/tools/work

$ cp ../example/bandkpt_fcc_xglux.in .

$ band_kpoint.pl bandkpt_fcc_xglux.in > output

This generates kpoint.data, which contains k-points used for band structure calculation. Program ekcal

calculates eigenenergies at these k-points by reading this file.

 235

9.6 band.pl: a tool for plotting band structure

9.6.1 Executing band.pl

The script band.pl is a script that plot band structure. The output file from ekcal “nfenergy.data” and the

input file for band_kpoint.pl are given to band.pl as input. The example directory contains the file

nfenergy.data, which is obtained from the eigenenergy calculation of ekcal using the file kpoint.data

generated in the previous section. To plot the band structure, copy the files nfenergy.data and

bandkpt_fcc_xglux.in in the example directory to the work directory and execute band.pl as below:

$ cd PHASE_INST_DIR/samples/tools/work

$ cp ../example/nfenergy.data .

$ cp ../example/bandkpt_fcc_xglux.in .

$ band.pl nfenergy.data bandkpt_fcc_xglux.in -erange=-13,5 -color

This generates the EPS file band_structure.eps. This file can be displayed by ghostview or gv.

$ ghostview band_structure.eps

or

$ gv band_structure.eps

Figure 9.2 Band structure of bulk Si

Here the –erange option gives the energy range to be plotted, and the –color option indicates that the figure

is dumped in color.

9.6.2 Options for band.pl

Usage of band.pl is printed if this script is executed without any arguments.

$ band.pl

Usage: band.pl EnergyDataFile KpointFile -erange=Emin,Emax
-einc=dE -ptype={solid_circles|lines} -with_fermi

 236

-width=SIZE –color

The eigenenergy and k-point data files are given to the first and second arguments, EnergyDataFile, and

KpointFile. The options for band.pl are listed below:

-erange=Emin,Emax Specify the energy range to be plotted in units of eV.

For example, -erange=-10,5 indicates that the DOS is plotted from

-10.0 eV to 5.0 eV.

-einc=dE Specify the scale resolution for the vertical axis.

For example, -einc=2 indicates that the scale interval is 2.0 eV.

-ptype=TYPE Specify plot type. Options are
-ptype=solid_circles: display with black closed circles
-ptype=lines: display with lines (default)

-with_fermi If this option is given, a dotted line is drawn at the Fermi level

for metals or at the level of the highest valence band for insulators

and semiconductors.

-width=SIZE Give the width of this figure. Defaults to 0.5.

For example, -width=0.3

-color If this option is given, the graph is dumped in color.

 237

9.7 dynm2tr2.pl: a tool for converting to extended trajectory format

The Perl script dynm2tr2.pl converts “nfdym.dat,” which contains atomic position data obtained by structure

optimization or MD simulation, to the extended trajectory format.

The dynm2tr2.pl can be executed as below:

$ dynm2tr2.pl nfdynm.data

This command generates files dynm.tr2, which contains atomic positions, and grid.mol2, which defines cell

vectors, etc. Here we convert the results from geometry optimization for two Si atoms in FCC primitive to

the extended trajectory format and visualize below.

Figure 9.3 Visualized structure optimization progress for bulk Si

The arrows in エラー! 参照元が見つかりません。 represent forces acting on atoms. These arrows indicate

that after the force was maximized, the force decreased and optimization converged. Although the primitive

cell is displayed in エラー! 参照元が見つかりません。, changing the origin or cell vectors can be specified by

making control.inp exemplified below.

origin 1.2825 1.2825 1.2825
vector1 10.26 0 0
vector2 0 10.26 0
vector3 0 0 10.26

If the above control.inp is used as below, the origin is set to (1.2825,1.2825,1.2825) Bohr, and cell vectors are

 238

set to (10.26,0,0)，(0,10.26,0)，(0,0,10.26) Bohr.

$ dynm2tr2.pl nfdynm.data control.inp

エラー! 参照元が見つかりません。 shows step 10 of the optimization progress displayed with the Bravais cell

given by control.inp.

Figure 9.4 Step 10 of the optimization progress for Si atoms displayed with the Bravais cell

 239

9.8 freq.pl: a tool for plotting frequency level diagrams

Frequencies and eigenvectors of the normal vibrational modes are obtained by vibrational analysis in

PHASE. The results from a vibrational analysis are dumped into the file mode.data. The Perl script freq.pl

extracts these results from mode.data and plots a frequency-level diagram. After executing freq.pl, an EPS

file named freq.eps is generated.

$ freq.pl [options] mode.data

エラー! 参照元が見つかりません。 shows the frequency-level diagram for bulk Si.

Figure 9.5 Frequency-level diagram for bulk Si

The horizontal lines that represent frequency levels are classified according to irreducible representations

such as T2g. The irreducible representations and symbols representing their activity (IR, R, IR&R, and

NON) are displayed by horizontal lines. Here IR represents infrared activity, R represents Raman activity,

IR&R represents both infrared and Raman activity, and NON represents the silent mode. The number to the

right of this line is the frequency in cm−1 units. The horizontal lines are numbered in order of frequency, and

those numbers are displayed to the left of the line.

9.8.1 Options for freq.pl

Usage of freq.pl is printed if this script is executed without any arguments.

$ freq.pl

*** A visualization program for vibrational freqencies ***
Usage: freq.pl [-width=W] [-height=H] [-nrep=N] {-solid|-mol|-ignored_modes=LIST}

mode.data

The options for freq.pl are listed below:

-width=W Give the width of this figure. Defaults to 1.0.

For example, -width=0.3

-height=H Give the height of this figure. Defaults to 1.0.

For example, -height=2.5

-nrep=N Specify the number of irreducible representations displayed in

one diagram. If the number of irreducible representations

obtained is larger than the value given by this option, multiple

 240

EPS files will be generated.

-solid If this option is given (default), translational modes are not

displayed.

-mol If this option is given, translational and rotational modes are

not displayed.

-ignored_modes=LIST The modes specified by this option are not displayed.

For example,

-ignored_modes=1,2,3
hides the modes 1, 2, and 3.

 241

9.9 animate.pl: a tool for converting normal modes to the extended trajectory format

The Perl script animate.pl reads eigenvectors of vibrational modes from mode.data and dumps the trajectory

of normal vibrations to an extended trajectory formatted file.

