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1. Introduction 
 

1.1 Overview of PHASE-SYSTEM 

 

PHASE-SYSTEM is a set of program packages for performing simulations of nanosize materials. It 

consists of PHASE for first-principles electronic structure calculations, UVSOR for dielectric function 

calculations, ASCOT for quantum transport property calculations, CIAO for all-electron calculations of an 

atom and the generation of pseudopotentials, and PHASE Viewer, which is a graphical user interface (GUI) 

for the PHASE package. Note that PHASE-STSTEM, the one program package PHASE, and an executable 

“phase” are different entities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Program packages included in PHASE-SYSTEM 

Table 1.1 Brief overview of the program packages included in PHASE-SYSTEM 

Program/Package Brief overview 

PHASE 

(First-principles electronic structure 

calculation program) 

PHASE is a first-principles electronic structure calculation program 

based on the density functional theory (DFT) and the 

pseudopotential scheme. It can calculate total energy, charge density, 

density of states, and band structures, and it can perform molecular 

dynamics simulations. 

UVSOR 

(Dielectric function calculation 

program) 

UVSOR is a program for calculating the dielectric functions of 

materials based on the DFT and the pseudopotential scheme. It can 

calculate both electron and lattice dielectric functions quantitatively. 

It can predict the dielectric function of high-k materials that have 

large lattice dielectric functions. 

CIAO 

(Pseudopotential generation 

program) 

CIAO is a program package for all-electron calculations of an atom 

and the generation of pseudopotentials used in PHASE, UVSOR, 

and ASCOT. 

ASCOT 

(Quantum transport property 

calculation program) 

ASCOT is a program package for calculating electronic structure 

and quantum transport properties of nanostructures bridging 

semi-infinite electrodes. It is based on the non-equilibrium Green’s 

function method. 

PHASE Viewer 

(graphical user interface) 

This is a graphical user interface (GUI) for the PHASE package. It 

helps users construct and edit input files, execute calculations, and 

visualize calculation results. 

 

This manual is for PHASE, a first-principles electronic structure calculation program, and the related tools 

Pseudopotential generation program

CIAO

Quantum transport property 

calculation program
ASCOT

First-principles 

electronic structure 
calculation program

PHASE

Dielectric function 

calculation program
UVSOR

Graphical User Interface （GUI）
PHASE Viewer

Pseudopotential

File

Charge Density

File



 10 

included in the package. 

 

1.2 What is PHASE? 

 

1.2.1 Calculation functions of PHASE 

 

PHASE is a first-principles electronic structure calculation program based on DFT [1] and the 

pseudopotential scheme [2-4]. Using no parameters fitted to experimental results, this program can predict 

the physical properties of materials that are not found in any experiments, with reasonably high accuracies. 

It can also calculate various physical quantities using the calculated wave functions. In addition to electronic 

states, PHASE can calculate the total energy and the forces acting on atoms. Using these, users can obtain 

stable structures by minimizing forces and perform molecular dynamics simulations to see the time 

evolution of a system. 

The calculation functions available in PHASE are briefly summarized in the following table. 

 

Calculation functions Corresponding physical quantities 

(Physical properties, material behaviors, phenomena…) 

Electronic structure calculation Density of states (DOS) 

Band structure 

Charge density 

Energy, force 

 

Total energy and forces acting on atoms 

Lattice parameters, elastic parameters 

Stress tensor 

Structure optimization 

Molecular dynamics simulation 

Stable structure 

Time evolution of atomic geometry 

Vibration analysis Vibration frequency, vibration mode 

Positron lifetime calculation Positron lifetime 

STM image analysis STM image (topographic and differential) 

Chemical reaction analysis Chemical reaction path, activation energy 

 

The features of PHASE are summarized in the following. 

 

Calculation scheme 

 First-principles 

calculation 

Without any parameters fitted to experiments, this program has a 

reasonably high accuracy in predicting material properties even for 

unsynthesized materials; this enables users to do “material design.” 

Owing to the use of hybrid functionals, more accurate predictions are 

feasible. 

 Density functional 

theory 

This program is based on the DFT, which is widely used in the field of 

materials science and is known to be highly predictable. LDA and GGA 

are featured in the program. 

 Pseudopotential Ion cores are treated using the pseudopotential scheme, which enables 

users to perform high-accuracy calculations. 

Calculation functions 

 Physical properties A wide variety of physical properties can be computed and compared with 

those obtained experimentally. 

 

Structural analyses 

 

Atomic-geometry optimization, molecular dynamics simulation, and 

reaction-path analysis can be performed. 

 

Large-scale calculations Parallel calculations using MPI and OpenMP can be used to perform 

calculations using hundreds of thousands of computer cores. 

User friendliness 
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 Input parameter file An input parameter file consists of blocks and tags so that physical 

meanings of parameters can be easily understood by users. 

Users can set a wide variety of parameters to meet computational goals. 

Since default values are set for most parameters, the minimum size of an 

input parameter file can be small. 

 

 Tools 

 

This PHASE package bundles useful tools that help users draw a band 

structure, DOS, charge density distribution, etc. 

 

 Machine architecture A wide variety of platforms are available from Windows PCs to massively 

parallel supercomputers. 

 

 User interface A GUI (PHASE Viewer) is available to execute the PHASE program, edit 

input/output data, and visualize calculation results. 

 

 

1.2.2 Contents of program package PHASE 

 

The program package PHASE consists of the following programs and tools. 

 

Program package PHASE Overview 

Program phase 

 

This is the main program in this program package. By using this, users 

can perform electronic structure calculations and molecular dynamics 

simulations. From a converged charge density, users can calculate the 

DOS, band structures, etc. 

 

ekcal 

 

 

This is a subsidiary program that enables users to calculate the DOS and 

band structure for many k-points. Some script files (tools) are available to 

execute this program. 

 

Tool 

(script file) 

band_kpoint.pl This is a Perl script for generating a k-point file to calculate a band 

structure. 

 

dos.pl This is a Perl script for generating an EPS file for the DOS. 

 

band.pl This is a Perl script for generating an EPS file for a band structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  Contents of program package PHASE. UVSOR is also included in the figure. 
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1.2.3 Platforms to use PHASE 

 

Since PHASE is programmed in Fortran90 and C, Fortran90 and C compilers are necessary. Those 

compilers are usually available in facilities like supercomputer centers in universities. MPI libraries are 

necessary to perform parallel calculations. 

 

To use PHASE, the following libraries, compilers, and other software are necessary. 

 Fortran90 compiler and C compiler (required) 

 MPI libraries (optional), which are necessary to execute parallel calculations 

 LAPACK and BLAS (optional) 

 FFTW (optional) 

 Perl (optional), which is necessary to use PHASE TOOLS 

 Gnuplot (optional), which is necessary to use PHASE TOOLS 

 

The binary “phase.exe,” which is available on Windows PC, is included in the package. This enables users 

to use PHASE without compiling the program. However, since this executable is not parallelized, it is 

difficult to perform a large-scale calculation, because it takes significant time or it may fail owing to memory 

limitations. If it is necessary to use PHASE on parallel machines, you must compile the program yourself. 

 

Note that the description in this manual is based on a platform running the Linux/Unix operating system. 

On other operating systems, commands, and messages may differ from those in this manual. 
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1.3 Outline of this manual 

 

This manual consists of the following chapters. 

 

Chap. 1  Introduction 

 This chapter contains a brief introduction to the PHASE-SYSTEM and the PHASE program 

package.  

 

Chap. 2 Directions for the basic use of PHASE 

 This chapter gives directions for the basic use of PHASE, giving users an overview of how to use 

PHASE. 

 

Chap. 3 Input parameter file: nfinp.data (F_INP file) 

 This chapter explains all the parameters available in “nfinp.data.” For many of the parameters, 

since default values have been set, users do not need to set all parameters. For the advanced use 

of PHASE, this chapter should be helpful.  

 

Chap. 4 Examples of basic functions 

 This chapter provides some examples of the basic functions of PHASE. This chapter is also 

available as a tutorial for PHASE. For each parameter, refer to the corresponding item in 

Chapter 3. 

 

Chap. 5 Advanced analytical functions 

 This chapter describes advanced analytical functions of PHASE. 

 

Chap. 6 PAW method 

 The projector augmented wave (PAW) method is available in PHASE. This chapter shows how to 

use PAW and discusses the functions that are available for PAW. 

 

Chap. 7 Miscellaneous 

 This chapter is devoted to supplemental material. If necessary, see this chapter.  

 

 

Users who read this manual for the first time are encouraged to read Chapter 2 first and then read Chapter 

4. Chapter 3 is not useful for beginners. Chapters 5–7 are for users who need specialized tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Outline of this manual 

Chapter 1 

Introduction

Chapter 2 

Directions for the basic use of PHASE

Chapter 3 

Input parameter file: nfinp.data

(Reference Manual)

Chapter 4 

Examples of basic functions

(Tutorial)

Chapter 5

Advanced analytical functions

--- Inexperienced users 

--- Experienced users 
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1.4 Upgrade history of PHASE 

 

 

version 8.00 

2009/06 release 

・Constrained MD calculation was implemented. 

• Structure optimization and MD calculation within the DFT+U method was 

implemented.  

 

version 8.01 

2010/03 release 

・Computational speed was improved by using BLAS routines. 

 

version 9.00 

2010/06 release 

・Computational speed was improved by using BLAS routines and cache tuning.  

・van der Waals interaction calculation was implemented. 

・Free-energy calculation was implemented. 

・Band calculation by using the DFT+U method was implemented.  

・Hybrid functional was implemented. 

 

version 10.00 

2011/06 release 

・Efficiency of SCF convergence was improved. 

・PAW-type pseudopotential was implemented. 

・Metadynamics methods were implemented.  

・SCF calculation using van der Waals DFT was implemented. 

・BFGS method was implemented for structure optimization. 

・New script was added to PHASE TOOLS.  

・Bugs related to reading pseudopotential files were fixed. 

 

Note that this change causes differences in the total energy compared to values 

obtained from the previous version. 

 

version 10.01 

2011/08 release 

・Efficiency of SCF convergence for a system with spin was improved. 

・Bug related to GGA was fixed. 

 

Note that this change causes differences in the total energy compared to values 

obtained from the previous version. 

 

version 11.00 

2012/06 release 

・New wave function solvers were implemented. 

・Hybrid functional calculation was improved. 

 Treatment for ultrasoft pseudopotentials, reduced k-points calculations, etc. 

・Continuation of optimization calculation due to the GDIIS or BFGS method was 

implemented.  

・Computational speed for the calculation of the DOS using ultrasoft pseudopotential 

was improved. 

・Writing the DOS and charge density during optimization calculation or molecular 

dynamics calculation was implemented. 

・Some bugs were fixed. 

・3-axis-parallelized version was released in which G-point-parallelization was 

implemented. 

PHASE/0 2014 

2014/04 release 

・Automatic method for wave function solver and charge mixing was implemented. 

・Prediction method of wave function solver and charge mixing during optimization 

calculation or molecular dynamics calculation was implemented. 

・Time-dependent density functional theory (TDDFT) calculation were implemented. 

・The interface of ESM was implemented. 

・Optimization of unitcell was implemented. 

・Work function calculation was implemented. 

・Wave function solvers were improved. 

・Hybrid functional calculation was improved. 
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・Calculation of vdW interaction was improved. 

・noncollinear calculation and spin orbit coupling calculation were implemented. 

・Optimization calculation was improved. (CG method) 

・Phonon calculation was improved. 

・Real space calculation of nonlocal potential was implemented. 

・UVSOL was integrated. 

・3-axis-parallelized version was improved. 

・Some bugs were fixed. 
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2. Directions for the basic use of PHASE 
 

In this section, the directions for the basic use of PHASE are described. Since the main purpose of this 

section is to show the procedures for using PHASE, detailed directions for each calculation function are 

sometimes omitted. If detailed explanations are necessary, see Chapter 3 or later chapters. 

Before reading this section, the installation of PHASE on your computer system is recommended; see the 

installation manual. Reading the PHASE tutorial is also recommended. 

 

2.1 Outline of the calculation procedures of PHASE 

 

The outline of the calculation procedure for using PHASE is as follows. 

 

1. Prepare input files 

2. Execute PHASE 

3. Check the progress of the calculation 

4. Analyze calculation results and/or visualize results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Outline of the calculation procedure of PHASE 
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2.2 Preparation of input files 

 

2.2.1 Minimum set of input files 

 

The minimum set of input files for executing PHASE consists of an input parameter file and 

pseudopotential files. These files must reside in the execution directory of the computer system. 

Users can use “file_names.data” to change a file name from the default to a user-defined one and to put 

those files in a directory other than the execution one. 

 

 

Input file 

File Brief overview 

Input parameter file 

 

This file specifies a model structure (e.g., atomic positions), calculation 

conditions (e.g., methods), and so on. 

The default name of this file is “nfinp.data,” but by using “file_names.data,” 

the name can be changed. 

An example involving many default parameters is introduced in section 

2.2.2. For a detailed explanation of all parameters, see Chapter 3. Chapter 4 is 

devoted to examples that help users learn how to setup “nfinp.data.” Chapter 

5 is devoted to the application functions. 

 

Pseudopotential file 

 

To use PHASE, pseudopotential files for the elements identified in 

“nfinp.data” are necessary. For a detailed explanation, see section 2.2.3. 

The default names of pseudopotential files are “pot.01,” “pot.02”… These 

names can be changed by using “file_names.data.” 

Pseudopotential files can be downloaded through the website of PHASE, or 

they can be generated using CIAO codes.  

The maximum number of elements in a calculation is 16. 

 

 

File-names setting file 

file_names.data This file is used to set the file names used in PHASE calculations. Since all 

files used in PHASE have default names, it is not always necessary to use this 

file. 

By using this file, users can change (i) file names, and (ii) directories in 

which those files are contained, except for this file itself. 

For detailed explanations, see Section 2.2.4. 
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2.2.2 Input parameter file: nfinp.data (simplified version) 

 

The input parameter file “nfinp.data” specifies the model structure you want to calculate, calculation 

method you want to use, etc. For a detailed explanation of each parameter, see Chapter 3. For many 

parameters, default values are available. Therefore, it is not necessary for users to set all the parameters. In 

the following, a typical example of a parameter file is described. 

 

2.2.2.1 Example of an input parameter file 

 

An input parameter file consists of hierarchical blocks and tags (keywords). Each block is indicated by a 

block name and delimited by curly brackets {}. Parameters are usually specified in the format ’tag_keyword 

= value’. 

 

The following is an input parameter file for the calculation of a diamond-structure Si crystal in which two 

Si atoms are included in the unit cell. 