The origin and cell vectors can be specified by the file control.inp exemplified below:

origin 1.27189 1.27189 1.27189
vector1 10.17512 0 0
vector2 0 10.17512 0
vector3 0 0 10.17512

In the above example, to display with the Bravais cell, the origin is set to (1.27189, 1.27189, 1.27189) Bohr,

and cell vectors are specified as (10.17512, 0, 0), (0, 10.17512, 0), (0, 0, 10.17512) Bohr.

The animate.pl can be executed as follows:

$ animate.pl mode.data control.inp

Vibrational modes are dumped into the extended trajectory files mode_1.tr2，mode_2.tr2，…，mode_6.tr2, and

cell vectors are dumped into the file grid.mol2. An extended trajectory file is generated for each vibrational

mode.

エラー! 参照元が見つかりません。 shows mode_6.tr2, the sixth eigenvectors for the normal vibrations of bulk

Si.

Figure 9.6 Eigenvectors of normal vibration for bulk Si

 242

10. Input and output files

10.1 Input files

10.1.1 Input parameter file: nfinp.data

10.1.2 Pseudopotential files

Here we describe the format of the pseudopotential file.

The following shows a pseudopotential file for the Si atom.

 14 4 3 0 2 : zatom, ival, iloc, itpcc
ldapw91 : name
 2.160000 0.860000 1.605400 -0.605400 : alp,cc
 1501 96.000000 60.000000 : nmesh, xh, rmax
VALL
 -0.14250064037552332E+07 -0.14102392478975291E+07 -0.13956251181755565E+07
 -0.13811624288404209E+07 -0.13668496105922471E+07 -0.13526851103651347E+07
 -0.13386673911985729E+07 -0.13247949320589846E+07 -0.13110662276746516E+07
 -0.12974797883723934E+07 -0.12840341399159116E+07 -0.12707278233458301E+07
 -0.12575593948213934E+07 -0.12445274254637859E+07 -0.12316305012010917E+07
 -0.12188672226148657E+07 -0.12062362047882713E+07 -0.11937360771558125E+07
 -0.11813654833546225E+07 -0.11691230810772763E+07 -0.11570075419261454E+07
 -0.11450175512692606E+07 -0.11331518080976552E+07 -0.11214090248841981E+07
 -0.11097879274438950E+07 -0.10982872547956155E+07 -0.10869057590252746E+07
 -0.10756422051504281E+07 -0.10644953709862572E+07 -0.10534640470129563E+07
 -0.10425470362444966E+07 -0.10317431540987322E+07 -0.10210512282688706E+07
 -0.10104700985962711E+07 -0.99999861694454885E+06 -0.98963564707499891E+06
 ..
 ..
 ..

You can insert comment lines beginning with # into the first lines. If the comment lines are inserted in the

pseudopotential file, PHASE prints these comments to the standard output (oputput000). In the above

example, the first four lines define the following parameters.

First line: natomn, ival, iloc, itpcc, igncpp

These variables represent the atomic number , the number of valence electrons ，a number obtained by

plus 1 to azimuthal quantum number of the localized orbital , a flag for core charge correction (1 or 0),

and the format of the pseudopotential data (GNCPP1(=1)，GNCPP2(=2)), respectively.

Second line: xctype

This line indicates the type of exchange-correlation energy. Options are LDAPW91 and GGAPBE.

Third line: alp1, alp2, cc1, cc2

These parameters are used in the following equation to calculate the pseudopotential of the

core part:

 243

where represents the Gaussian error function, and .

Fourth line: nmesh, xh, rmax

These parameters are used in the following equation to generate the mesh in the radial

direction:

where represents the number of meshes in the radial direction.

In the above example, these four lines indicate that the pseudopotential file is for the Si atom of LDAPW91.

The “VALL” in the fifth line is a symbol used to check the file in the PHASE program. The lines after the fifth

contain actual pseudopotential data. The first block of this data represents screened all-electron potential,

 and its data format is as follows:

 do ir = 1, nmesh

 end do

The second block of this data contains the screened local potential,

 and its data format is as

follows:

 do ir = 1, nmesh

 end do

The third block of this data contains , which is the product of the valence charge density and

the surface area of a sphere (). The data format for this block is as follows:

 do ir = 1, nmesh

 end do

After these three blocks, data for pseudo wave functions and pseudopotentials are dumped. The data format

is completely different between norm-conserving and ultra-soft pseudopotentials. See the user manual of

CIAO for more details.

 244

10.2 Input/Output setting file: file_name.data

10.3 Input files (ekcal)

10.3.1 k-point data file: kpoint.data （F_KPOINT）

This file is mainly used for band calculations via ekcal. The k-points to be calculated are written to this file.

Then, these k-points are read from this file when “file” is specified for the k-sampling method. This file is

usually generated by the Perl script band_kpoint.pl. The following shows an example.

141 141 (a)
0 50 50 100 1 (b)
0 49 49 100 1
0 48 48 100 1
0 47 47 100 1
0 46 46 100 1
0 45 45 100 1
0 44 44 100 1
0 43 43 100 1

Each line represents the following:

(a) Number of k-points. This example has 141 k-points.

(b) These five integer numbers are the in

where

 are reciprocal lattice vectors.

 245

10.4 Output file

10.4.1 DOS file: dos.data (F_DOS)

Calculated DOS is dumped into a file designated by the F_DOS keyword. The default name of this file is

dos.data.

If spin is not considered in the calculation, then the total DOS is dumped as follows:
 No. E(hr.) dos(hr.) E(eV) dos(eV) sum
 6 -0.20528 0.0000000000 -11.949000 0.0000000000 0.0000000000
 16 -0.20491 0.0000000000 -11.939000 0.0000000000 0.0000000000
 26 -0.20455 0.0000000000 -11.929000 0.0000000000 0.0000000000
...............
...............
...............
END

Here No. (in the first column) represents the number assigned to each state, E(hr.) represents the energy in

units of Hartree, dos(hr.) represents the DOS in units of states/Hartree, E(eV) represents the energy in units

of eV, dos(eV) represents the DOS in units of states/eV, and sum represents the integrated DOS.