 

control{ 

  condition = initial 

  cpumax = 86400 sec 

  max_iteration = 10000 

} 

 

accuracy{ 

  cutoff_wf = 25.0 rydberg 

  cutoff_cd = 100.0 rydberg 

  num_bands = 8 

ksampling{ 

    method = monk 

    mesh{ 

      nx = 10  

      ny = 10 

      nz = 10  

    } 

} 

  initial_wavefunctions = atomic_orbitals 

  initial_charge_density = atomic_charge_density 

  scf_convergence{ 

    delta_total_energy = 1e-10 

    succession = 3 

  } 

  force_convergence{ 

    max_force = 0.001 hartree/bohr 

  } 

} 

 

structure{ 

  element_list{ 

    #tag    element    atomicnumber 

            Si    14 

  } 

  unit_cell{ 

    #units angstrom  

    a_vector = 0 2.732299538 2.732299538 

    b_vector = 2.732299538 0 2.732299538  

    c_vector = 2.732299538 2.732299538 0 

  } 

  unit_cell_type = bravais 
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  atom_list{ 

    atoms{ 

      #tag    element    rx    ry    rz    imove 

              Si    0.125  0.125  0.125      0 

              Si   -0.125 -0.125 -0.125     0 

    } 

    coordinate_system = internal  

  } 

} 

 

wavefunction_solver{ 

        solvers{ 

            #tag    sol    till_n  prec cmix submat 

                    davidson    1    on   1    on 

                    rmm3       -1    on   1    on 

        } 

        rmm{ 

             edelta_change_to_rmm=5e-5 

        } 

} 

 

charge_mixing{ 

        mixing_methods{ 

        #tag no   method    rmxs   rmxe   istr  prec nbmix 

              1   pulay   0.40   0.40   3     on   15 

        } 

} 

 

Postprocessing{ 

dos{ 

sw_dos = ON 

deltaE = 1.e-4 hartree 

} 

charge{ 

sw_charge_rspace    = ON 

filetype = cube  !{cube|density_only} 

title  = "This is a title line for the bulk Si" 

} 

} 

 

The following blocks are available for most of the above blocks.  

Block name Contents 

control Setting for calculation conditions 

accuracy Setting for calculation accuracy 

structure Setting for atomic geometry 

wavefunction_solver Setting for wavefunction solver 

charge_mixing Setting for charge-mixing method  

structure_evolution Setting for optimization or molecular dynamics simulation 

postprocessing Setting for postprocess analysis 

printlevel Setting for log output 

 

In the following sections, input parameters available in each of these blocks are described. 
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2.2.2.2 Control block 

 

In the ‘control’ block, users can set parameters that control the entire calculation process and can specify 

general options. 

 

control{ 

  condition = initial 

  cpumax = 86400 sec 

  max_iteration = 10000 

} 

 

 

condition This tag specifies a calculation condition: ‘initial’ means that the user starts the 

calculation from scratch, and ‘continuation’ means that the user continues the 

calculation from a previous one. This mode is necessary when a previous calculation does 

not reach completion.  

cpumax Upper limit on CPU time (defaults to 86,400 s). Available units are {s, min, h, day}.  

max_iteration Maximum number of SCF iterations (defaults to 10,000) 

 

2.2.2.3 Accuracy block 

 

In the ‘accuracy’ block, users can set parameters related to calculational accuracy. 

 

accuracy{ 

  cutoff_wf = 25.0 rydberg 

  cutoff_cd = 100.0 rydberg 

  num_bands = 8 

ksampling{ 

    method = monk 

    mesh{ 

      nx = 10  

      ny = 10 

      nz = 10  

    } 

  } 

  initial_wavefunctions = atomic_orbitals 

  initial_charge_density = atomic_charge_density 

  scf_convergence{ 

    delta_total_energy = 1e-10 

    succession = 3 

  } 

  force_convergence{ 

    max_force = 0.001 hartree/bohr 

  } 

} 

 

 

cutoff_wf Cut-off energy for wavefunction expansion. 

cutoff_cd Cut-off energy for charge-density expansion. 

num_bands Number of bands. 

  

ksampling block This is a sub-block for setting k-point sampling. 

method Specify k-point sampling method; ‘monk’ means the Monkhorst–Pack method 

[5]. 

mesh Number of partitions for the division of the Brillouin Zone. 
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initial_wavefunctions Initial wavefunction generation method; ‘atomic_charge_density’ means 

that the initial wavefunction is calculated from charge-density data in the 

pseudopotential files. 
  

scf_convergence block This sub-block specifies convergence criteria for an SCF calculation. 

delta_total_energy Convergence criteria for an SCF calculation. If the difference between the 

current total energy and the total energy of the previous SCF iteration is 

smaller than the specified value, the convergence criterion is satisfied.  

succession SCF iterations are terminated if the energy difference is smaller than the 

criterion ‘delta_total_energy” n-times in succession. The variable 

‘succession’ specifies the value of n. 

  

force_convergence block This sub-block specifies the convergence criterion for structure optimization. 

max_force Convergence criterion for structure optimization. When the maximum value 

among forces acting on all atoms becomes smaller than this value, an 

optimized structure is obtained. 

 

 

2.2.2.4 Structure block 

 

In the ‘structure’ block, users can set parameters related to the atomic structure. 

 

structure{ 

  element_list{ 

    #tag    element    atomicnumber 

            Si    14 

  } 

  unit_cell{ 

    #units angstrom  

    a_vector = 0 2.732299538 2.732299538 

    b_vector = 2.732299538 0 2.732299538  

    c_vector = 2.732299538 2.732299538 0 

  } 

  unit_cell_type = bravais 

  atom_list{ 

    atoms{ 

      #tag    element    rx    ry    rz    imove 

              Si    0.125  0.125  0.125      0 

              Si   -0.125 -0.125 -0.125     0 

    } 

    coordinate_system = internal  

  } 

} 

 

 

element_list block This sub-block specifies the elements used in the calculation. In this case, Si is 

specified as an element and ‘14’ is its atomic number.  

 

  

unit_cell block This sub-block specifies the unit cell. 

“#units angstrom” specifies the unit of angstrom. 

“a_vector,” “b_vector,” and “c_vector” are lattice vectors. 

  

atom_list block This sub-block specifies the coordinates and elements of atoms. 

In this case, two Si atoms are set, and their coordinates are “0.125 0.125 0.125” 



 22 

and “-0.125 -0.125 -0.125.” 

coordinate_system This tag specifies a coordinate type. 

“Internal” means the internal coordinate based on the lattice vectors. 

 

 

2.2.2.5 Wavefunction_solver block 

 

In the “wavefunction_solver” block, users can set parameters related to solvers of wavefunctions. 

 

wavefunction_solver{ 

        solvers{ 

            #tag    sol    till_n  prec cmix submat 

                    davidson    1    on   1    on 

                    rmm3       -1    on   1    on 

        } 

        rmm{ 

             edelta_change_to_rmm=5e-5 

        } 

} 

 

 

Solvers block This sub-block specifies which solver is used to calculate wave functions. 

In this case, “davidson” [6] is used first, and then “rmm3” is used; “rmm3” is a 

residual minimization method (RMM) solver [7]. 

  

Rmm block This sub-block is used to set parameters related to RMM solvers.  

edelta_change_to_rmm This tag indicates the criterion for changing the solver. If the difference between 

the current total energy and the total energy of the previous SCF iteration is 

smaller than the specified value, the solver is changed. In this case, if the energy 

difference becomes smaller then 5e-5, the solver is changed from “davidson” to 

“rmm3.” 

 

 

2.2.2.6 Charge_mixing block 

 

In the “charge_mixing” block, users can set parameters related to charge mixing during an SCF 

calculation. 

 

charge_mixing{ 

        mixing_methods{ 

        #tag no   method    rmxs   rmxe   istr  prec nbmix 

              1   pulay   0.40   0.40   3     on   15 

        } 

} 

 

 

mixing_methods block This sub-block specifies the charge-mixing method. In this case, the Pulay 

method [8] is used, and the mixing ratio is “0.40.”  

 

 

2.2.2.7 Postprocessing block 

 

In the “postprocessing” block, users can set parameters related to postprocess analysis. 
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Postprocessing{ 

dos{ 

sw_dos = ON 

deltaE = 1.e-4 hartree 

} 

charge{ 

sw_charge_rspace = ON 

filetype = cube 

title  = "This is a title line for the bulk Si" 

} 

} 

 

 

dos block This sub-block specifies parameters related to the DOS. 

sw_dos “ON” means that the DOS is calculated. 

deltaE This indicates the energy-mesh width for the DOS. 

  

Charge block This sub-block specifies parameters related to the output of the charge density 

distribution. 

sw_charge_rspace “ON” means that the charge density distribution is calculated. 

filetype This indicates a file type for the charge density distribution; “cube” means the 

“Gaussian cube” style [9]. 

title This specifies the first line of a “Gaussian cube” style file. In this case, “This is a 

title line for the bulk Si” is the output as the first line of the file. 

 

 

2.2.2.8 Minimum set of input parameters 

 

In the example above, many parameters are set explicitly. However, users do not need to change all those 

parameters to calculate other materials because many of the parameters also apply to other materials. 

 

It is necessary for users to set parameters related to cut-off energies, number of bands, k-points, atomic 

structure, and unit cell. Those parameters are shaded in the example below. Users can perform PHASE 

calculations for most materials by just changing those few parameters.  

 

Note that if users want an efficient calculation, it may be necessary to change other parameters, such as 

“wavefunction_solver” and “charge_mixing.” 

 

control{ 

  condition = initial 

  cpumax = 86400 sec 

  max_iteration = 10000 

} 

 

accuracy{ 

  cutoff_wf = 25.0 rydberg 

  cutoff_cd = 100.0 rydberg 

  num_bands = 8 

ksampling{ 

    method = monk 

    mesh{ 

      nx = 10 

      ny = 10 

      nz = 10 

    } 

} 
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  initial_wavefunctions = atomic_orbitals 

  initial_charge_density = atomic_charge_density 

  scf_convergence{ 

    delta_total_energy = 1e-10 

    succession = 3 

  } 

  force_convergence{ 

    max_force = 0.001 hartree/bohr 

  } 

} 

 

structure{ 

  element_list{ 

    #tag    element    atomicnumber 

            Si    14 

  } 

  unit_cell{ 

    #units angstrom  

    a_vector = 0 2.732299538 2.732299538 

    b_vector = 2.732299538 0 2.732299538  

    c_vector = 2.732299538 2.732299538 0 

  } 

  unit_cell_type = bravais 

  atom_list{ 

    atoms{ 

      #tag    element    rx    ry    rz    imove 

              Si    0.125  0.125  0.125      0 

              Si   -0.125 -0.125 -0.125     0 

    } 

    coordinate_system = internal  

  } 

} 

 

wavefunction_solver{ 

        solvers{ 

            #tag    sol    till_n  prec cmix submat 

                    davidson    1    on   1    on 

                    rmm3       -1    on   1    on 

        } 

        rmm{ 

             edelta_change_to_rmm=5e-5 

        } 

} 

 

charge_mixing{ 

        mixing_methods{ 

        #tag no   method    rmxs   rmxe   istr  prec nbmix 

              1   pulay   0.40   0.40   3     on   15 

        } 

} 

 

Postprocessing{ 

dos{ 

sw_dos = ON 

deltaE = 1.e-4 hartree 

} 

charge{ 

sw_charge_rspace    = ON 

filetype = cube  !{cube|density_only} 

title  = "This is a title line for the bulk Si" 
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} 

} 

 

For most parameters, default values are pre-set. Then, even if users omit such parameters in the parameter 

file, they can still calculate with PHASE. 

 

Note that the input parameter file shown above and the one shown below give the same energy value if the 

SCF calculations converge; however, the number of SCF iterations needed to reach convergence may differ. 

 

accuracy{ 

  cutoff_wf = 25.0 rydberg 

  cutoff_cd = 100.0 rydberg 

  num_bands = 8 

ksampling{ 

    mesh{ 

      nx = 10  

      ny = 10 

      nz = 10  

    } 

  } 

} 

structure{ 

element_list{ 

    #tag    element    atomicnumber 

            Si    14 

  } 

  unit_cell{ 

    #units angstrom  

    a_vector = 0 2.732299538 2.732299538 

    b_vector = 2.732299538 0 2.732299538  

    c_vector = 2.732299538 2.732299538 0 

  } 

atom_list{ 

    atoms{ 

      #tag    element    rx    ry    rz    imove 

              Si    0.125  0.125  0.125      0 

              Si   -0.125 -0.125 -0.125     0 

    } 

  } 

} 
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2.2.3 Pseudopotential files 

 

Pseudopotential files must be prepared for all elements used in a calculation. For example, in a calculation 

for H2O, pseudopotential files for O and H atoms are necessary. Pseudopotential files can be downloaded 

from the download page of the RISS project, which is the same web page used for the PHASE download. 

Alternatively, pseudopotential files can be generated using CIAO. For the CIAO code, see the manual book 

for CIAO. 

 

2.2.3.1 Types of pseudopotentials 

 

Pseudopotential files for PHASE are classified into two types. One is a frozen core type, and the other is a 

PAW type [4]. 

 

Frozen core type Core electrons and the atom core are treated together as an ion core and 

are fixed at the same states as those in an isolated atom. With these 

pseudopotentials, PHASE calculates electronic states by considering only 

valence electrons. These types of pseudopotentials are further classified 

into two types: one is norm-conserving [2] and the other is ultrasoft [3]. 

 

PAW type In PAW-type pseudopotentials, electronic states are calculated by partly 

considering core electron states. 

 

 

Note that both types of pseudopotential cannot be used in the same calculation. Determine which type of 

pseudopotentials is to be used before starting a calculation. 

 

2.2.3.2 How to get pseudopotential files? 

 

Pseudopotential files can be downloaded from the website “http://www.ciss.iis.u-tokyo.ac.jp/dl/” operated by 

the Center for Research on Innovative Simulation Software, Institute of Industrial Science, the University of 

Tokyo. All elements in the periodic table are available.  

 

A pseudopotential file name is created by the following naming rule. 

 

Element_Exchange Correlation term method_Pseudopotential type_identification number.pp 

 

For example, “Si_ldapw91_nc_01.pp” is a pseudopotential file for an element Si (silicon) with its 

exchange-correlation term being “ldapw91,” its type being “nc,” and its identification number being “01.” 

If the pseudopotential type is “ultrasoft,” “us” is used instead of “nc,” for “PAW,” “paw” is used. 

 

Element Si (silicon) 

Exchange-correlation term 

method 

ldapw91 [10] 

Pseudopotential type Norm-conserving pseudopotential. “nc” is the abbreviation for “norm 

conserving” 

Identification number Sequential serial number for the identification. 

 

 

2.2.3.3 How to indicate pseudopotential files? 

 

The default names of pseudopotential files are “pot.01,” “pot.02,”… for the elements identified in the input 
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parameter file; use the same order as in the file. 

 By using “file_names.data,” users can freely set pseudopotential file names and directories in which 

pseudopotential files are stored. 
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2.2.4 file_names.data 

 

The file “file_names.data” is used for setting file names of an input parameter file, pseudopotential files, etc. 

Users can use PHASE without this file. In this case, default names will be used for all files. 

By using this file, users can freely change (i) file names and (ii) directories where files are stored. However, 

the file name of “file_names.data” itself cannot be changed. This file must be placed in the execution 

directory. 

 

The format of “file_names.data” is as follows. 

&fnames 

File_keyword = ‘file_name(and path for the file)’ 
… 

… 

/ 

 

Note that “/” is necessary on the last line. The following is an example.  

 

&fnames 

F_INP = ’./nfinp.data’ 

F_POT(1) = ’./Si_ggapbe_nc_01.pp’ 

F_POT(2) = ’./O_ggapbe_us_02.pp’ 

F_CHGT = ’./nfchgt.data’ 

F_CHR = ’./nfchr.cube’ 

/ 

 

For the path to a file, users may provide either an absolute path or a path relative to the execution directory. 