However, if spin is considered in the calculation, total DOS is dumped as follows:
No. E(hr.) dos_up(hr.) dos_down(hr.) E(eV) dos_up(eV) dos_down(eV)

 sum_up sum_down sum_total
 1 -1.5451 0.0000000000 0.0000000000 -45.4403 0.0000000000 0.0000000

000 0.0000 0.0000 0.0000
 11 -1.5441 0.0000000000 0.0000000000 -45.4131 0.0000000000 0.0000000

000 0.0000 0.0000 0.0000
 21 -1.5431 0.0000000000 0.0000000000 -45.3859 0.0000000000 0.0000000

000 0.0000 0.0000 0.0000
 31 -1.5421 0.0000000000 0.0000000000 -45.3587 0.0000000000 0.0000000

000 0.0000 0.0000 0.0000
 41 -1.5411 0.0000000000 0.0000000000 -45.3315 0.0000000000 0.0000000

000 0.0000 0.0000 0.0000
 51 -1.5401 0.0000000000 0.0000000000 -45.3043 0.0000000000 0.0000000

000 0.0000 0.0000 0.0000

The dos_up and dos_down represents DOS for up-spin and down-spin; the sum_up and sum_down

represents the integrated DOS for up-spin and down-spin; the sum_total is sum of sum_up and sum_down.If

a layer-projected or an atom-projected DOS is calculated, its descriptor and data are also dumped after the

data for total DOS.

 Atom-projected DOS

The following output is obtained for atom PDOS.

ALDOS num_atom = 1
 No. E(hr.) dos(hr.) E(eV) dos(eV) sum
 6 -0.84950 0.0000000000 -26.189850 0.0000000000 0.0000000

000
 16 -0.84850 0.0000000002 -26.162639 0.0000000000 0.0000000

000

END
ALDOS num_atom = 2

 246

Atom PDOS is dumped between the descriptor ALDOS and END line. The num_atoms = 2 indicates the

serial number of atoms.

 LDOS for layers

LDOS for layers are dumped as follows:

LAYERDOS num_layer = 1
 No. E(hr.) dos(hr.) E(eV) dos(eV) sum
 6 -0.84950 0.0000000000 -26.189850 0.0000000000 0.0000000

000
 16 -0.84850 0.0000000002 -26.162639 0.0000000000 0.0000000

000

END
LAYERDOS num_layer = 2

The data are dumped in same format as the atomic LDOS. The descriptor for layered LDOS is LAYERDOS,

and num_layer indicates the number of layers defined in an input file.

 247

10.4.2 Energy history file: nfefn.data (F_ENF)

Changing total energy in structure relaxation calculations or values of potential and kinetic energies in MD

simulations are dumped into a file designated by the F_ENF keyword.

 Structure relaxation

The following shows a typical example of the F_ENF file for structure relaxation.

 iter_ion, iter_total, etotal, forcmx
 1 24 -108.4397629733 0.0086160410
 2 40 -108.4401764388 0.0076051917
 3 56 -108.4405310817 0.0068758156
 4 73 -108.4410640011 0.0065717365
 5 94 -108.4414256084 0.0099533097
 6 113 -108.4414317178 0.0094159378

Each column represents

iter_ion the number of iteration for updating ion positions

iter_total the total number of SCF iterations

etotal total energy in units of Hartree

forcmx maximum value of the atomic force (Hartree/Bohr3)

Structure relaxation calculations continue until this value becomes lower than the

given convergence criterion.

 MD simulations

The following shows a typical example of the E_ENF file for MD simulations.
 iter_ion, iter_total, etotal, ekina, econst, forcmx
 1 18 -7.8953179624 0.0000000000 -7.8953179624 0.0186964345
 2 30 -7.8953851218 0.0000665502 -7.8953185716 0.0183575425
 3 43 -7.8955768901 0.0002565396 -7.8953203505 0.0173392067

In addition to columns like those in structure relaxation, the following columns are also printed.

ekina kinetic energy for the system

econst conserved quantity of the system (i.e., the total energy for a constant-energy MD

simulation or the sum of the total energy and thermostat energy for a constant-

temperature MD simulation)

 248

10.4.3 Trajectory file: nfdynm.data（F_DYNM）

When structure relaxation calculations or MD simulations are performed, atomic coordinates and atomic

forces are dumped into a file designated by the F_DYNM keyword. The following shows a typical example of

the F_DYNM file. In this file, all values are printed in atomic units.

a_vector = 9.2863024980 0.0000000000 0.0000000000
b_vector = -4.6431512490 8.0421738710 0.0000000000 (a)
c_vector = 0.0000000000 0.0000000000 10.2158587136
ntyp = 2 natm = 9 (b)
(natm->type) 1 1 1 1 1 1 2 2 2 (c)
(speciesname) 1 : O (d)
(speciesname) 2 : Si

 cps and forc at (iter_ion, iter_total = 1 24) (e)
 1 3.161057370 1.169332082 1.214972077 -0.004058 -0.005565 -0.004966 (f)
 2 6.693102525 2.152889944 4.620258315 0.006945 -0.001028 -0.004994
 3 4.075293851 4.719951845 8.025544553 -0.002872 0.006394 -0.004796
 4 -1.482093879 6.872841789 5.595600399 -0.004362 0.005502 0.004993
 5 -0.567857398 3.322222026 9.000886637 -0.002792 -0.006296 0.004965
 6 2.049951276 5.889283925 2.190314161 0.006974 0.000708 0.004795
 7 4.921740324 0.000000000 3.405282833 0.001436 0.000122 0.000068
 8 -2.460870162 4.262352150 6.810569070 -0.000612 0.001305 -0.000066
 9 2.182281087 3.779821719 10.215855308 -0.000660 -0.001143 0.000001
 cps and forc at (iter_ion, iter_total = 2 40)
 1 3.156999743 1.163767576 1.210005993 -0.002904 -0.005755 -0.003892
 2 6.700048015 2.151861938 4.615264365 0.006567 0.000186 -0.003832
 3 4.072421499 4.726345880 8.020748072 -0.003503 0.005487 -0.003829
 4 -1.486455954 6.878343743 5.600593135 -0.003122 0.005780 0.003831
 5 -0.570648922 3.315925959 9.005851266 -0.003532 -0.005392 0.003892
 6 2.056925355 5.889992076 2.195109289 0.006503 -0.000290 0.003828
 7 4.923176344 0.000121757 3.405351146 0.000397 -0.000013 0.000018
 8 -2.461482612 4.263656762 6.810503226 -0.000210 0.000337 -0.000017
 9 2.181621403 3.778679157 10.215856638 -0.000197 -0.000341 0.000000

(a) Cell vectors: a_vector, b_vector, and c_vector represent the vectors of the a-axis, b-axis, and

c-axis, respectively.

(b) ntyp indicates the number of atomic species used in the simulation; natm indicates the

number of atoms in the simulation.

(c) natom→type defines atomics species for atoms. In this example, atoms from No. 1 to No. 6

correspond to atomic species 1, atoms from No. 7 to No. 9 correspond to atomic species 2.

(d) speciesname defines atomic species and their identification numbers. In this example, 1

and 2 are assigned to oxygen and silicon atoms, respectively.

(e) Number of iterations for updating ions and the total number of SCF iterations

(f) Atomic positions and atomic forces. The first column gives the ID of atoms, the second to

fourth columns contain the xyz coordinates of atoms, the fifth to seventh are the xyz

components of atomic forces. If the print level for velocity is set to 2, velocities of atoms are

printed in the seventh to ninth columns in atomic units.

 249

10.4.4 Charge density file: nfchr.cube（F_CHR）

Charge density is dumped into a file designated by the F_CHR keyword. This file can be obtained in

Gaussian cube format by assigning “cube” to the file_type variable. The Gaussian cube format is

recommended because it can be visualized. The following shows an example of the Gaussian cube file.

 This is a title line for the bulk Si (a)
 SCF Total Density
 8 0.0000 0.0000 0.0000 (b)
 20 0.513000 0.000000 0.000000 (c)
 20 0.000000 0.513000 0.000000
 20 0.000000 0.000000 0.513000
 14 4.000000 1.282500 1.282500 1.282500 (d)
 14 4.000000 8.977500 8.977500 8.977500
 14 4.000000 1.282500 6.412500 6.412500
 14 4.000000 8.977500 3.847500 3.847500
 14 4.000000 6.412500 1.282500 6.412500
 14 4.000000 3.847500 8.977500 3.847500
 14 4.000000 6.412500 6.412500 1.282500
 14 4.000000 3.847500 3.847500 8.977500
 0.87897E-01 0.80457E-01 0.63811E-01 0.47743E-01 0.35993E-01 0.26628E-01 (e)
 0.18342E-01 0.12084E-01 0.83725E-02 0.65941E-02 0.60774E-02 0.65941E-02
 0.83725E-02 0.12084E-01 0.18342E-01 0.26628E-01 0.35993E-01 0.47743E-01
 0.63811E-01 0.80457E-01 0.80457E-01 0.76575E-01 0.63379E-01 0.51118E-01
 0.43367E-01 0.35993E-01 0.26413E-01 0.17302E-01 0.11265E-01 0.80672E-02
 0.65941E-02 0.62411E-02 0.68963E-02 0.88010E-02 0.12493E-01 0.18342E-01
 0.26413E-01 0.37600E-01 0.53180E-01 0.70418E-01 0.63811E-01 0.63379E-01

(a) Title and comment line

(b) Eight is the number of atoms. “0.0000 0.0000 0.0000” represents the origin. The origin is always

(0,0,0) in PHASE.

(c) Grid box and number of meshes are defined here. For example, “20 0.513000 0.000000 0.000000”

indicates that the number of mesh divisions for the first axis is 20, and the length of each mesh is

0.513,0.00,0.00. Unit of length is Bohr.

(d) First number indicates the atomic number. In this example, 14 identifies a silicon atom. The

second number 4.00000 indicates the number of valence electrons. The third to fifth numbers

correspond to xyz coordinates of the atom. Unit is Bohr.

(e) Charge density for each grid point is printed in the following order.
(1,1,1) (1,1,2) (1,1,20) (1,2,1) (1,2,2)
...... (1,20,20) (2,1,1)
(20,20,19) (20,20,20)

 250

10.4.5 Restart file: continue.data （F_CNTN）

This file contains data used to restart calculations. You can edit this file to change parameters for the

continued calculation; for example, you can change the convergence criterion of an SCF calculation. The

following shows an example of this file.
 iteration, iteration_ionic, iteration_electronic
 19 1 19 (a)
 Ionic System
 (natm)
 2 (b)
 (pos)
 0.1249999999999999D+00 0.1250000000000001D+00 0.1250000000000001D+00 (c)
 0.8749999999999994D+00 0.8749999999999994D+00 0.8749999999999994D+00
 (cps)
 0.1282864712563094D+01 0.1282864712563093D+01 0.1282864712563093D+01 (d)
 0.8980052987941646D+01 0.8980052987941646D+01 0.8980052987941646D+01
 (cpd)
 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00
 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00
 (cpo(1))
 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00
 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00
 (cpo(2))
 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00
 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00
 (cpo(3))
 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00
 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00
 Total Energy
 -0.7851066208137508D+01 -0.7851066208137508D+01 (e)
 isolver
 17
convergence
 2 (f)
edelta_ontheway
 0.1000000000000000D-07 (g)

(a) Total number of iterations, the number of iterations for updating ion positions, the number of SCF

iterations

(b) Number of atoms

(c) Atomic positions, referred to cell vectors

(d) Cartesian coordinates of atoms in units of Bohr

(e) Total energies for the previous step and the current step

(f) Convergence progress. Options are

0: not converged,

1: SCF converged, but structure relaxation is not converged,

2: converged

If the value is 2 and the calculation is restarted, post-processing starts immediately. If you want to

change the convergence criterion and restart the calculation from an SCF calculation, set this

value to 0.

(g) Convergence criterion for SCF. If you want to change the convergence criterion of SCF in the

middle of a calculation, change this value also.

 251

10.4.6 Eigenvalue data file: nfenergy.data（F_ENERG）

Eigenvalues calculated by ekcal are dumped into this file. The following shows a typical example of this file.
 num_kpoints = 117 (a)
 num_bands = 8 (b)
 nspin = 1 (c)
 Valence band max = 0.233846 (d)

 nk_converged = 117 (e)
 ik = 1 (0.500000 0.500000 0.000000)
 ik = 2 (0.487805 0.487805 0.000000)
 ik = 3 (0.475610 0.475610 0.000000)
 ik = 4 (0.463415 0.463415 0.000000)
 ik = 5 (0.451220 0.451220 0.000000)
 ik = 6 (0.439024 0.439024 0.000000)
...
...
...

=== energy_eigen_values ===
 ik = 1 (0.000000 0.500000 0.500000) (f)
 -0.0484324576 -0.0484324576 0.1258094928 0.1258094928 (g)
 0.2619554301 0.2619554301 0.6015285208 0.6015285208
=== energy_eigen_values ===
 ik = 2 (0.000000 0.490000 0.490000)
 -0.0540717201 -0.0427149632 0.1258687739 0.1258687739
 0.2607026807 0.2633829927 0.6006243932 0.6006243932

(a) Number of k-points. This example has 117 k-points.