 

“F_POT(n)” is used to set the pseudopotential file name for the n-th element indicated in an input 

parameter file. In the example, the pseudopotential file for the first element indicated in an input parameter 

file is “Si_ggapbe_nc_01.pp” and that for the second is “O_ggapbe_us_02.pp.” 

 

Available file_keywords are listed in Table 2.1. 

Table 2.1 Files settable in “file_names.data” 

File_keyword program Input/output Default name Overview 

F_INP phase 

ekcal 

Input nfinp.data This file keyword is used to assign an input 

parameter file. 

F_POT(n) phase  

ekcal 

Input pot.01,  

pot.02,  

 ･･･ 

These file keywords are used to assign 

pseudopotential files. Each element 

identified in an input file needs one 

pseudopotential file.  

 

F_STOP phase  

ekcal 

Input nfstop.data This file is used to stop the PHASE 

execution at a certain SCF iteration number. 

 

F_KPOINT phase  

ekcal 

Input kpoint.data This file is used to set k-point sampling. This 

file is available only when “file” is selected 

for k-point sampling in an input parameter 

file. 

 

F_DYNM phase Output nfdynm.data This file contains atomic geometries and 

forces acting on atoms at each step during a 

geometry optimization calculation or an MD 
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calculation. 

  

F_ENF phase Output nfefn.data This file contains the total energy value and 

the maximum force value among those 

acting on all the atoms at each step during a 

geometry optimization calculation or an MD 

calculation. 

 

F_CHR phase Output nfchr.data This file is an output file for PHASE. It 

contains the charge density distribution. 

The default file style is “Gaussian cube.” 

 

F_DOS phase 

ekcal 

Output dos.data This file contains the DOS. 

F_ENERG ekcal Output nfenergy.data This file contains eigenvalues that result   

from a band calculation. 

 

F_ZAJ phase  

ekcal 

Input/output zaj.data This file contains wavefunction data. In a 

continuation calculation, this file is used as 

an input file for wavefunctions. This is a 

binary file. 

 

F_CHGT phase 

ekcal 

Input/output nfchgt.data This file contains charge-density data. In a 

continuation calculation, this file is used as 

an input file for charge density. This is a 

binary file. 

 

F_CNTN phase Input/output continue.data This file contains some data needed in a 

continuation calculation. 

 

F_CNTN_BIN phase Input/output continue 

bin.data 

This file contains some data needed in a 

continuation calculation. This is a binary 

file. 

 

F_STATUS phase  

ekcal 

Output jobstatus00x In this file, the status of a calculation is 

recorded. 
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2.3 How to calculate with PHASE? 

 

2.3.1 Execution of program PHASE 

 

First, put an input parameter file and the pseudopotential files in the execution directory. If the user uses 

the file “file_names.data,” put it in the same directory. 

When performing a serial calculation (a calculation with one computer core), execute the PHASE 

executable as follows, where “ .././phase_v1200/bin/” means the directory in which the PHASE 

executable has been placed. 

 

% ../../phase_v1200/bin/phase 

 

When performing a parallel calculation, execute the PHASE executable as follows. Here “mpirun” is used 

as a command for parallel calculations; this is the most common command. However, this command depends 

on the MPI library. For more details, see the manual for the computer system. 

 

% mpirun -np NP ../../phase_v1200/bin/phase ne=NE nk=NK 

 

Here, “NP” means the number of MPI processes, “NE” means the number for band parallelization, and 

“NK” means the number for k-point parallelization. NP must be equal to NE * NK. 
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2.3.2 How to check the calculation status? 

 

The SCF convergence progress is printed to a log file “output000.” The total energy at each step during 

SCF convergence is printed on a line that starts with “TOTAL ENERGY FOR.” 

 

These lines can be found using the “grep” command as follows. 

% grep TH output000 

 

The output of this command is 
TOTAL ENERGY FOR 1 -TH ITER= -30.856896066222 edel = -0.308569D+02 : SOLVER = MATDIAGON 

TOTAL ENERGY FOR 2 -TH ITER= -31.552303846339 edel = -0.695408D+00 : SOLVER = DAVIDSON 

TOTAL ENERGY FOR 3 -TH ITER= -31.585336745971 edel = -0.330329D-01 : SOLVER = DAVIDSON 

TOTAL ENERGY FOR 4 -TH ITER= -31.587689791426 edel = -0.235305D-02 : SOLVER = SUBMAT + RMM3 

TOTAL ENERGY FOR 5 -TH ITER= -31.587917474699 edel = -0.227683D-03 : SOLVER = SUBMAT + RMM3 

TOTAL ENERGY FOR 6 -TH ITER= -31.587936742564 edel = -0.192679D-04 : SOLVER = SUBMAT + RMM3 

TOTAL ENERGY FOR 7 -TH ITER= -31.587937115320 edel = -0.372756D-06 : SOLVER = SUBMAT + RMM3 

.............. 

.............. 

 

The integer appearing after “FOR” identifies the SCF calculation iteration, and the value appearing after 

“ITER=” is the total energy at that iteration. Energy values are displayed in Hartree. Generally, these total 

energy values are negative. In the above example, the total energy values are about −31 Ht. 

After “edel =,” the energy difference between the current SCF iteration and the previous SCF iteration is 

displayed. If this energy difference becomes lower than the criterion “delta_total_energy” set in the 

input parameter file, the convergence criterion is satisfied. 

After “SOLVER =,” solver information at the iteration is shown. In the example above, at the first iteration, 

“MATDIAGON” was used, while at the second and third iterations, “DAVIDSON” was used. After the third 

iteration, “RMM3” was combined with “SUBMAT.” 

By checking the convergence progress, users can determine whether the convergence calculation was 

performed accurately. 

 

2.3.3 Continuation calculation 

 

In many cases, one PHASE calculation is not sufficient to complete a calculation because of limits on 

machine time. In such cases, users can continue a PHASE calculation by setting the “condition” tag in the 

input parameter file. The following is an example. 

 

control{ 

condition = continuation 

} 

 

In a continuation calculation, some output files from the previous calculation are necessary; thus, it is better 

to perform the continuation calculation in the same execution directory. If “automatic” is set instead of 

“initial” or “continuation,” PHASE automatically sets this tag depending on which files exist in the 

execution directory. 

 

2.3.4 Ekcal program for the calculation of the DOS and band structure 

 

Ekcal is a subprogram of PHASE for calculating the DOS and band structure for many k-points. A charge 

density distribution file is necessary to perform an ekcal calculation. 
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2.3.4.1 How to calculate the DOS by ekcal? 

 

After the completion of a PHASE calculation, a charge-density file, whose default file name is “nfchgt.data,” 

is created. This is an input file for the DOS calculation by the program ekcal. 

 

Copy the file into the execution directory or set the path for the file by the key_word “F_CHG” in 

“file_names.data.” 

 

Edit the input parameter file. In the “control” block, set the condition tag, as follows. 

 

control{ 

condition = fixed_charge 

} 

 

In the “accuracy” block, set the “delta_eigenvalue” tag for the convergence of eigenvalues, as follows. 

accuracy{ 

ek_convergence{ 

delta_eigenvalue = 1e-5 

} 

} 

 

Execute the program ekcal as the follows, where “phase_v1100/bin/” is a directory in which the ekcal 

executable is stored. 

 

% ../../phase_v1100/bin/ekcal 

 

 

2.3.4.2 How to calculate the band structure by ekcal? 

 

After the completion of a PHASE calculation, a charge-density file, whose default file name is “nfchgt.data,” 

is created. This is an input file for the DOS calculation by the program ekcal. 

 

Copy the file into the execution directory or set the path for the file by the key_word “F_CHG” in 

“file_names.data.” 

 

A file “kpoint.data,” which is a file for k-point data, is necessary to calculate the band structure. A PHASE 

tool, “band_kpoint.pl” can be used to generate “kpoint.data.” Make the file “bandkpt.in,” which is an input 

file for “band_kpoint.pl,” as follows. 

 

0.04                                             spacing of k points data  

-0.8333333  0.8333333  0.8333333 

0.8333333  -0.8333333  0.8333333            reciprocal vectors 

0.8333333  0.8333333  -0.8333333 

3 2 1 4 # W                                     typical k points  n1 n2 n3 nd # Symbol 

1 1 1 2 # L 

0 0 0 1 # {/Symbol G} 

1 1 0 2 # X 

3 2 1 4 # W 

5 3 0 8 # K 

For indicating each typical k-point, n1/nd, n2/nd, and n3/nd mean internal coordinates based on reciprocal 

vectors. For example, “3 2 1 4 # W” means the W point with their internal coordinates 3/4, 2/4, and 1/4 based 

on the reciprocal vectors. 
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Execute the tool “band_kpoint.pl,” as follows, and “kpoint.data” will be generated. 

% ../../phase_v1100/tools/bin/band_kpoint.pl  bandkpt.in 

 

Edit the input parameter file. In the “control” block, set the condition tag, as follows. 

control{ 

condition = fixed_charge 

} 

 

In the “accuracy” block, set the “method” tag as “file” to read “kpoint.data” and set the 

“delta_eigenvalue” tag for the convergence of eigenvalues, as follows. 

accuracy{ 

ksampling{ 

               method = file 

       } 

ek_convergence{ 

delta_eigenvalue = 1e-5 

} 

} 

 

Execute the program ekcal as follows, where ”phase_v1100/bin/” is the directory in which the ekcal 

executable is stored. 

% ../../phase_v1100/bin/ekcal 
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2.4 How to check the completion of the calculation? 

 

2.4.1 Status of the PHASE calculation, causes, and options 

 

The status of a PHASE calculation and the causes and options associated with each status are listed below. 

 

Status Cause of the status options 

Successful completion 

SCF calculation converges. 

(or structure is optimized) 

Energy difference between two consecutive iterations 

becomes smaller than the convergence criterion 

(delta_total_energy). 

Analytical 

calculation 

In an optimization calculation, the maximum among the 

forces becomes smaller than the criterion (max_force). 

Successful completion 

SCF calculation does not 

converge (or structure is 

not optimized) 

 

 

 

 

Number of SCF iterations reaches the maximum iteration 

number indicated by the “max_iteration” tag in the 

“control” block. 

Continuation 

calculation 

Number of SCF iterations exceeds the value set in the file 

“nfstop.data.” Users can stop a PHASE execution by using 

this file, even if it is on the process.  

Elapsed time exceeds the time limit indicated by the tag 

“cpumax” in the “control” block. 

Abnormal termination Possible causes are as follows: 

Failure in an input parameter file, 

Pseudopotential files do not exist, 

Trouble in the computer system, 

Bugs in the program. 

Check files 

and re-execute 

the program 

 

 

2.4.2 How to check successful completion or abnormal termination? 

 

If a PHASE execution ends normally, text like the following is printed to a logfile (output000). 
        ...... 
        ...... 
 <<Total elapsed CPU Time until now =    81.69520 (sec.)>> 
  closed filenumber =           31 
  closed filenumber =           52 
  closed filenumber =           53 
  closed filenumber =           55 
  closed filenumber =           42 
  closed filenumber =           43 
  closed filenumber =           44 
  closed filenumber =           75 
  closed filenumber =           65 
  closed filenumber =           66 

 

After the “Total elapsed CPU Time until now =,” the calculation time is displayed. 

 

If the last part of the logfile differs from this example, then the PHASE execution failed. In that case, a 

recalculation is necessary, but before recalculating, check the input parameter file, the execution command, 

all compile options, etc. 
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2.4.3 Check the convergence of an SCF calculation and structure optimization 

 

If a PHASE execution ends normally, the calculation may still not have reached the desired completion. 

Users can find the status of a PHASE calculation by checking the file “continue.data,” which is generated 

after a PHASE execution ends. The last part of this file looks like the following. 

 
iteration, iteration_ionic, iteration_electronic 

        11         1        11 

 Ionic System 

  (natm) 

         2 

  (pos) 

  0.1250000000000000D+00  0.1250000000000000D+00  0.1250000000000000D+00 

 -0.1250000000000000D+00 -0.1250000000000000D+00 -0.1250000000000000D+00 

  (cps) 

  0.1290824363824501D+01  0.1290824363824501D+01  0.1290824363824501D+01 

 -0.1290824363824501D+01 -0.1290824363824501D+01 -0.1290824363824501D+01 

  (cpd) 

  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 

  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 

  (cpo(  1)) 

  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 

  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 

  (cpo(  2)) 

  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 

  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 

  (cpo(  3)) 

  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 

  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 

 forcmx_constraint_quench 

  0.1000000000000000D+03 

 Total Energy 

 -0.7878566524513241D+01 -0.7878566524513241D+01 

isolver 

         5 

convergence 

         2 

edelta_ontheway 

  0.1000000000000000D-09 

corecharge_cntnbin 

       0 

neg 

         8 

 

In the shaded area, “2” appears after “convergence.” The “2” means that the SCF calculation has 

converged, and an optimized structure was obtained. If a different number appears there, then a 

continuation calculation is necessary. 

 

2.4.4 Calculation status during a calculation (logfile: output000 and jobstatus000) 

 

The file “output000” contains a log of a PHASE execution. The string “000” indicates the number of 

executions; its value increases as 001, 002, etc., depending on how many times the calculation has been 

executed in the directory. 

 

This file holds information about the calculation and about physical quantities. In the following, useful 

parts are explained. 
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2.4.4.1 Sampling k- points 

The k-points used in a calculation are difficult to know from an input parameter file. Users can find 

k-point data in the logfile “output000.” To do so, find the string “kv3” in the logfile. 
 !kp kv3 =     8 nspin =     1 

In this case the number of k-points was 8. The “1” after “nspin =” means that spin freedom was not 

considered. If “2” is here, then spin freedom was considered. 

 

2.4.4.2 Total energy 

Total energies are printed in a logfile as follows. 
 TOTAL ENERGY FOR     3 -TH ITER=   -687.253021587082  edel =  -0.215950D+02 : SOLVER = DAVIDSON 
 KI=    294.118626755617 HA=   4820.263454482710 XC=   -686.596385560733 LO=  -8452.905431759591 
 NL=   -349.620400894588 EW=   3182.022578317359 PC=    505.464805336868 EN=     -0.000268264724 
 PHYSICALLY CORRECT ENERGY =    -687.252887454720 

 

The value of the total energy is printed after “TOTAL ENERGY FOR …ITER=,” and the energy difference 

between the current iteration and the previous one is printed after “edel =.” Following this line, 

contributions to the total energy are displayed: “KI” means kinetic energy, “HA” Hartree energy, “XC” 

exchange-correlation energy, “LO” local potential energy, “NL” nonlocal potential energy, “EW” Ewald energy, 

“PC” partial core correction energy, and “EN” entropy. The summation of all these terms is the total energy. 

After “PHYSICALLY CORRECT ENERGY,” a corrected total energy is printed for the case of smearing electron 

occupations. 

 

2.4.4.3 Spin freedom 

When the calculation considers spin freedom, majority and minority spin states are shown at each SCF 

iteration, as follows. 
 !OLD total charge (UP, DOWN, SUM) =     4.53623488 (+)    3.46376512 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.64907433 (+)    3.35092567 (=)    8.00000000 

 

The line starting with “!OLD” shows spin information from the previous iteration and that starting with 

“!NEW” shows spin information for the current iteration. 