(b) Number of bands. This example has eight bands.

(c) Spin degree of freedom: 1 or 2. In this example, the value 1 means that spin polarization is not

considered in the calculation.

(d) Fermi energy. For semiconductor/insulator, the energy of the valence band edge is printed. The unit

is Hartree.

(e) Calculated k-points.

(f) Eigenvalues are printed from here. This first line represents the k-point to which this eigenvalue

corresponds. In this example, the first k-point corresponds to (0,0.5,0.5) of the reciprocal lattice

vector.

(g) Eigenvalues for all bands are printed. The unit is Hartree.

If spin polarization is considered, the output of eigenenergies is almost same, but “UP” or “DOWN” is added

to item (f). Eigenvalues corresponding to the major and minor spins are printed.

=== energy_eigen_values ===
 ik = 1 (0.000000 0.000000 0.000000) UP
 -0.1998699758 0.0267639589 0.0267639589 0.0267639589
 0.0725171077 0.0725171077 1.0289118953 1.0289118953
 1.0289118953 1.1650173104 1.1650173104 1.1650173104
 1.2129026022 1.2129026022 1.2994754011 1.2994754011
 1.2994754011 1.6365336765 2.2629596795 2.2629596795

 252

=== energy_eigen_values ===
 ik = 2 (0.000000 0.000000 0.000000) DOWN
 -0.1960420390 0.1062941746 0.1062941746 0.1062941746
 0.1799862148 0.1799862148 1.0183970612 1.0183970612
 1.0183970612 1.2174266166 1.2174266166 1.2192701193
 1.2192701193 1.2192701193 1.3289165100 1.3289165100
 1.3289165100 1.6910264603 2.2876818717 2.2876818717

 253

11. Dielectric function calculation program UVSOR

11.1 Linear-response time-dependent density functional theory（LR-TDDFT）

11.1.1 General features

11.1.1.1 introduction

In the independent particle approximation, excitation spectra of materials are obtained by calculating

transitions between the ground-state eigenenergy levels of the Kohn–Sham equation. However, in

experimentally observed excitation spectra, the transition energy and peak amplitudes differ from the

spectra obtained with this approximation, indicating that interparticle interactions are not negligible. In the

following, we explain one theoretical method by which interparticle interactions can be considered, at least in

the linear response regime. This method is called linear-response time-dependent density functional theory

(LR-TDDFT).

11.1.1.2 Application to solids

In the independent particle approximation, the response function

of the system on changing the external

field is written as

 ′

 𝒒
 ′

 ′

 ′

 𝒒
 ′

 𝒒 ′

 ′

 𝒒

where

 ′

 𝒒 ′ 𝒒 𝒒

The response function of the interacting system is given by the Dyson equation,

where is the Coulomb interaction and is exchange-correlation interaction. The former is given by

 𝒒

 𝒒

but the latter is not well defined. We adopt the following two models for :

 Random-phase approximation (RPA)

 Long-range correction (LRC)

 𝒒

The spectrum that is calculated by PHASE is the macroscopic dielectric function,

 ′

Here is a response function similar to ; their difference is caused by removing the G = 0 component of

the Coulomb kernel.

 𝒒
 𝒒

 254

11.1.1.3 Application to isolated systems

For isolated systems such as molecules, we adopt an alternative approach that is based on the

Bethe–Salpeter equation. In this method, the electron-hole Green’s function of the noninteracting system

is defined by

𝒒

 ′

𝒒

 ′

 𝒒
 ′

 𝒒 ′

 ′

 ′

In a similar manner, the electron-hole Green’s function of the interacting system is defined by

𝒒

 ′

𝒒

 ′

 𝒒
 ′ ′

 𝒒 ′

 ′ ′ ′

 ′ ′ ′

These two Green’s functions are related by the Bethe–Salpeter equation,

 ′ ′ ′

 ′

 ′ ′

 ′

 ′ ′
 ′

 ′ ′ ′

where

 ′ ′

 ′ ′

 ′ ′

 ′ ′

 ′

 𝒒
 ′

 𝒒

 ′ ′

 ′

 ′
 ′

 ′ ′
 ′

 ′
 ′

Here

is the system volume and is the number of k-points sampled. In addition, we adopt the

following model for :

 Adiabatic local density approximation (ALDA)

 ′ ′

The spectrum that is calculated by PHASE is the photoadsorption cross-section (PACS),

11.1.2 Input parameters

11.1.2.1 Control block

To use the LR-TDDFT method, the following steps are essential. First, in the “control” block, declare

“condition = fixed_charge.” This indicates that LR-TDDFT uses the charge density previously obtained from

an SCF ground-state calculation. In addition, if you use the TM-type pseudopotential, in which the local

potential is a specific orbital potential, set “use_additional_projector = on.”

control{
 condition = fixed_charge
 cpumax = 1 day
 max_iteration = 600
 use_additional_projector=on

 255

}

11.1.2.2 Accuracy block

In the “accuracy” block, specify parameters for the eigenvalues calculations.

accuracy{
…
 ek_convergence{
 num_extra_bands = 0
 num_max_iteration = 2000
 sw_eval_eig_diff = on
 delta_eigenvalue = 1.e-6 rydberg
 succession = 3
 }
…
}

11.1.2.3 Structure block

In the “symmetry” block, indicate that all symmetry operations are neglected except the “E” symmetry.

structure{
…
 symmetry{
 method = manual
 tspace{
 lattice_system = primitive
 generators{
 !#tag rotation tx ty tz
 E 0 0 0
 }
 }
 }
…
}

11.1.2.4 Spectrum block

The “spectrum” block contains parameters concerning the calculations of excitation spectra. The parameters

available and their meanings are explained below.

spectrum{
 type = optics
 momentum_transfer{
 deltaq = 1.0E-3
 nx = 1.1, ny = 1.2, nz = 0.9
 LongWaveApprox = ON
 }
 tddft{
 sw_tddft = ON
 solver{
 equation = DYSON
 }
 XC_Kernel{
 kernel_type = LRC
 LRC_alpha = 0.2

 256

 }
 Coulomb_Kernel{
 sw_NLF = OFF
 }
 Expansion{
 NumGVec = 80
 }
 }
 energy{
 low = 0.0 eV
 high = 10.0 eV
 step = 0.05 eV
 }
 BZ_integration{
 width = 0.15 eV
 }
 band_gap_correction{
 scissor_operator = 0.6d0 eV
 }
}

type [OPTICS] OPTICS and PACS are available. The former is for calculating the dielectric

function of solids. The latter is for calculating the photoadsorption cross-section of

isolated systems, such as molecules.

momentum_transfer Name of a block in which the momentum transfer vector is specified.
deltaq [1.0E-3] Length of the momentum transfer vector q is specified in units of Å .

nx, ny, nz [0.0, 0.0, 1.0] Direction of the momentum transfer vector q.

L LongWaveApprox [ON] ON and OFF are available. The former is specified when you adopt the long-wave

limit approximation (q 0).

tddft Name of a block in which parameters concerning TDDFT are specified.
sw_tddft [OFF] ON and OFF are available. The former is specified when you use LR-TDDFT.

solver Name of a block in which you specify the solver.
equation [DYSON] DYSON and BS are available. The former is specified when you use the DYSON

equation. The latter is specified when you use the Bethe–Salpeter equation. Note

that the BS equation is used for isolated systems such as molecules.

XC_Kernel Name of a block in which parameters concerning the exchange-correlation kernel

are specified.
kernel_type [RPA] RPA, LRC, and ALDA-R are available. RPA is specified when you neglect the

exchange-correlation kernel. LRC is specified when you consider the long-range

interaction correction, which is meaningful in periodic systems such as solids.

ALDA-R is used for isolated systems, such as molecules.
LRC_alpha [1.0] Variable that is specified when you set “LRC” as “kernel_type.”

Coulomb_Kernel Name of a block in which the parameter concerning the Coulomb kernel is specified.
sw_NLF [OFF] ON and OFF are available. The former is specified when you use an approximation

in which the local field () is neglected.

Expansion Name of a block in which the parameter concerning the G-vectors used in the

plane-wave expansion is set.
NumGVec [100] Number of G vectors is specified.

energy Name of a block in which variables concerning the energy range used in the

calculation of spectra are set.
low, high, step Low (high): minimum (maximum) of the energy range.

Step: interval of the quantized energy range.

 257

BZ_Integration Name of a block in which the parameter concerning the Brillouin zone integration is

set.
width [1.0E-4 hartree] Width of Lorentzian broadening.

band_gap_correction Name of a block in which the parameter concerning the bandgap correction is set.
scissor_operator [0.0] Band gap is artificially increased by this quantity.

11.1.3 Execution

Before executing LR-TDDFT, use the following command to perform the SCF calculation. Here NP indicates

the number of MPI processes and BINDIR identifies the location of the executable program.

mpirun -np NP phase

Subsequently, execute the LR-TDDFT calculation by this command:

mpirun -np NP tdlrmain

11.1.4 output

The resulting spectrum data are printed to the file “spectrum.data,” whose file format is explained below.

A. Case when “type” is set to “OPTICS”

Optical spectrum
NonInteracting Interacting
Energy[eV] Real Imaginary Real Imaginary
 0.000000 8.626260 0.252860 9.678273 0.327540
 0.050000 8.627214 0.252961 9.679507 0.327682
 ..

The first column contains the energy of the excitation spectra. The second and third columns contain the real

and imaginary parts of the dielectric function in the independent particle approximation, respectively. The

fourth and fifth columns contain the dielectric function when the Coulomb and exchange-correlation kernels

are considered, respectively.

B. Case when “type” is set to “PACS”

Photo Absorption Cross Section
Energy[eV] NonInteracting Interacting
 0.000000 0.000000 0.000000
 0.050000 0.000034 0.000012
 ……………………………………………………

The first column contains the energy of the excitation spectra. The second and third columns contain the

photoadsorption cross-section in the independent particle approximation and in the interacting system,

respectively.

 258

11.1.5 Samples

11.1.5.1 Dielectric function of the Si crystal

The folder “sample/lr-tddft/ SiBulk” contains input files for calculating the dielectric function of bulk Si. First,

enter the folder “scf” and perform an electronic-structure calculation to obtain the charge density of the

ground state. Then, enter the folder “LRC” and perform a calculation of the excitation spectrum in which the

“LRC” model is adopted as fxc.

Figure 11.1 Excitation spectra of bulk Si in the LRC model. The blue curve is the result using the

independent particle approximation.

The blue and red curves in Fig. 5 show the excitation spectra of bulk Si in the independent particle

approximation and in the LRC model, respectively. These values will be found as the imaginary parts of the

dielectric functions in the file “spectrum.data.” The figure indicates that the long-range correction enhances

the first peak. Note that the peak positions do not significantly change in TDDFT, indicating weak Coulomb

interactions between the delocalized electrons in the crystal.

11.1.5.2 Photoadsorption cross-section of C6H6

The folder “sample/lr-tddft/C6H6” contains input files for calculating the photoadsorption spectra of an

isolated C6H6 molecule. First, enter the folder “scf” and perform an electronic-structure calculation to obtain

the charge density of the ground state. Then, enter the folder “ALDA” and perform a calculation of the

excitation spectrum in which the “ALDA” model is adopted as fxc.

 259

Figure 11.2 Photoadsorption cross-sections of an isolated C6H6 molecule. The blue curve is the result using

the independent particle approximation.

The blue and red curves in Fig. 6 show the excitation spectra of the C6H6 molecule in the independent

particle approximation and in the ALDA model, respectively. These values will be found in the file

“spectrum.data.” The figure indicates that the first peak position shifts to a higher energy value, suggesting

that the gap is increased in TDDFT.

11.1.6 Notes

 Reduction of k-points using symmetry operations is not supported. Therefore, choose the symmetry

operation “E” in the structure block.

 When “equation=BS,” only nonmagnetic systems can be treated.

	1. Introduction
	1.1 Overview of PHASE-SYSTEM
	1.2 What is PHASE?
	1.2.1 Calculation functions of PHASE
	1.2.2 Contents of program package PHASE
	1.2.3 Platforms to use PHASE

	1.3 Outline of this manual
	1.4 Upgrade history of PHASE

	2. Directions for the basic use of PHASE
	2.1 Outline of the calculation procedures of PHASE
	2.2 Preparation of input files
	2.2.1 Minimum set of input files
	2.2.2 Input parameter file: nfinp.data (simplified version)
	2.2.2.1 Example of an input parameter file
	2.2.2.2 Control block
	2.2.2.3 Accuracy block
	2.2.2.4 Structure block
	2.2.2.5 Wavefunction_solver block
	2.2.2.6 Charge_mixing block
	2.2.2.7 Postprocessing block
	2.2.2.8 Minimum set of input parameters

	2.2.3 Pseudopotential files
	2.2.3.1 Types of pseudopotentials
	2.2.3.2 How to get pseudopotential files?
	2.2.3.3 How to indicate pseudopotential files?