 

2.4.4.4 Eigenvalues and their occupations  

Eigenvalues for each k-point are printed to the logfile just before the completion of execution. Note that 

this output is only for the last iteration; results for eigenvalues at previous iterations are not printed. 
 EFermi =       0.24579615 
 ======  Energy Eigen Values ====== 
     1      0.00000000      0.00000000      0.00000000 
     -0.19655861     -0.04839227     -0.04839227     -0.04839227     -0.04839227 
     -0.04839227     -0.04839227      0.12584623      0.12584623      0.12584623 
      0.12584623      0.12584623      0.12584623      0.23389619      0.23389619 
      0.23389619      0.26196708      0.26196708      0.26196708      0.26196708 
     2      0.25000000      0.00000000      0.00000000 
     -0.18998394     -0.11270106     -0.04555873     -0.04555873     -0.04555873 
     -0.04555873      0.02675145      0.10512408      0.10512408      0.10512408 
      0.10512408      0.13505063      0.13505063      0.18575457      0.20251681 
      0.20251681      0.25769611      0.29275976      0.30811466      0.30811466 
     3      0.50000000      0.00000000      0.00000000 
     -0.16102016     -0.16102016     -0.04095243     -0.04095243     -0.04095243 
     -0.04095243      0.08874423      0.08874423      0.08874423      0.08874423 
      0.10781439      0.10781439      0.16184290      0.16184290      0.16184290 
      0.16184290      0.27543069      0.27543069      0.35154734      0.35154734 
     4      0.75000000      0.00000000      0.00000000 
     -0.18998394     -0.11270106     -0.04555873     -0.04555873     -0.04555873 
     -0.04555873      0.02675145      0.10512408      0.10512408      0.10512408 
      0.10512408      0.13505063      0.13505063      0.18575457      0.20251681 
      0.20251681      0.25769611      0.29275976      0.30811466      0.30811466 
     5      0.00000000      0.25000000      0.00000000 
     -0.18998394     -0.11270106     -0.04555873     -0.04555873     -0.04555873 
     -0.04555873      0.02675145      0.10512408      0.10512408      0.10512408 
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      0.10512408      0.13505063      0.13505063      0.18575457      0.20251681 
      0.20251681      0.25769611      0.29275976      0.30811466      0.30811466 
      .......................................................................... 
      .......................................................................... 
      .......................................................................... 

 

Following the output for eigenvalues, the occupations for each k-point are displayed, as follows. 
 ======  Occupations ====== 
     1      0.00000000      0.00000000      0.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      0.00000000      0.00000000      0.00000000      0.00000000 
     2      0.25000000      0.00000000      0.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      0.00000000      0.00000000      0.00000000      0.00000000 
     3      0.50000000      0.00000000      0.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      1.00000000      1.00000000      1.00000000      1.00000000 
      1.00000000      0.00000000      0.00000000      0.00000000      0.00000000 

 

Occupations are usually between 0 and 1. When spin freedom is not considered, “1.0” means that two 

electrons occupy the state. Owing to system symmetries, reduction of k-points may occur. In that case, 

occupations may vary depending on the reduction. This happens for bulk systems with many k-points. 

 

2.4.4.5 Elapsed time for each SCF calculation 

If a “printlevel” tag in an input parameter file is set to 1 or more than 1, the elapsed time for that 

iteration is printed to the logfile as follows. 
 << CPU Time Consumption -- TOP   9 Subroutines (    2) >> 
  no  id           subroutine name          time(sec)  r(%)    count   no(2) 
   1  20  evolve_WFs_in_subspace (davidson  115.74820 71.17       8       1 
   2  13                 m_ES_Vnonlocal_W    10.78620  6.63       8       2 
   3   8                    betar_dot_WFs     7.33490  4.51      14       3 
   4  16                    m_CD_softpart     2.53880  1.56       1       4 
   5   7               m_XC_cal_potential     0.97520  0.60       2       5 
   6  17                    m_CD_hardpart     0.28100  0.17       1       6 
   7  10            m_ES_Vlocal_in_Rspace     0.02990  0.02       1       7 
   8  19                   m_CD_mix_pulay     0.00670  0.00       1       8 
   9  18           m_CD_convergence_check     0.00230  0.00       1       9 
 Total cputime of (    2 )-th iteration     162.64080 /   221.651 (sec.) 

 

After “…iteration,” the elapsed time for that iteration and the total elapsed time from the beginning 

appear. If the difference between the current iteration and the previous iteration is smaller than 5% of the 

elapsed time, this information is not displayed. 

 

2.4.4.6 Progress situation of the calculation (jobstatus000) 

In the file “jobstatus000,” the progress situation of the calculation is recorded. The number “000” on file 

names depends on how many times the calculation has been executed in the directory. The record is as 

follows. 
 status       =      FINISHED 
 iteration    =            674 
 iter_ionic   =             21 
 iter_elec    =             23 
 elapsed_time =     51648.7582 

 

status FINISHED (completion), ITERATIVE (in progress), START (initialization) 

iteration Number of total SCF calculation iterations 

iter_ionic Number of MD/optimization steps 
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iter_elec Number of SCF iterations for the current MD/optimization step 

elapsed_time Total elapsed time 

 

 

2.5 Analysis of calculation results and visualization 

 

2.5.1 Total energy and force (recorded in nfefn.data) 

 

In the file “nfefn.data” (or a file indicated by “F_ENF” in “file_names.data”), the total energy of the system 

and the maximum among forces acting on atoms at each MD/optimization step are recorded. In case of an 

MD calculation, the kinetic energy and the conserved quantity are also recorded. 

The output content in “nfefn.data” for an MD simulation differs from that for structure optimization. In 

the following, both types of “nfefn.data” are shown separately. 

 

2.5.1.1 Structure optimization 

 

Output content of “nfefn.data” for an optimization calculation: 
 iter_ion, iter_total, etotal, forcmx 
     1      24     -108.4397629733        0.0086160410 
     2      40     -108.4401764388        0.0076051917 
     3      56     -108.4405310817        0.0068758156 
     4      73     -108.4410640011        0.0065717365 
     5      94     -108.4414256084        0.0099533097 
     6     113     -108.4414317178        0.0094159378 
                  ........ 
                  ........ 
                  ........ 

 

The meaning of each column is as follows. 

 

iter_ion Number of optimization steps 

iter_total Number of total SCF iterations. 

etotal Total energy in Hartree units. 

forcmx Maximum among the forces acting on all the atoms. The unit is hartree/bohr3. The 

calculation continues until this value becomes smaller than the value for “max_force” set in 

the input parameter file. 

 

 

2.5.1.2 MD simulation 

 

Output content of “nfefn.data” for an MD simulation: 
      iter_ion, iter_total, etotal, ekina, econst, forcmx 
     1      18    -7.8953179624     0.0000000000    -7.8953179624     0.0186964345 
     2      30    -7.8953851218     0.0000665502    -7.8953185716     0.0183575425 
     3      43    -7.8955768901     0.0002565396    -7.8953203505     0.0173392067 
                          ........ 
                          ........ 
                          ........ 

 

In addition to the structure optimization case, the following two columns are recorded. 

 

ekina Kinetic energy of atoms 

econst Conserved quantity. For an NVE calculation, this corresponds to the total energy, including 

the atomic kinetic energy. For an NVT calculation, this value corresponds to the total 

energy, including the energy of the heat bath. 
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2.5.2 Atomic geometry (recorded in nfdynm.data) 

 

In the file “nfdynm.data” (or a file indicated by “F_DYNM” in “file_names.data”), coordinates, and forces for 

all the atoms at each MD/optimization step are recorded. 

 

The content of “nfdynm.data” is as follows. Note that atomic units are used in this file regardless of the 

units specified in the input parameter file. 
# 
#   a_vector =         9.2863024980        0.0000000000        0.0000000000 
#   b_vector =        -4.6431512490        8.0421738710        0.0000000000                (a) 
#   c_vector =         0.0000000000        0.0000000000       10.2158587136 
#   ntyp =        2 natm =        9                                                        (b) 
# (natm->type)     1    1    1    1    1    1    2    2    2                               (c) 
# (speciesname)     1 :   O                                                                (d) 
# (speciesname)     2 :   Si   
# 
 cps and forc at (iter_ion, iter_total =     1      24 )                                   (e) 
    1    3.161057370    1.169332082    1.214972077   -0.004058   -0.005565   -0.004966     (f) 
    2    6.693102525    2.152889944    4.620258315    0.006945   -0.001028   -0.004994 
    3    4.075293851    4.719951845    8.025544553   -0.002872    0.006394   -0.004796 
    4   -1.482093879    6.872841789    5.595600399   -0.004362    0.005502    0.004993 
    5   -0.567857398    3.322222026    9.000886637   -0.002792   -0.006296    0.004965 
    6    2.049951276    5.889283925    2.190314161    0.006974    0.000708    0.004795 
    7    4.921740324    0.000000000    3.405282833    0.001436    0.000122    0.000068 
    8   -2.460870162    4.262352150    6.810569070   -0.000612    0.001305   -0.000066 
    9    2.182281087    3.779821719   10.215855308   -0.000660   -0.001143    0.000001 
 cps and forc at (iter_ion, iter_total =     2      40 ) 
    1    3.156999743    1.163767576    1.210005993   -0.002904   -0.005755   -0.003892 
    2    6.700048015    2.151861938    4.615264365    0.006567    0.000186   -0.003832 
    3    4.072421499    4.726345880    8.020748072   -0.003503    0.005487   -0.003829 
    4   -1.486455954    6.878343743    5.600593135   -0.003122    0.005780    0.003831 
    5   -0.570648922    3.315925959    9.005851266   -0.003532   -0.005392    0.003892 
    6    2.056925355    5.889992076    2.195109289    0.006503   -0.000290    0.003828 
    7    4.923176344    0.000121757    3.405351146    0.000397   -0.000013    0.000018 
    8   -2.461482612    4.263656762    6.810503226   -0.000210    0.000337   -0.000017 
    9    2.181621403    3.778679157   10.215856638   -0.000197   -0.000341    0.000000 

 
                                        ........ 
                                        ........ 
                                        ........ 
                                        ........ 
                                        ........ 

 

(a) Lattice vectors. 

(b) After “ntyp =,” the number of elements is given. In this case, it is 2. After “natm =,” the number of 

atoms is given. In this case, it is 9. 

(c) After “(natom→type),” the correspondence between elements and atoms is shown. In this case, 

atoms 1–6 correspond to element “1,” and atoms 7–9 correspond to element “2.” 

(d) After “(speciesname),” the list of elements is printed. In this case, “1” corresponds to “O” (oxygen) 

and “2” corresponds to “Si” (silicon). 

(e) Header information for each step of an MD/optimization. In this case, “1” means the 1st step of an 

MD/optimization calculation, and “24” means the number of SCF iterations performed until this 

step. 

(f) Coordinates and forces of atoms are listed. The first column is the ID of an atom. Columns 2–4 are its 

coordinates, and columns 5–7 are its force. If the “velocity” tag in the “printlevel” block is “2,” 

the velocity of the atom is displayed in columns 8–10. 
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2.5.3 Charge density (recorded in nfchr.cube) 

 

In the file “nfchr.cube,” (or a file indicated by “F_CHR” in “file_names.data”), the charge density distribution in 

the Gaussian cube style is recorded. Only data from the last MD/optimization step are recorded. 

 

Using the PHASE Viewer or other visualization software, users can view the atomic geometry and charge 

density distribution. 

 

2.5.4 Density of states (recorded in dos.data) 

 

In the file “dos.data” (or a file indicated by “F_DOS” in “file_names.data”), the DOS data are recorded. 

 

To draw a graph of the DOS, a PHASE tool “dos.pl” is useful. The execution of this Perl script generates 

the file “density_of_states.eps.” In the command below, ”phase_v1100/bin/” is the directory in which PHASE 

is installed. The file “density_of_states.eps” can be viewed using ghost script or other tools. For more details, 

see the manual for PHASE tools. 

 

% ../../phase_v1100/tools/bin/dos.pl dos.data -erange=-15,10 -with_fermi -color 

 

dos.data File containing the DOS data. 

-erange Energy range for DOS visualization; “-15,10” means a range from −15 Ht to 10 Ht. 

-with_fermi If this option is used, the Fermi level is indicated as shown in the figure below. 

-color Color output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Example of the visualization of the DOS (diamond-structure Si) 
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2.5.5 Band structure (recorded in nfenergy.data) 

 

In the file “nfenergy.data” (or a file indicated by “F_ENERG” in “file_names.data”), eigenvalues for all 

k-points are recorded. 

 

To draw a graph of the band structure, a PHASE tool “band.pl” is useful. The execution of this Perl script 

generates the file “band_structure.eps.” In the command below, ”phase_v1100/bin/” is the directory in which 

PHASE is installed. The file “band_structure.eps” can be viewed using ghost script or other tools. For more 

details, see the manual for PHASE tools. 

 

% ../../phase_v1100/tools/bin/ band.pl nfenergy.data bandkpt.in -erange=-15,10 -w 
ith_fermi -color 

 

nfenergy.data File containing eigenvalue data. 

bandkpt.in File containing k-point data 

-erange Energy range for band structure visualization; “-15,10” means a range from −15 Ht to 10 

Ht. 

-with_fermi If this option is used, the Fermi level is indicated as shown in the figure below. 

-color Color output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Example of the visualization of a band structure (diamond-structure Si) 
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3. Input parameter file: nfinp.data (F_INP file) 
 

3.1 Format of input parameter file 

 

The input parameter file “nfinp.data” specifies a model structure (e.g., atomic positions) and calculation 

conditions. Although “nfinp.data” is the default name of this file, you can specify an arbitrary filename 

through the F_INP keyword. For example, you can set a name related to the target system. 

 

3.1.1 Description of parameters 

 

This section briefly describes how to write the input parameter file. In this file, input parameters are listed in 

hierarchical blocks, which are delimited by a block name and curly brackets { }, as shown below. 

Upper_block{ 

Lower_block{ 

... 

tag_keyword = value 

} 

} 

 

Each block specifies a crystal structure, calculation method, calculation accuracy, and other calculation 

conditions. Related parameters are listed together in one block. These blocks are defined in the format 

‘blockname{…}’. Parameters are usually specified in the format ‘tag_keyword = value’. Further details 

for specifying parameters are described later. 

 

In making an input file, note the following: 

 Multiple blocks with the same name cannot be defined at the same hierarchical level. 

 Block names are not case sensitive. 

 If a block name is misspelled, the block will be ignored and default values will be employed for the 

variables in the block. Error messages will not be printed. 

 Variables can be separated by commas as well as by line feeds. 

 Double quotes are used to include spaces in a string variable;  

e.g., title = "This is a title line for the bulk Si.” 

 Two-byte characters cannot be used. 

 

The following blocks are available at the top level. 

control block Sets options that control the entire calculation process. 

accuracy block Sets options related to calculation accuracy. 

structure block Sets an atomic structure. 

wavefunction_solver block Sets wavefunction solver. 

charge_mixing block Sets charge density mixing scheme. 

structure_evolution block Sets geometry optimization or molecular dynamics calculation. 

postproccesing block Sets post-processing. 

printlevel block Sets print level for the output file. 
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3.1.2 Specification of units 

 

Although atomic units (e.g., bohr and hartree) are default units for input files, you can use other units as well. 