	2.2.4 file_names.data

	2.3 How to calculate with PHASE?
	2.3.1 Execution of program PHASE
	2.3.2 How to check the calculation status?
	2.3.3 Continuation calculation
	2.3.4 Ekcal program for the calculation of the DOS and band structure
	2.3.4.1 How to calculate the DOS by ekcal?
	2.3.4.2 How to calculate the band structure by ekcal?

	2.4 How to check the completion of the calculation?
	2.4.1 Status of the PHASE calculation, causes, and options
	2.4.2 How to check successful completion or abnormal termination?
	2.4.3 Check the convergence of an SCF calculation and structure optimization
	2.4.4 Calculation status during a calculation (logfile: output000 and jobstatus000)
	2.4.4.1 Sampling k- points
	2.4.4.2 Total energy
	2.4.4.3 Spin freedom
	2.4.4.4 Eigenvalues and their occupations
	2.4.4.5 Elapsed time for each SCF calculation
	2.4.4.6 Progress situation of the calculation (jobstatus000)

	2.5 Analysis of calculation results and visualization
	2.5.1 Total energy and force (recorded in nfefn.data)
	2.5.1.1 Structure optimization
	2.5.1.2 MD simulation

	2.5.2 Atomic geometry (recorded in nfdynm.data)
	2.5.3 Charge density (recorded in nfchr.cube)
	2.5.4 Density of states (recorded in dos.data)
	2.5.5 Band structure (recorded in nfenergy.data)

	2.6 References

	3. Input parameter file: nfinp.data (F_INP file)
	3.1 Format of input parameter file
	3.1.1 Description of parameters
	3.1.2 Specification of units
	3.1.3 Comment lines
	3.1.4 Example of input parameter file

	3.2 List of tag keywords
	3.3 Control block
	3.4 Accuracy block
	3.4.1 Cutoff energy
	3.4.2 Number of bands
	3.4.3 k-point sampling and smearing
	3.4.4 Exchange-correlation energy
	3.4.5 Convergence criteria
	3.4.6 Initial wavefunctions and initial charge density

	3.5 Structure block
	3.5.1 Unit cell
	3.5.2 Atomic coordinates
	3.5.3 Atomic species
	3.5.4 Symmetry

	3.6 Wavefunction_Solver block
	3.6.1 Calculation flow of PHASE
	3.6.2 Wavefunction solver

	3.7 Charge_Mixing block
	3.7.1 Charge mixing method
	3.7.2 Technics to accelerate the convergence
	(1) Subspace diagonalization
	(2) Truncation of SCF iterations
	(3) Changing the mixing ratio of total and spin charge densities
	(4) Changing the algorithm used for spin charge mixing
	(5) Fixing spin
	(6) Mixing of “deficit charge”

	3.8 Structure_evolution block
	3.8.1 Structure optimization
	3.8.2 Molecular dynamics
	3.8.3 Stress tensor

	3.9 Postproccesing
	3.9.1 Density of states (DOS)
	3.9.2 Charge density

	3.10 Print level

	4. Examples for basic functions
	4.1 Total energy calculation
	4.1.1 Input parameters
	4.1.2 Execution of calculations
	4.1.3 Output of calculation results

	4.2 Calculations using symmetry properties
	4.2.1 Input parameters
	4.2.1.1 Specifying the unit cell
	（１） Specifying the unit cell by basic lattice
	（２） Specifying the unit cell by lattice parameters

	4.2.1.2 Specifying symmetry
	1. The crystal_structure variable
	（１） Automatic identification of the symmetry operation
	（２） Specification of generator

	4.2.1.3 Using inversion symmetry
	2. Using no inversion symmetry
	3. Using inversion symmetry

	4.2.2 Example: Silicon crystal (Si2)
	4. SCF calculation
	5. Density of states
	6. Band structure

	4.3 Spin-polarized calculation
	4.3.1 Calculations for a ferromagnetic substance
	4.3.1.1 Input parameters
	7. Specifying the crystal structure
	8. Specifying spin freedom

	4.3.1.2 Output

	4.3.2 Calculation for an antiferromagnetic substance
	4.3.2.1 Input parameters

	4.4 Geometry optimization
	4.4.1 Input parameter
	4.4.2 Output
	4.4.3 Example: geometry optimization of a silicon crystal
	9. Input files
	10. Calculation results

	4.5 Calculation of surface
	4.5.1 How to calculate surface
	4.5.2 Surface calculation using inversion symmetry
	4.5.3 Example: generation energy of metallic surfaces

	4.6 Calculation of atoms and molecules
	4.6.1 Input parameters

	4.7 Output of charge density
	4.8 Density of states
	4.9 Calculation of band structure
	4.9.1 Generating k-point data
	4.9.2 Calculation with fixed charge
	4.9.2.1 Input parameters
	11. file_names.data
	12. Input parameter file

	4.9.3 Plotting band structure

	4.10 Lattice constant
	4.10.1 Calculation method
	4.10.2 Example: Si crystal

	5. Advanced functions
	5.1 Analysis functions
	5.1.1 Stress tensor
	5.1.1.1 Overview
	5.1.1.2 Input parameters
	5.1.1.3 Elastic constant

	5.1.2 Local density of states and energy-dependent charge density
	5.1.2.1 General features
	5.1.2.2 Atom-divided local density of states
	5.1.2.3 Layer-divided local density of states
	5.1.2.4 Energy-dependent charge density

	5.1.3 Projected density of states
	5.1.3.1 Input parameters
	5.1.3.2 Output
	5.1.3.3 Example: PDOS of BaTiO3 crystal

	5.1.4 Positron lifetime
	5.1.4.1 Functions
	5.1.4.2 Input file
	5.1.4.3 Output file
	13. Log outputfile, output000
	14. Cube file

	5.1.4.4 Notes on calculation of positron lifetimes

	5.2 Atomic dynamics
	5.2.2 Molecular dynamics simulation
	5.2.2.1 Overview
	5.2.2.2 Input parameters
	5.2.2.3 Output
	5.2.2.4 Usage: constant-energy MD simulation
	5.2.2.5 Usage: constant-temperature MD simulation
	5.2.2.6 Precaution for use