Table 3.1 lists available units in PHASE. Default units are shown in bold type. 

 

Table 3.1 Available units in PHASE 

Length bohr, angstrom, nm   

Energy hartree, eV, rydberg   

Time au_time, fs, ps, ns, s, sec, min, hour, day   

Velocity bohr/au_time, bohr/fs, angstrom/fs, angstrom/au_time, nm/fs, nm/au_time   

Force hartree/bohr, hartree/angstrom, hartree/nm, eV/angstrom, eV/bohr, ev/nm,   

rydberg/bohr, rydberg/angstrom, rydberg/nm   

Pressure hartree/bohr3, hartree/angstrom3, hartree/nm3, eV/angstrom3, eV/bohr3,   

eV/nm3, rydberg/angstrom3, rydberg/bohr3, rydberg/nm3,   

Mass au_mass, atomic_mass,   

 

A unit can be individually specified for each variable (e.g., cpumax = 86400 sec). Furthermore, you can 

specify units for an entire block. See the example below. 

block{ 

#units angstrom 

... 

... 

} 

 

In the above example, the unit of length is set to Ångstrom. When you specify multiple units, separate the 

units by spaces (e.g, #units angstrom eV). 

 

3.1.3 Comment lines 

 

All lines beginning with ! or // are considered to be comment lines. See the example below. 

block{ 

!  comment 

! tag_keyword = value1        comment 

// tag_keyword = value2       comment 

tag_keyword = value3 

} 
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3.1.4 Example of input parameter file  

 

The following input file is an example for an electronic-state calculation of Si atoms (diamond structure; two 

Si atoms). In this example, typical calculation conditions are employed. 

control{ 

  condition = initial 

  cpumax = 86400 sec 

  max_iteration = 10000 

} 

 

accuracy{ 

  cutoff_wf = 25.0 rydberg 

  cutoff_cd = 100.0 rydberg 

  num_bands = 8 

ksampling{ 

    method = monk 

    mesh{ 

      nx = 10  

      ny = 10 

      nz = 10  

    } 

} 

  initial_wavefunctions = atomic_orbitals 

  initial_charge_density = atomic_charge_density 

  scf_convergence{ 

    delta_total_energy = 1e-10 

    succession = 3 

  } 

  force_convergence{ 

    max_force = 0.001 hartree/bohr 

  } 

} 

 

structure{ 

  element_list{ 

    #tag    element    atomicnumber 

            Si    14 

  } 

  unit_cell{ 

    #units angstrom  

    a_vector = 0 2.732299538 2.732299538 

    b_vector = 2.732299538 0 2.732299538  

    c_vector = 2.732299538 2.732299538 0 

  } 

  unit_cell_type = bravais 

  atom_list{ 

    atoms{ 

      #tag    element    rx    ry    rz    imove 

              Si    0.125  0.125  0.125      0 

              Si   -0.125 -0.125 -0.125     0 

    } 

    coordinate_system = internal  

  } 

} 

 

wavefunction_solver{ 

        solvers{ 

            #tag    sol    till_n  prec cmix submat 
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                    davidson    1    on   1    on 

                    rmm3       -1    on   1    on 

        } 

        rmm{ 

             edelta_change_to_rmm=5e-5 

        } 

} 

 

charge_mixing{ 

        mixing_methods{ 

        #tag no   method    rmxs   rmxe   istr  prec nbmix 

              1   pulay   0.40   0.40   3     on   15 

        } 

} 

 

Postprocessing{ 

dos{ 

sw_dos = ON 

deltaE = 1.e-4 hartree 

} 

charge{ 

sw_charge_rspace    = ON 

filetype = cube  !{cube|density_only} 

title  = "This is a title line for the bulk Si" 

} 

} 
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3.2 List of tag keywords 

 

Tag keywords for the input parameter file “nfinp.data” are listed in エラー! 参照元が見つかりません。. In 

this table, keywords are briefly described. Further details are described in later sections. 

 

Table 3.2 List of tag keywords for the input parameter file “nfinp.data” 

1st level block 2nd, 3rd level block Tag keyword Description 

control   Block for specifying calculation conditions 

that control the entire calculation process 

  condition Specify the calculation condition. Options are: 

preparation, −2: only pre-processing is 

executed. 

automatic, −1: the option initial or 

continuation is automatically selected. 

initial, 0: the calculation is started from 

initial. 

continuation, 1: the previous calculation is 

continued. 

(The following options are used in EKCAL) 

fixed_charge, 2: the calculation with fixed 

charge density is started. 

fixed_charge_continuation, 3: the previous 

calculation by fixed_charge is continued. 

(defaults to automatic) 

  cpumax Upper limit of CPU time (defaults to 86400 

sec). Units are {sec, min, hour, day} 

  max_iteration 

max_total_scf_iter

ation 

Maximum number of total SCF iterations 

(defaults to 10000) 

  max_mdstep Maximum number of total steps of an MD 

calculation (default: limitless) 

  max_scf_iteration Maximum number of SCF iterations in one 

MD step (default: limitless) 

  nfstopcheck A number written in the file “nfstop.data” 

that determines the number of steps to 

execute before stopping the process. This 

variable can be changed even when the 

calculation is running.  

  sw_ekzaj If this switch is set to ON, wavefunctions are 

stored in the wavefunction file F_ZAJ, which 

is used as an input for EKCAL. Set this 

switch to ON to read the file in EKCAL. Note 

that this is available only for the calculation 

at the Γ-point. (defaults to OFF) 

accuracy   Block for controlling calculation accuracy 

  cutoff_wf Cutoff energy for wavefunctions 

  cutoff_cd Cutoff energy for charge density 

  num_bands Number of bands 

 ksampling  Block for k-sampling 

  method Specify k-point sampling method. Options are 

monk: the Monkhorst–Pack method 

mesh: mesh generation 

file: read k-points from a file 



 48 

direct_in: Directly inputs k-points  

gamma: Γ-point only 

(Defaults to monk) 

 mesh  Block for mesh generation 

  nx, ny, nz Number of mesh divisions in the X, Y, and Z 

directions.  

default value = (4,4,4) 

maximum value = (20,20,20) 

 kshift  Block that specifies the shift of k-points. This 

block is enabled only for the Monkhorst–Pack 

method. 

  k1, k2, k3 Specify the mesh displacement. Input range 

is [0.0, 0.5]. Default values are as follows: 

If the crystal system is hexagonal,  

k1 = k2 = 0, k3 = 0.5 

Otherwise,  

k1 = k2 = k3 = 0.5 

Here 0.5 indicates half the mesh width. 

 kpoints  Block for weighting of k-points 

  kx ky kz denom 

weight 
     (kx/denom, ky/denom, kz/denom)  

Coordinates and weighting of k-points 

 smearing  Block for smearing of k-sampling 

  method Specify method used for smearing. Options 

are 

parabolic: parabolic method (default) 

cold: cold smearing method (This option is 

effective for metal systems.) 

tetrahedron: tetrahedron method 

improved_tetrahedron: improved tetrahedron 

method 

Note. tetrahedron and improved_tetrahedron 

are available only when the mesh method is 

selected for k-point sampling. 

  width Specify the smearing width (defaults to 0.001 

hartree) 

This variable is used only when method = 

parabolic or cold. 

  (no block name)   

  xctype Specify a type of exchange-correlation energy. 

Options are  

LDA: LDAPW91, PZ 

GGA: GGAPBE, REVPBE 

 scf_convergence  Block that specifies convergence criteria of 

the SCF calculation 

  delta_total_energy Convergence criterion for the total energy 

difference (default:       hartree) 

  succession The SCF iterations are terminated if the 

energy difference    is less than the 

specified criterion  -times in succession. The 
variable “succession” specifies the number  . 

(defaults to 3) 

 force_convergence  Block that specifies convergence criterion of 

atomic force 

  max_force Convergence criterion for the maximum force 

(default: 0.001 hartree/bohr) 

 ek_convergence  Block that specifies convergence criteria for 
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eigenvalues. This block is enabled only for 

EKCAL. 

  num_extra_bands Number of bands that are allowed to remain 

unconverged (default: 2) 

  num_max_iteratio

n 

Maximum number of updates per k-point 

(defaults 300) 

  sw_eval_eig_diff Switch that specifies whether to evaluate 

eigenvalues. Options are  

1, on, yes: Evaluate (default) 

0, off, no: Do not evaluate 

  delta_eigenvalue Allowable error of eigenvalues 

(defaults to       hartree) 

  succession Number of iterations (defaults to 3) 

 (no block name)    

  initial_wavefunctio

ns 

Initial guess for wave functions. Options are 

random_numbers: Initialize by random 

numbers 

matrix_diagon: Initialize by small matrix 

diagonalization 

atomic_orbitals: Initialize by atomic orbitals 

file: Input initial value from the file F_ZAJ 

 matrix_diagon  Initial values of wavefunctions are given by 

small matrix diagonalization 

  cutoff_wf Cutoff of wavefunctions 

 (no block name)   

  initial_charge_dens

ity 

Initial value of charge density. Options are 

Gauss: Initialize by overlap of the Gaussian 

distribution function. 

atomic_charge_density: Initialize by overlap 

of electron density of atom. 

file: Input initial value from the file F_CHGT 

 precalculation  Block for preconditioning of charge mixing 

  nel_Ylm Specify the highest order of spherical 

harmonics to be prepared in advance and 

stored in memory. (defaults to 9) 

structure   Block for structure settings 

  unit_cell_type 

 

Type of unit cell. Options are primitive and 

Bravais.  

 unit_cell  

 

 

a_vector 

b_vector 

c_vector 

 

a, b, c 

alpha,  

beta,  

gamma 

Specify unit cell. The unit cell can be defined 

in the following two ways. 

 

(x,y,z) component for each lattice vector 

(default unit is Bohr) 

 

 

Lattice parameters: 

the a-, b-, c-axes; 

the angles formed by b–c, c–a, a–b axes  

(default unit of angle is degree) 

 symmetry   

  method Options are {manual, automatic}. 

The option automatic automatically 

determines symmetry. 

  crystal_structure Options are {diamond, hexagonal, fcc, bcc, 

simple cubic} 

 tspace  Block for TSPACE.  
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Details of TSPACE are described in “空間群の

プログラム TSPACE (A program for space 

group TSPACE)” written by A.Yanase and the 

manual of ABCAP.  

  lattice_system Options are {rhombohedral,trigonal,r,t,-1}, 

{hexagonal,h,0}，{primitive,simple,p,s,1}, 

{facecentered,f,2}，{bodycentered,b,3}, 

{bottomcentered,basecentered,onefacecentere

d,bot,ba,o,4} 

  num_generators Number of generators  

(an integer value from one to three) 

  generators Generators 

  af_generator Generators for a magnetic space group 

 (no block name)   

  sw_inversion Switch for inversion symmetry 

 (no block name)   

  magnetic_state Options are {para, antiferro, ferro} 

antiferro can be abbreviated to af. 

 atom_list  Atom list 

  coordinate_system Options are {cartesian, internal} 

 atoms  Block of atoms (tabular form). This table 

contains the following columns. 

  rx, ry, rz xyz coordinates 

  element Element names 

  mobile Flags that specify whether the atoms can 

move or not during the calculation 

(Use {1,0}, {on,off}, or {yes, no}) 

  weight If sw_inversion=on and weight=2, copied 

atoms are generated at positions of inversion 

symmetry. 

 element_list   

  element Element names. This parameter must match 

that specified in the element column of the 

atoms block. 

  atomic_number Atomic number 

  mass Mass 

  zeta Spin polarization:                   

  deviation Deviations of Gaussian functions used to 

determine the initial guess of charge density 

distribution  

(  of                    , which 

determines deviation of electron density 

distribution). 

dev or standard_deviation can also be used as 

the tag name instead of deviation. 

wavefunction_so

lvers 

solver  Wave function solver 

 

  sol Specify the wavefunction solver. Options are 

MatrixDiagon: matrix diagonalization 

method 

lm+MSD: lm(line minimization) + 

MSD(modified steepest descent) method 

RMM2P, RMM3: The RMM method 

MSD: The modified steepest descent method 

submat: subspace rotation method 
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Davidson: The Davidson method 

  till_n The wavefunction solver specified in the sol 

column is employed until the  -th step. This 

column till_n sets the number  .  

  dts Initial value of time step 

  dte Time step for the steps after the itr-th step. If 

only dts is specified, the same value is set to 

dte. 

  itr Time step is changed from dts to dte after the 

 -th step. The variable itr sets the number  . 

  var An interpolation method. Options are {linear, 

tanh} 

  prec Switch that specifies whether to execute 

preprocessing. Options are {on, off} 

  cmix Variables that specify which charge-mixing 

method is used for each wavefunction solver 

by the number corresponding to the order of 

the method listed in the charge_mixing block. 

  submat If this variable is on, subspace rotation as 

specified in the subspace_rotation variable is 

performed. Options are {on,off} 

 line_minimization  Block for line minimization 

 

  dt_lower_critical 

dt_upper_critical 

Lower and upper limits of time steps for line 

minimization (default values are 0.005 and 

2.0, respectively) 

  delta_lmdenom Factor of line minimization 

 rmm  The residual minimization method 

  imGSrmm Specify how often Gram–Schmidt 

orthogonalization is applied to the wave 

functions updated by the RMM method. 

(default value is imGSrmm=1, which means 

orthogonalization is performed every step) 

  rr_Critical_Value Convergence criterion for each band. If the 

residual error of the band becomes less than 

the criterion, the updating of this band will 

stop. 

  edelta_change_to_r

mm 

Threshold used to switch the wave function 

solver to the RMM method. If the difference 

in the total energy becomes less than the 

value specified by this variable, the 

wavefunctions solver is changed to the RMM 

method.  

 subspace_rotation  Block for controlling subspace diagonalization 

  subspace_matrix_s

ize 

Size of subspace matrix. Default value is 

equal to the number of bands (i.e., 

num_bands). If a specified value is larger 

than the num_bands, the value of 

num_bands is set to the keyword. 

  damping_factor A damping factor for off-diagonal elements. If 

a specified value exceeds the range of [0.0, 

1.0], it is treated as 1.0. 

  period  If the submat variable in the solver block is 

ON, subspace rotation is performed once per 

period times. If the period = 3, for example, 

the subspace rotation is performed when 
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iteration = 1,4,7,10,… 

(Defaults to 1) 

  critical_ratio If the ratio between values of off-diagonal and 

diagonal elements becomes less than the 

critical_ratio once, then subspace rotation is 

not performed for the elements. (Defaults to 

     ) 

charge_mixing   Block for the charge-mixing method 

 

 mixing_methods  Mixing methods of charge density 

 

  method Method of charge mixing. Options are 

{simple,broyden2,pulay} 

(Defaults to simple) 

  rmxs Initial value of charge mixing ratio 

(Defaults to 0.5) 

  rmxe Charge mixing ratio for the steps after itr-th 

step. If only rmxs is specified, the same value 

is set to rmxe. (Defaults to 0.5) 

  itr Number of the steps taken to vary the charge 

mixing ratio form rmxs to rmxe. 

  var Method of varying the charge mixing ratio 

Options are {linear, tanh} 

  prec Switch that specifies whether to execute 

preprocessing. Options are {on,off} 

  istr When the specified method is not simple, this 

method is employed after the istr-th step. 

  nbmix Charge density of the previous   steps will 

be stored to arrays. The variable nbmix 

specifies the number  . 

  update Specify a way of renewing the arrays that 

store the charge density when the arrays are 

filled. Options are 

anew: discard all stored data and reallocate 

the arrays 

renew: replace the oldest data with the 

newest data 

 charge_preconditi

oning 

 Block for preconditioning of charge mixing 

  amix Variable for preconditioning 

 

  bmix Variable for preconditioning 

 

structure_evolut

ion 

  Block for structure optimization and 

molecular dynamics 

  method Options are {sd, quench, gdiis, bfgs, cg, 

velocity_verlet} 

  dt Time step 

 stress  Calculation of stress 

  sw_stress Switch that specifies whether to calculate 

stress. Options are {on, off} 

 gdiis  Block for the GDIIS and BFGS methods 

  initial_method Initial method that is employed before 

switching the method to GDIIS or BFGS. 