	5.3 Advanced DFT calculations
	5.3.1 DFT+U Method
	5.3.1.1 General features
	5.3.1.2 Input parameters
	5.3.1.3 Outputs
	5.3.1.4 Sample : cubic SrTiO3
	5.3.1.5 Sample : cubic LaVO3
	5.3.1.6 Sample : orthrombic LaVO3
	5.3.1.7 Sample : cubic FeO

	5.3.2 Hybrid functionals
	5.3.2.1 Overview
	5.3.2.2 Input parameters
	5.3.2.3 Examples: a hydrogen molecule
	5.3.2.4 Examples: a water molecule

	5.3.3 Non-local correlation term (van der Waals interaction)
	5.3.3.1 Introduction for the van der Waals interaction
	5.3.3.2 Total energy (1-shot calculation)
	15. Basic formula
	16. Algorism
	17. Execution of 1-shot calculations

	5.3.3.3 Example: Silicone Diamond
	5.3.3.4 Electron state calculation (self-consistent field calculation)
	18. Basic formula
	19. Execution of SCF calculations

	5.3.3.5 References

	5.3.4 Van der Waals corrected DFT
	5.3.4.1 Overview
	5.3.4.2 Input parameters
	5.3.4.3 Calculation examples

	5.4 Analysis of chemical reactions
	5.4.1 The NEB method
	5.4.1.1 Outline of the feature
	5.4.1.2 Input parameters
	20. Specification of the input parameter file
	21. specification of the files related to the NEB method

	5.4.1.3 Execution
	5.4.1.4 Output of the results
	5.4.1.5 Example calculation: dissociative adsorption process of a hydrogen molecule on a silicon surface
	22. input parameter file
	23. results

	5.4.1.6 Notes

	5.4.2 Constrained dynamics and free-energy analysis by the Blue Moon approach
	5.4.2.1 Outline of the feature
	5.4.2.2 Input parameters
	5.4.2.3 Execution
	5.4.2.4 Output of the results
	5.4.2.5 Free-energy calculation by the Blue Moon approac
	24. Outline of the feature
	25. Compilation of the bluemoon program
	26. Input parameter file for the bluemoon program
	27. Execution of the bluemoon program
	28. Output of the results

	5.4.2.6 Example calculation: rotation barrier of H2O2 and H2S2 molecules
	5.4.2.7 Notes

	5.4.3 Metadynamics
	5.4.3.1 Outline of the feature
	5.4.3.2 Input parameters
	5.4.3.3 Execution
	5.4.3.4 Output of the results
	5.4.3.5 Example calculation: energy surface of hydrocarbon molecules
	29. Outline
	30. Input parameter file
	31. Results

	5.4.3.6 Notes

	5.5 Time-dependent density functional theory (TDDFT) calculations
	5.5.1 Optical spectrum calculations of molecules by real-time TDDFT (RT-TDDFT)
	5.5.1.1 Calculation methods
	5.5.1.2 Input parameters
	5.5.1.3 Notes

	5.6 Structure optimization
	5.6.1 Optimizing a unit cell by using the stress tensor
	5.6.1.1 Input parameters
	5.6.1.2 Calculation results
	5.6.1.3 Examples: rutile type TiO2

	6. Calculation by the PAW method
	6.1 Overview
	6.2 How to use the PAW method
	6.3 Example
	6.4 Supported features

	7. Appendix
	7.1 Calculation accuracy
	7.1.1 Cutoff energy
	7.1.2 k-point sampling
	7.1.3 Convergence criterion
	7.1.4 Benchmark calculation (comparison of wavefunction solver)
	7.1.4.1 FCC-Cu
	32. Input data
	33. Results

	7.1.4.2 Fe(100) surface
	34. Input data
	35. Results

	7.2 Structure optimization
	7.2.1 Optimization methods
	7.2.1.1 Calculation examples
	36. quenched MD method
	37. CG method
	38. GDIIS method
	39. BFGS method

	7.2.1.2 Results

	7.3 Units in PHASE
	7.4 FAQ

	8. Installation of PHASE
	8.1 Operating environment
	8.2 Installation
	8.3 Notice for each platform
	8.3.1 Linux
	8.3.2 Windows XP
	8.3.3 Mac OS X (Intel ver.)

	9. Usage of programs and tools
	9.1 Program phase
	9.1.1 Executing phase
	9.1.2 Options for parallel calculations
	9.1.2.1 Parallelization over bands and parallelization over k-points
	9.1.2.2 Parallelization of replica method

	9.1.3 Parallelization over G points (beta version)

	9.2 Program ekcal
	9.2.1 Executing ekcal
	9.2.2 Options for ekcal

	9.3 Program uvsol
	9.4 dos.pl: a tool for plotting DOS
	9.4.1 Options for dos.pl

	9.5 band_kpoint.pl: a tool for generating k-points
	9.6 band.pl: a tool for plotting band structure
	9.6.1 Executing band.pl
	9.6.2 Options for band.pl

	9.7 dynm2tr2.pl: a tool for converting to extended trajectory format
	9.8 freq.pl: a tool for plotting frequency level diagrams
	9.8.1 Options for freq.pl

	9.9 animate.pl: a tool for converting normal modes to the extended trajectory format

	10. Input and output files
	10.1 Input files
	10.1.1 Input parameter file:　nfinp.data
	10.1.2 Pseudopotential files

	10.2 Input/Output setting file: file_name.data
	10.3 Input files (ekcal)
	10.3.1 k-point data file:　kpoint.data （F_KPOINT）

	10.4 Output file
	10.4.1 DOS file: dos.data (F_DOS)
	10.4.2 Energy history file: nfefn.data (F_ENF)
	10.4.3 Trajectory file: nfdynm.data（F_DYNM）
	10.4.4 Charge density file: nfchr.cube（F_CHR）
	10.4.5 Restart file: continue.data （F_CNTN）
	10.4.6 Eigenvalue data file: nfenergy.data（F_ENERG）

	11. Dielectric function calculation program UVSOR
	11.1 Linear-response time-dependent density functional theory（LR-TDDFT）
	11.1.1 General features
	11.1.1.1 introduction
	11.1.1.2 Application to solids
	11.1.1.3 Application to isolated systems

	11.1.2 Input parameters
	11.1.2.1 Control block
	11.1.2.2 Accuracy block
	11.1.2.3 Structure block
	11.1.2.4 Spectrum block

	11.1.3 Execution
	11.1.4 output
	11.1.5 Samples
	11.1.5.1 Dielectric function of the Si crystal
	11.1.5.2 Photoadsorption cross-section of C6H6

	11.1.6 Notes