Options are {quench, cg, sd}  

  gdiis_box_size Atomic coordinates of the previous   steps 
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will be stored in arrays. The variable 

gdiis_box_size specifies the number    

  gdiis_hownew Method of renewing the arrays that store the 

atomic coordinates after the gdiis_box_size 

steps. Options are {anew, renew} 

  c_forc2gdiis Threshold used to switch the method to 

GDIIS or BFGS.  

Defaults to 0.0025 (hartree/bohr) 

postprocessing    

 dos  Output of density of states 

  sw_dos Switch that specifies whether to output the 

density of states. 

Options are {on, off} 

  method Options are {tetrahedral, Gaussian} 

  deltaE_dos Energy accuracy for the density of states 

  variance Variance of the Gaussian function. This 

variable is enabled only when 

method=Gaussian. 

  nwd_dos_window_

width 

Energy width    is specified by the following 

equation 

   nwd_dos_window_width    deltaE_dos 

 charge  Output of charge 

  sw_charge_rspace Switch that specifies whether to output 

charge density. Options are {on, off} 

  filetype File format of the charge density file 

Options are {cube, density_only} 

  title Title of the charge density file. This variable 

is enabled only when fileytype=cube. 

printoutlevel   Print level of the standard output 

0: no output 

1: output normally 

2: output extra information for debugs 

  base This variable becomes the default values for 

the other variables that specify the print 

level. 

  pulay Pulay charge-mixing method 

  timing Timing information 

  solver Electronic state solver 

  evdff Difference of eigenenergies 

  rmm The RMM method 

  snl Non-local potential 

  gdiis The GDIIS method 

  eigenvalue Eigenvalue 

  spg Space group 

  kp k-points 

  matdiagon Matrix diagonalization method 

  vlhxcq Local potential 

  totalcharge Electron density 

  submat Subspace matrix rotation method 

  strcfctr Structure factor 

  parallel Print level for the result of preprocessing of 

parallelization 

  input_file Output of analysis result of the input file 

F_INP 

  parallel_debug If this variable is set to 1, not only the 0-th 
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process but also other processes will output 

the information to files such as 

output00x_xxx. 

  jobstatus If this variable is set to 1, progress of the 

calculation will also be printed in the file 

jobstatus00x. 

 jobstatus_option  Output of the job status 

  jobstatus_format Options are tag, tag_line, and tabta. 

(Defaults to tag) 

  jobstatus_series ON or OFF 
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3.3  Control block 

 

The control block contains variables that control the entire calculation process or specify general options. An 

example of the control block is shown below. 

control{ 
    condition = initial 
    cpumax = 1 day 
    max_iteration = 1000000 
} 

 

 

The control block contains the following variables. 

condition Specifies whether the calculation starts from an initial condition or continues a 

previous calculation. Available options are as follows: 

preparation: This option only executes pre-processing (e.g., printing size of 

allocated memory, generating k-points). 

initial: The calculation starts from an initial condition (default). 

continuation: The previous calculation is continued. Wave functions, charge 

density distribution, and other data are read from files generated by the 

previous calculation. 

automatic: This option automatically chooses initial or continuation. The option 

continuation is chosen if the necessary files for continuation exist. (These files 

are automatically generated by the previous calculation). Otherwise, the 

option initial is selected. 

(The following options are used in EKCAL.) 

fixed_charge: Charge density distribution is read from files, and only wave 

functions are converged while the charge distribution is fixed. This option is 

employed for the purpose of only calculating, for example, band structure. 

fixed_charge_continuation: Continuation of the fixed_charge. 

Default value is initial. The keywords initial， continuation，automatic，

preparation，fixed_charge，fixed_charge_continuation can be substituted by 

integer numbers 0，1，−1，−2，2，3，-3, respectively.  

cpumax Specifies a time limit for the execution of PHASE. The value is specified in the 

format “real number + unit.” Default value is 86400 s (i.e., one day). Available units 

are “sec,” “s” (identical with “sec”), “min,” “hour,”and “day.” Unit cannot be omitted. 

If the execution time exceeds the specified value, PHASE terminates the 

calculation and generates restart files even if the calculation has not yet 

converged. 

If there is a possibility of exceeding the time limit given by a job scheduler, it is 

recommended to set a smaller value than the time limit. 

(For example, if the job time limit is six hours and there is no post-processing, such 

as calculating density of states, “5.8 hour” may be appropriate.) 

max_iteration 

max_total_scf_iteration 

Specifies the maximum number of total SCF iterations. If the number of total SCF 

iterations exceeds the specified value, the calculation halts, and restart files are 

generated. Default value is 10000.  

max_scf_iteration Specifies the maximum number of SCF iterations for one step of structure 

optimization or molecular dynamics. The first steps of structure optimization often 

require hundreds of SCF iterations to converge because of the instability of the 

initial structure. In such cases, it is recommended to truncate the SCF iterations 

early and calculate force to update atomic positions to a more stable structure. 

However, a very small value (e.g., 10) causes serious errors and makes the 

calculation slow. Do not use if an accurate force is essential. 
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3.4 Accuracy block  

 

3.4.1  Cutoff energy 

 

Cutoff energy is an important parameter that determines the accuracy of the calculation using a plane-wave 

basis set. 

 

The cutoff energies are specified as follows: 

accuracy{ 

cutoff_wf = 25 Rydberg 

cutoff_cd = 225 Rydberg 

} 

 

cutoff_wf Specifies cutoff energy for wave functions in units of energy. 

cutoff_cd Specifies cutoff energy for charge density in units of energy. 

 

Although it should be examined whether the given cutoff energy can achieve sufficient accuracy, the 

following guides are also useful.  

 25 rydberg may be appropriate for cutoff_wf. 

 If norm-conserving pseudopotentials are employed, four times cutoff_wf may be appropriate for 

cutoff_cd. Otherwise, nine times cutoff_wf may be appropriate. 

 

3.4.2  Number of bands 

 

The number of bands is specified by the num_bands variable in the accuracy block as follows. 

accuracy{ 

num_bands = 12 

} 

 

num_bands Number of bands 

 

The number of bands must be larger than half the number of valence electrons. Typically, num_bands is set 

to 1.2 times the minimum value. If the specified value is less than the lower limit, the value will be 

automatically increased. If no value is given to the keyword, the value is automatically set. 

 

3.4.3  k-point sampling and smearing 

 

In addition to the cutoff energy, k-point sampling is also an important factor that determines the reliability of 

the calculation. It is set up in the ksampling block of the accuracy block. An example is shown below. 

accuracy{ 

ksampling{ 

method = monk 

mesh{ 

nx=4 

ny=4 

nz=4 

} 

} 

} 

 

The ksampling block contains the following variables and blocks. 
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method Specifies the method used for k-point sampling. Options are 

monk: k-point sampling based on the Monkhorst–Pack method. Typically, this option 

is recommended. (default) 

mesh: The reciprocal space is divided by a simple mesh. This option is specified when 

the tetrahedron method is employed to calculate the charge density distribution 

and the density of states. 

file: k-points are read from a file. This option is used, for example, when user-defined 

k-points are specified to calculate the band structure. 

gamma: Only the  -point is sampled. This option is specified when a sufficiently large 

unit cell is employed and the  -point is sufficient to obtain adequate accuracy. 

In any method, if      -point is included in k-point sampling and inversion symmetry 

is not applied for the system, calculation of wavefunctions at the  -point is executed 

about three times faster than that at other k-points by using symmetry of this point. 

(You can also apply the normal method to the  -point as well as other k-points as 

described later.) 

mesh Number of divisions along each reciprocal space direction, as specified by 

nx: number of divisions along the first reciprocal lattice vector 

ny: number of divisions along the second reciprocal lattice vector 

nz: number of divisions along the third reciprocal lattice vector 

 

Smearing is a manipulation that smears electrons over several orbitals within the range of the Fermi level. 

By this manipulation, high accuracy may be archived with few k-points for metal systems that have many 

states near the Fermi level. Smearing is specified in the block smearing of the accuracy block as follows. 

accuracy{ 

smearing{ 

method = parabolic 

width = 0.001 hartree 

} 

} 

 

The smearing block contains the following variables. 

method Specifies a method of smearing. Options are 

parabolic: Smearing of the electron distribution near the Fermi level. 

tetrahedron or improved_tetrahedron: tetrahedron method. These options are selected 

when the tetrahedron method is employed to calculate the density of states. 

cold: Cold smearing. This option is generally effective for metal systems. 

width Specifies the smearing width in units of energy. Default value is 0.001 hartee. 

This variable is enabled only when method=parabolic. 

 

3.4.4  Exchange-correlation energy  

 

Exchange-correlation energies are classified into LDA or GGA. In PHASE, LDAPW91 and PZ are available 

for LDA, while GGAPBE and REVPBE are available for GGA. 

accuracy{ 

xctype = ggapbe 

} 
 

 

xctype Exchange-correlation energy (LDA, GGA) 

LDA: LDAPW91, PZ 

GGA: GGAPBE, REVPBE 
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3.4.5  Convergence criteria  

 

There are two types of convergence criteria: criterion for SCF calculation and criterion for structure 

optimization. These criteria are specified as follows: 

accuracy{ 

scf_convergence{ 

delta_total_energy = 1.0E-8 Hartree 

succession = 3 

} 

force_convergence{ 

max_force = 2.0E-4 Hartree/Bohr 

} 

} 

 

Blocks and variables related to convergence criteria are shown below. 

scf_convergence This block specifies convergence criteria for the SCF calculation. 

delta_total_energy Convergence criterion for the total energy difference. If the difference between the 

current total energy and the total energy of the previous step is smaller than the 

specified value, the convergence criterion is satisfied. 

Default value is 1e−10 hartree. 

succession SCF iterations are terminated if the energy difference is smaller than the criterion 

delta_total_energy n-times in succession. The variable succession specifies the number 

n. Default value is 3. 

  

force_convergence This block specifies the convergence criterion for structure optimization. 

max_force Convergence criterion for the maximum force in units of force. 

Default value is 1e−3. 

 

3.4.6  Initial wavefunctions and initial charge density 

 

The SCF calculation can converge faster if initial wavefunctions and initial charge density are appropriately 

set up. Types of initial wave functions and initial charge density are specified as follows: 

accuracy{ 

initial_wavefunctions = atomic_orbitals 

intial_charge_density = atomic_charge_density 

matrix_diagon{ 

cutoff_wf = 5 rydberg 

} 

} 

 

Blocks and variables related to initial wavefunctions and initial charge density are described below. 

initial_wavefunctions Specifies a method to initialize wavefunctions. Options are 

random_numbers: Initial guess is obtained using random numbers. 

matrix_diagon: Initial guess is obtained by matrix diagonalization. The cutoff 

energy for this procedure can be specified by the block matrix_diagon described 

later. 

file: Initial guess is read from a wavefunctions file. If you have a data file of 

wavefunctions that is already almost converged, you can specify this file to read 

them. 

atomic_orbitals: Wavefunctions are initialized by data of atomic orbitals that is 

saved in the pseudopotential files. 

(Defaults to random_numbers) 

initial_charge_density Specifies a method used to initialize charge density. Options are 

Gauss: Initial guess is obtained by simple atom-centered Gaussian functions. 

file: Initial charge density is read from a file. If you have a data file of charge density 
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that is already almost converged, you can specify this file to read density. 

atomic_charge_density: Charge density is initialized by the atomic orbitals saved in 

the pseudopotential files. 

(Defaults to Gauss) 

  

matrix_diagon This block is for matrix diagonalization.  

This block is enabled only when initial_wavefunctions=matrix_diagon. 

cutoff_wf Specifies the cutoff energy for initializing wavefunctions. 

Default value is half the normal cutoff energy. 

 

 

3.5  Structure block 

 

A model of atomic structure is specified in the block structure as follows: 

structure{ 
    unit_cell_type = Bravais 
    unit_cell{ 
        #units angstrom 
        a_vector = 4.914100000 0.000000000 0.000000000 
        b_vector = -2.457050000 4.255735437 0.000000000 
        c_vector = 0.000000000 0.000000000 5.406000000 
    } 
    atom_list{ 
        coordinate_system = Internal 
        atoms{ 
            #units angstrom 
            #tag element rx ry rz  
             O 0.413100000054 0.145400000108 0.118930000000 
             O 0.854599999943 0.267699999886 0.452263333333 
             O 0.732300000003 0.586900000006 0.785596666667 
             O 0.267699999946 0.854599999892 0.547736666667 
             O 0.145399999997 0.413099999994 0.881070000000 
             O 0.586899999939 0.732299999879 0.214403333333 
             Si 0.530000000000 0.000000000000 0.333333000000 
             Si -0.000000000072 0.529999999857 0.666666333333 
             Si 0.469999999954 0.469999999908 0.999999666667 
        } 
    } 
    element_list{ 
        #tag element atomicnumber mass zeta deviation 
         O 8 29164.9435 * * 
         Si 14 51196.4212 * * 
    } 
    symmetry{ 
          method = automatic 
          sw_inversion = off 
    } 
} 

 

3.5.1  Unit cell 

 

unit_cell_type Specifies a type of unit cell. Options are primitive or bravais. Default value is bravais. 

To define a unit cell by lattice parameters, the variable unit_cell_type must be bravais. 

In addition, when unit_cell_type=bravais, you can convert the lattice by using the 

variable lattice_system in the block tspace in the block symmetry. The details of the 

lattice_system variable are described latter. 

unit_cell This block specifies the unit cell. You can specify the unit cell by cell vectors or by 

lattice parameters. Specifying the unit cell by lattice parameters is enabled only when 
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unit_cell_type=bravais. 

 

 Specifying by cell vectors 

By using cell vectors, you can specify the unit cell as follows: 

        unit_cell{ 
            #units angstrom 
            a_vector = a1 a2 a3 
            b_vector = b1 b2 b3 
            c_vector = c1 c2 c3 
        } 

 

The a-axis, b-axis, and c-axis are specified by the variables a_vector, b_vector, and c_vector, respectively. The 

unit of length can be defined for the entire block, not for each variable. In this example, the unit of length is 

set to Ångstrom by the description “#units angstrom.” 

 

 Specifying by lattice parameters 

 

By using lattice parameters, the unit cell can be defined as follows: 

        unit_cell{ 
           a = a0 
           b = b0 
           c = c0 
           alpha = alpha0 
           beta = beta0 
           gamma = gamma0 
        } 

 

The variables a, b, c, alpha, beta, and gamma specify the lattice parameters            and  , respectively. 

If a unit cell is specified using lattice parameters, cell vectors will be defined by the lower triangular matrix 

as follows: 

 

      a_vector = a1 0.0 0.0 

      b_vector = b1 b2  0.0 

      c_vector = c1 c2  c3 

 

3.5.2  Atomic coordinates 

 

atom_list  This block specifies atomic coordinates, etc.  

coordinate_system  Specifies whether the atomic coordinates are defined using Cartesian 

coordinates or fractional coordinates. Options are 

internal: atomic positions are referred to lattice vectors. 

cartesian: atomic positions are given in Cartesian coordinates. 

Default value is internal. 

atoms  This block specifies atomic coordinates and other properties of atoms. 

These properties are defined in a tabular form. Representative properties 

are list below. 

 element Element names. The element names used here need to be defined in the 

block element_list described latter. 

 rx x-coordinates 

 ry y-coordinates 

 rz z-coordinates 

 mobile Flag that specifies whether or not the atoms can move in geometry 

optimization or in molecular dynamics. Set this flag to on, to update the 

atomic coordinates. Default value is off. 

 weight If sw_inversion=on and weight=2, copied atoms are generated at positions 



 61 

of inversion symmetry. Defaults to 1. 

 

 

3.5.3  Atomic species 

 

element_list  This block specifies elements and their properties. These properties 

are defined in tabular form. Representative properties are list below. 

 element Name of elements (required). 

 atomicnumber Atomic number (required). 

 mass Mass 

 zeta Initial value of spin polarization. This variable is enabled only when 

spin is considered. 
                  
 

 

The pseudopotential files are specified by the file pointer F_POT(n) in the file “file_names.data.” Here n is an 

integer that corresponds to the order of elements in the element_list block. For example, if the element_list is 

defined as follows 

structure{ 

... 

... 

element_list{ 

#tag element atomicnumber mass zeta deviation 

O 8 29164.9435 * * 

Si 14 51196.4212 * * 

} 

} 

and the corresponding pseudopotential files for Si and O atoms are Si_ggapbe_nc_01.pp and 

O_ggapbe_us_01.pp, respectively, you can specify these files as shown below. 

&fnames 

F_INP=’./nfinp.data’ 

F_POT(1)=’./Si_ggapbe_nc_01.pp’ 

F_POT(2)=’./O_ggapbe_us_01.pp’ 

/ 

 

The pseudopotential files that can be downloaded from our website are generated either by GGA/PBE or by 

LDA/PW91.You can identify which functionals are used to generate the pseudopotential by their filenames 

because these filenames contain the string “ggapbe” or “ldapw91.” Note that you cannot execute the hybrid 

calculation composed of ggapbe and ldapw91. Ultrasoft, PAW, and norm-conserving pseudopotentials should 

not be mixed. Atomic species can be listed up to 16 types 

 

3.5.4  Symmetry 

 

symmetry This block specifies symmetry of the system. Using symmetry enables us to significantly 

reduce the calculation amount. The following blocks and variables are available. 

method This method determines symmetry. Options are 

manual: symmetry is directly specified by input (default). 

automatic: symmetry is automatically determined. 

sw_inversion Switch that specifies whether inversion symmetry is applied. The center of inversion 

symmetry is set to the origin (0,0,0). Note that this option is efficient for systems having 

inversion symmetry, but if this option is applied to a system that has no inversion 

symmetry, incorrect calculations will be carried out. 

  

tspace This block specifies the generator by using TSPACE 

lattice_system Specify the type of lattice. This variable is enabled only when unit_cell_type=bravais. 
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Options are facecentered, bodycentered, basecentered, and rhombohedral. 

If this variable is specified, the input lattice is converted to the lattice specified.  

See Table 4.1 for more details on converting lattices. By using this variable, you can input 

the lattice using a Bravais lattice, which is easy to specify. However, the actual calculation 

is performed using a basic lattice, which is easy to calculate. By this option, only the unit 

cell is converted. Therefore, atomic potions need to be defined to fit the basic lattice. For 

instance, in the case of a face-centered cubic lattice, only the atom on the origin should be 

specified. k-point sampling should also be specified to fit the converted lattice. 

generators This table specifies the generators. The generators can be defined up to only three. See 

section 4.2 for more details on specifying generators. 
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3.6 Wavefunction_Solver block 

 

3.6.1 Calculation flow of PHASE 

 

Figure 3.1 shows calculation flow of PHASE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Calculation flow of PHASE 

 

The Kohn–Sham equation 

                                                 (1)  

 

is solved during updating wavefunctions. Trial wavefunctions are given, and the equation 

 

                    

 

is iteratively solved to obtain the solution to (1). Here    corresponds to a differential energy   for 

wavefunctions  , and it approaches zero during optimization of the wavefunctions. During the process of 

generating the charge density in Fig. 3.1, by using the updated wavefunctions, a new charge density   is 

given by 

        

    

   
  

 

The inner loop in Fig. 3.1 is processed until self-consistency is achieved (         ). This calculation is 

called a self-consistent field (SCF) calculation. The outer loop in Fig. 3.1 is for structure optimization. Atomic 

positions are updated until the forces acting on atoms become almost zero. 

 

3.6.2 Wavefunction solver 

 

During the SCF calculation, wavefunctions are updated by the “wavefunction solver.” The wavefunction 

solver is specified in the block wavefunction_solver. 

Atomic position : Initial

Charge density : Initial
Wave function : Initial

in

inQ

in

Calculate charge density     out
Update charge density    in

Update wave function

  outin

Calculate force

force Update atomic position    inQ

Charge density mixing

Yes

No

No

Yes
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wavefunction_solver{ 
    solvers{ 
    #tag sol      till_n prec cmix submat 
         msd        1     on   1    on  
         davidson   2     off  1    off  
         rmm3      -1     on   1    on 
    } 
    davidson{ 
         max_subspace_size = 12 
         ndavid = 4 
    } 
    rmm{ 
        edelta_change_to_rmm = 1e-3 
    } 
} 

 

The following blocks and variables are available in the wavefunction_solver block. 

solvers  This block specifies the wavefunction solver. 

 sol Specify an algorithm for the wavefunction solver. Options are 

MSD: the modified steepest descent method. Although the 

computational cost for each step is the lowest, it is difficult to get 

convergence by using only this method. This method is mainly used 

for solving initial wavefunctions.  

lm+MSD: the modified steepest descent method combined with line 

minimization. The computational cost for each step is lower than 

that of the other methods below, and this method can converge 

faster than the MSD method. 

CG: the conjugate gradient method. Although the computational cost 

is higher than that of lm+MSD, convergence is normally better. 

Davidson: the Davidson method. Although the computational cost for 

each step is higher than that of other methods, this method 

generally provides good accuracy.  

RMM3: The RMM3 method has a lower computational cost than the 

Davidson method, while its accuracy is about the same. However, 

this method is not stable for random wavefunctions; thus, you 

should use another solver for the initial SCF steps before applying 

RMM3. 

 till_n The wavefunction solver specified in the sol column is applied until the 

 -th step. This till_n column specifies the number  . 

In the above example, the MSD method is employed for the first step, 

the Davidson method is applied until the second step (However, unless 

the criterion edelta_charge_to_rmm is satisfied, the Davidson method 

will be applied for later steps). If a negative value is set for till_n, the 

specified solver will be applied until the final step. Therefore, in the 

example, the RMM3 method will be employed until the last step. 

 prec Flag that specifies whether to execute preprocessing. Normally this 

should be “on.” However, in case of the Davidson method, “off” may be 

appropriate. 

 cmix Specify the method used for charge mixing. Details of charge mixing 

are described later. 

 submat Specify whether to perform subspace matrix diagonalization. Options 

are ON and OFF. Normally, this should be “on,” but it is not necessary 

to set to “on” for the Davidson method because subspace matrix 

diagonalization is already implemented in this method. 

   

davidson  Block for the Davidson method. The following variables are available 

to control the Davidson method. 
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max_subspace_size  Specify the maximum size of the subspace used in the Davidson 

method. Default value is four times the number of bands. 

 

ndavid  The Davidson method updates wavefunctions while gradually 

spreading the subspace. This variable ndavid specifies the number of 

steps to be used to spread the subspace. Defaults to 5. 

   

rmm  Block for the RMM method 

edelta_change_to_rmm  The RMM method is not stable for the totally unconverged 

wavefunctions in early steps. Therefore, another wavefunction solver 

is used for the initial steps before applying RMM. This variable 

edelta_change_to_rmm is a threshold used to switch the wave function 

solver to the RMM method. If the difference in the total energy 

becomes less than the value specified by this variable, the 

wavefunctions solver is changed to the RMM method. 

   

line_minimization  Block for line minimization. Line minimization is performed in the 

lm+MSD method and CG method to obtain an appropriate step size. 

dt_lower_critical  Specify lower limit for the step size of line minimization. 

(Defaults to 0.1) 

dt_upper_critical  Specify upper limit for the step size of line minimization. 

(Defaults to 2.0.) 

 

 

3.7  Charge_Mixing block 

 

3.7.1  Charge mixing method 

 

In the SCF iteration, the calculated charge density is mixed with the density obtained from the previous 

iteration to obtain the input density for the next iteration. This “charge mixing” is specified by the block 

charge_mixing as follows. 

charge_mixing{ 
    mixing_methods{ 
        #tag method rmxs rmxe prec istr nbmix 
             pulay 0.4 0.4 on 3 15 
    } 
    charge_preconditioning{ 
        amix = 0.9 
        bmix = -1 
    } 
} 

 

In the charge_mixing block, the methods used for charge mixing are specified by the following blocks and 

variables. 

mixing_methods  This tabular form block specifies the methods used for charge mixing. 

Multiple methods can be defined in this table. These methods are 

specified by the cmix column of the solvers table mentioned above. 

The cmix column specifies which charge-mixing method is used for 

each wavefunction solver by the number corresponding to the order of 

the method list. 

 method Specify an algorithm used for charge mixing. Options are 

simple: simple mixing 

broyden2: improved Broyden method 

pulay: The RMM-DIIS method by Pulay 

Note. The broyden2 and pulay are quasi-Newton methods. 

 rmxs Initial value of charge mixing ratio. 
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 rmxe Final value of charge mixing ratio. 

 prec Specify whether to execute preprocessing. Normally, this should be 

“on”. 

 istr Even if broyden2 or pulay is selected, the simple method is employed 

for the first steps. This variable istr specifies the number of steps that 

use the simple method. 

 nbmix When broyden2 or pulay is selected, this variable nbmix specifies the 

number of previous iterations whose charge density is stored as a 

record. 

   

charge_preconditioning  Set the preconditioning factor. If preconditioning is enabled, the 

mixing ratio of G is determined by the following equation. 

 

                                     

     
        

   
  

 

   

 

             

Here      represents the minimum value of G (excluding the origin). 

Values for amix and bmix can be specified by the variables in the 

same block, but default values are recommended.  

 amix  

 bmix  

 

 

3.7.2 Technics to accelerate the convergence 

 

Here we introduce some techniques that are useful when the SCF calculation does not rapidly converge. 

 

(1) Subspace diagonalization 

 

By default, subspace diagonalization is not carried out. If subspace diagonalization is executed, although 

each step consumes more calculation time, convergence will be accelerated in most cases. To perform the 

diagonalization, define the submat column and set its value to “on.” 

wavefunction_solver{ 
        solvers{ 
        #tag    sol     till_n  dts  dte  itr  var     prec  cmix submat 
                lmMSD     -1     0.2  1.0  40   linear  on    1   on 
        } 
} 

 

The behavior of SCF convergence is affected by whether subspace diagonalization is applied before updating 

wavefunctions or after. This difference is especially significant when the RMM method is employed. By 

default, diagonalization is applied after updating wavefunctions. To apply it before updating wavefunctions, 

set the variable before_renewal to “on.” 

wavefunction_solver{ 
        solvers{ 
        #tag    sol     till_n  dts  dte  itr  var     prec  cmix submat 
                lmMSD     -1     0.2  1.0  40   linear  on    1   on 
        } 
        submat{ 
              before_renewal=on 
        } 
} 
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Subspace diagonalization is more effective when many bands are involved. Because of this, although the 

computational cost generally increases with an increasing number of bands, the entire calculation time may 

sometimes be reduced when you increase the number of bands.   

 

(2) Truncation of SCF iterations 

 

When the initial atomic coordinates significantly differ from a stable structure, the first steps of structure 

optimization often require a large number of SCF iterations to converge. In this case, it is recommended to 

truncate the SCF iterations early and calculate the forces needed to update atomic positions to a more stable 

structure. This may reduce the entire calculation time. To truncate the SCF iterations, set the variable 

max_scf_iteration in the control block as follows. 

control{ 
   ... 
   max_scf_iteration = 50 
} 

 

In the above example, the SCF calculation will end after the 50-th iteration even if the SCF calculation has 

not converged, and the force is calculated to update atomic positions. 

 

(3) Changing the mixing ratio of total and spin charge densities 

 

When spin is considered, total charge densities and spin charge densities (i.e., difference between charge 

densities of up spin and down spin) are individually mixed, and different mixing ratios can be applied to 

these two charge mixings. To set a different charge-mixing ratio, define the spin_density_maxfactor variable 

as shown below. 

charge_mixing{ 
        spin_density_mixfactor = 4 
        mixing_methods{ 
        #tag   no  method    rmxs  rmxe  prec  istr  nbmix  update 
               1   broyden2  0.1 0.1 on 3 15 renew 
        } 
} 

 

In the above example, since the spin_density_mixfactor is set to four, the mixing ratio of spin density is set to 

0.4 (= 0.1 × 4).  

 

If you want to mix charge densities of up spin and down spins, set the sw_recomposing variable to “off”: 

charge_mixing{ 
    sw_recomposing = off 
    ... 
} 

 

(4) Changing the algorithm used for spin charge mixing 

 

You can force PHASE to employ the simple mixing method for spin charge density. This option can be 

specified by setting the variable sw_force_simple_mixing in the spin_density block to “on” as follows. 

charge_mixing{ 
        sw_recomposing=on 
        spin_density_mixfactor = 4 
        mixing_methods{ 
        #tag   no  method    rmxs  rmxe  prec  istr  nbmix  update 
               1   broyden2  0.1 0.1 on 3 15 renew 
        } 
        spin_density{ 
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            sw_force_simple_mixing = on 
        } 
} 

 

(5) Fixing spin 

 

If you perform the SCF calculation with a fixed spin, convergence may be improved. This option is specified 

by the block ferromagnetic_state in the structure block as follows 

structure{ 
    ... 
    ferromagnetic_state{ 
        sw_fix_total_spin = on 
        spin_fix_period = INITIALLY 
        total_spin = 1.0 
    } 
    ... 
} 

 

The following variables can be specified in the ferromagnetic_state block. 

sw_fix_total_spin If “on,” total spin is fixed. 

spin_fix_period Specify how to fix total spin. Options are 

INITIALLY: total spin is fixed to the value of the initial SCF iteration, and the 
constraint will be weakened step by step.  

WHOLE: total spin is fixed to the initial value until the final step. 

any integer value: total spin is fixed until the specified number of iterations. After that, 

a normal calculation is performed. 

total_spin Specify total spin (i.e., difference between up and down spins). Total spin for the entire 

unit cell is specified. 

 

(6) Mixing of “deficit charge” 

 

In the PAW method, mixing of “deficit charge” is performed. In the DFT+U method, mixing of occupied 

matrix is performed, but this is actually identical to mixing of “deficit charge.” To apply the same algorithm 

as normal charge mixing to the mixing, set the switch sw_mix_charge_hardpart to “on.” 

charge_density{ 
    ... 
    sw_mix_charge_hardpart = on 
    ... 
} 

 

By this setting, convergence of the PAW method and the DFT+U method may be improved 
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3.8 Structure_evolution block 

 

Parameters related to structure optimization or molecular dynamics are specified in the block 

stucture_evolution. 

 

3.8.1 Structure optimization 

 

Execution of structure optimization is specified in structure_evolution as follows. 

... 
structure_evolution{ 
    method = quench 
    dt = 50 
    ... 
} 
... 

 

method A method of structure relaxation. Options are 

quench: quenched MD method (default) 

cg: CG method 

gdiis: GDIIS method 

bgfs: BFGS method 

dt Time step for structure relaxation. Appropriately large values converge faster, but too large a 

value may make the calculation incorrect.  

Defaults to 100 au. 

 

Because the GDIIS and BFGS methods are not stable when the force is large, the quenched MD or CG 

method is employed for earlier steps, and the method will be switched to GDIIS (or BFGS) after the force 

becomes sufficiently small. 

 

The initial method for the earlier steps and the criterion for switching the method to GDIIS (or BFGS) are 

specified by the variables initial_method and c_forc2gdiis, respectively. 

... 
structure_evolution{ 
    method = gdiis 
    dt = 50 

    gdiis{ 
        initial_method = cg 
        c_forc2gdiis = 0.0025 hartree/bohr 
    } 
} 
... 

 

The block gdiis is common to GDIIS and BFGS. Default values are quench for initial_method and 0.0025 

hartree/bohr for c_forc2gdiis. 

 

gdiis  Block for the GDIIS and BFGS methods. 

 initial_method Initial method for the earlier steps. 

Options are {quench, cg, sd}. 

 gdiis_box_size The atomic coordinates of the previous   steps will be stored in arrays. 

The variable gdiis_box_size specifies the number    
 gdiis_hownew Method of renewing the arrays that store the atomic coordinates after the 

gdiis_box_size steps. 

Options are {anew, renew} 

 c_forc2gdiis Criterion for switching the method to GDIIS or BFGS. 
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 Defaults to 0.0025 (hartree/bohr). 

 

3.8.2 Molecular dynamics 

 

Parameters related to molecular dynamics are specified in the block structure_evolution. 

structure_evolution{ 
    method = velocity_verlet  
    dt = 100  
} 

 

method  Method for updating atomic coordinates. For molecular dynamics, the options are 

velocity_verlet: constant energy simulation. 

temperature_control: constant temperature simulation. 

dt  Time step. 

Defaults to 100 au (about 2.4 fs). 

thermostat  Block for specifying the thermostat. 

 temp Temperature. 

 qmass Thermostat parameter Q, corresponding to an effective mass. 

This parameter is required for constant-temperature simulations. 

 

3.8.3 Stress tensor 

 

Calculation of the stress tensor can be specified in the block stress in the structure_evolution block. 

structure_evolution{ 
  stress{ 
    sw_stress=1 
  } 
} 

 

stress  Calculation of stress tensor. 

 sw_stress Switch that specifies whether to calculate the stress tensor. Options are {on, 

off}. 

 

  



 71 

3.9 Postproccesing 

 

3.9.1 Density of states (DOS) 

 

The density of states (DOS) can be calculated after the SCF iterations converge. Calculation of DOS is 

specified in the dos block in the postprocessing block as follows. 

  postprocessing{ 
      dos{ 
          sw_dos = on 
          method = gaussian 
          deltaE_dos = 1e-4 hartree 
      } 
  } 

 

The following variables are available in the dos block. 

sw_dos Switch that specifies whether to calculate the DOS. Options are on and off. 

method Method for calculating the density of states. Options are 

gaussian: simple Gaussian broadening. 

tetrahedral: accurate calculation based on the tetrahedral method. 

Note that the conditions in which the tetrahedral method is available are limited (See 

below).  

deltaE_dos Specifies the broadening used in the DOS calculation, in units of energy. 

Defaults to 1e−4 hartee. 

 

The tetrahedral method is available when 

 mesh method is employed for the k-sampling, 

        accuracy{ 
            ksampling{ 
                method = mesh 
            } 
        } 

 tetrahedral method is used for the smearing 

        accuracy{ 
            smearing{ 
                method = tetrahedral 
            } 
        } 

If the above conditions are not satisfied, the DOS is calculated by the Gaussian method. 

 

 

3.9.2 Charge density 

 

Charge density is calculated in reciprocal space during the SCF calculation, but you can convert the charge 

density to real space by inverse Fourier transformation. It can then be visualized using the PHASE-Viewer. 

The block charge in the block postprocessing is used to output the charge density to real space. 

  postprocessing{ 
      charge{ 
          sw_charge_rspace = on 
          filetype = cube 
      } 
  } 

 

The following variables are set in the charge block. 

sw_charge_rspace Switch that specifies whether to generate the charge density in real space. Options 

are on or off. 
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filetype Specifies the file format of the charge density data. Options are 

density_only: only the charge density is written to the file. (default) 

cube: charge density is stored in Gaussian cube format. 

Using the cube option is recommended. 

title Title of the Gaussian Cube file. Double quotes “ ” are used to include spaces in the 

title. 

 

If filetype=cube, it is recommended to change the filename of the charge density file. The filename can be 

specified in the file “file_names.data” as shown below. 

  &fnames 
  ... 
  F_CHR = './nfchr.cube' 
  / 

 

The default name of the file is “nfchr.data.” If spin polarization is considered and “nfchr.cube” is set to the 

filename, two cube files named “nfchr.up.cube” and “nfchr.down.cube,” which correspond to densities of up 

and down spins, respectively, will be generated. 

 

3.10 Print level 

 

PHASE outputs a log file named “output000.” The number “000” will increase as execution continues. The 

print level of the log file is specified in the block printoutlevel. 

    printoutlevel{ 
        base = 1 
    } 

 

In the printoutlevel block, the variables that control the print level are listed. These variables are set to 

either 0, 1, or 2; a large value causes more detail to be printed. Default values of all these variables are 1. 

Representative variables are listed below. 

base Print level for the entire calculation. This variable becomes the default value for other 

variables that specify the print level. 

timing Print level of time profiles. 

input Print level of input. 

solver Print level of wavefunction solver. 

spg Print level of space group. 

 

Note that base=2 prints a large amount of output, making the log file hard to read. Because this additional 

information is mainly for debugging, it is not recommended for general users to use base=2. 
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4. Examples for basic functions 
 

4.1 Total energy calculation 

 

Calculation of total energy is one of the most basic functions of PHASE. By calculating total energy using 

several different lattice constants, the equilibrium lattice constant and bulk modulus can be obtained, and 

stability of crystals at absolute zero temperature can be evaluated. 

 

4.1.1 Input parameters 

 

Here we introduce an example total energy calculation. The target system, a silicon crystal (diamond 

structure) composed of eight silicon atoms, is shown in Figure 4.1エラー! 参照元が見つかりません。 . 

 

Figure 4.1 Diamond structure composed of silicon atoms 

 

Input files of the calculation are specified in the file “file_names.data.” These files are specified as follows. 

&fnames  
 F_INP    = './input_scf_Si8.data' 
 F_POT(1) = '../pp/Si_ldapw91_nc_01.pp' 
  ... 
 F_CHR    = './nfchr.cube' 
&end 

To execute PHASE, you need to specify a pseudopotential file and an input file to F_POT(1) and F_INP. 

“Si_ldapw91_nc_01.pp” is a pseudopotential file. 

 

Here we describe the input parameter file “input_scf_Si8.data.” The control block specifies calculation 

conditions for the entire calculation. For example, cpumax specifies the limit of calculation time. 

 

Control{ 

condition = initial 
        cpumax = 3600 sec     ! {sec|min|hour|day} 
} 

 

The accuracy block contains parameters related to computational accuracy. 
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accuracy{ 
        cutoff_wf =   9.00  rydberg 
        cutoff_cd =  36.00  rydberg 
        num_bands = 20 
        ksampling{ 
                method = mesh ! {mesh|file|directin|gamma} 
                mesh{  nx = 4, ny =  4, nz =  4  } 
        } 
        ... 
        xctype = ldapw91 
        scf_convergence{ 
             delta_total_energy = 1.e-12 hartree 
             succession = 3      !default value = 3 
        } 
        ... 
} 

Parameters cutoff_wf and cutoff_cd indicate that cutoff energies for wavefunctions and the charge density 

distribution are 9.0 Ry and 36.0 Ry, respectively. The parameter num_bands specifies the number of the 

energy level. Since this system has eight Si atoms and a Si atom has four valence electrons, the number of 

total occupied energy levels is obtained by 8   4/2 = 16. (This is divided by two because up- and down-spin 

electrons occupy the same energy level). Therefore, number_bands must be larger than 16. The ksampling 

block is used to specify a method of k-point sampling. In this example, a 4 × 4 × 4 mesh was used for k-point 

sampling. xctype = ldapw91 specifies using an LDA-type exchange-correlation energy. scf_convergence is 

used to specify a convergence criterion. In this example, SCF iterations were terminated when the difference 

in total energies was less than       Hartree, three times in succession.  

 

The structure block is used to input the crystal structure. Default units are atomic units (The unit of length 

is Bohr). 

structure{ 
        unit_cell_type = primitive 
        unit_cell{ 
                a_vector =  10.26    0.00    0.00 
                b_vector =   0.00   10.26    0.00 
                c_vector =   0.00    0.00   10.26 
        } 
        atom_list{ 
                coordinate_system = internal ! {cartesian|internal} 
                atoms{ 
                #default weight = 1, element = Si, mobile = 1 
                #tag   rx       ry       rz   
                      0.125    0.125    0.125 
                     -0.125   -0.125   -0.125 
                      0.125    0.625    0.625 
                     -0.125   -0.625   -0.625 
                      0.625    0.125    0.625 
                     -0.625   -0.125   -0.625 
                      0.625    0.625    0.125 
                     -0.625   -0.625   -0.125 
                } 
        } 
        element_list{ #tag element  atomicnumber 
                              Si       14 
        } 
} 

 

The atom_list specifies atomic species, internal coordinates, and whether the atomic position is fixed.  

The element_list defines the element and its atomic number. 
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The postprocessing block is used to specify parameters related to post-processing. 

postprocessing{ 
        ... 
        charge{ 
                sw_charge_rspace    = ON 
                filetype            = cube  !{cube|density_only} 
                title  = "This is a title line for the bulk Si" 
        } 
} 

 

The charge block is used to output charge density. The charge density is saved to the file specified by the 

F_CHR keyword in “file_names.data.” filetype = cube specifies the Gaussian cube format. In this case, the 

file extension of the cube file must be *.cube. Gaussian cube files can be visualized using PHASE Viewer and 

other visualization software. 

 

4.1.2 Execution of calculations 

 

You execute PHASE as follows: 

 % mpirun -np NP ../../bin/phase ne=NE nk=NK  

Here NP is the number of processors used for the calculation，NE is the degree of parallelism for energy 

levels，and NK is the degree of parallelism for k-points. Note that NE times NK must be equal to NP (NP = 

NE×NK). If you use only one processor, you can execute PHASE as follows: 

 % mpirun  ../../bin/phase 

 

You can check the progress of the SCF calculation by checking the log file “Output000.” Values of total energy 

can be extracted using the grep command as follows: 

% grep TOTAL output000 

The following results were obtained for the sample calculation of Si8. 

 TOTAL ENERGY FOR     1 –TH ITER=    -30.851502112276   edel =  -0.308515D+02 
 TOTAL ENERGY FOR     2 -TH ITER=    -31.428857832957   edel =  -0.577356D+00 
 TOTAL ENERGY FOR     3 -TH ITER=    -31.547875271353   edel =  -0.119017D+00 
 TOTAL ENERGY FOR     4 -TH ITER=    -31.575313743308   edel =  -0.274385D-01 
 TOTAL ENERGY FOR     5 -TH ITER=    -31.582591031973   edel =  -0.727729D-02 
 TOTAL ENERGY FOR     6 -TH ITER=    -31.585296287695   edel =  -0.270526D-02 
 TOTAL ENERGY FOR     7 -TH ITER=    -31.586566551584   edel =  -0.127026D-02 
 TOTAL ENERGY FOR     8 -TH ITER=    -31.587203940144   edel =  -0.637389D-03 
 TOTAL ENERGY FOR     9 -TH ITER=    -31.587536187844   edel =  -0.332248D-03 
 TOTAL ENERGY FOR    10 -TH ITER=    -31.587714367315   edel =  -0.178179D-03 
 TOTAL ENERGY FOR    11 -TH ITER=    -31.587811775875   edel =  -0.974086D-04 
 TOTAL ENERGY FOR    12 -TH ITER=    -31.587865777306   edel =  -0.540014D-04 
 TOTAL ENERGY FOR    13 -TH ITER=    -31.587896135394   edel =  -0.303581D-04 
 TOTAL ENERGY FOR    14 -TH ITER=    -31.587913347827   edel =  -0.172124D-04 
 TOTAL ENERGY FOR    15 -TH ITER=    -31.587923218322   edel =  -0.987050D-05 
 TOTAL ENERGY FOR    16 -TH ITER=    -31.587928921902   edel =  -0.570358D-05 
 TOTAL ENERGY FOR    17 -TH ITER=    -31.587932250599   edel =  -0.332870D-05 
 TOTAL ENERGY FOR    18 -TH ITER=    -31.587934208228   edel =  -0.195763D-05 
 TOTAL ENERGY FOR    19 -TH ITER=    -31.587935369846   edel =  -0.116162D-05 
 TOTAL ENERGY FOR    20 -TH ITER=    -31.587936064369   edel =  -0.694523D-06 
 TOTAL ENERGY FOR    21 -TH ITER=    -31.587937128483   edel =  -0.106411D-05 
 TOTAL ENERGY FOR    22 -TH ITER=    -31.587937146269   edel =  -0.177857D-07 
 TOTAL ENERGY FOR    23 -TH ITER=    -31.587937147223   edel =  -0.953783D-09 
 TOTAL ENERGY FOR    24 -TH ITER=    -31.587937147361   edel =  -0.138854D-09 
 TOTAL ENERGY FOR    25 -TH ITER=    -31.587937147369   edel =  -0.733991D-11 
 TOTAL ENERGY FOR    26 -TH ITER=    -31.587937147369   edel =  -0.358824D-12 
 TOTAL ENERGY FOR    27 -TH ITER=    -31.587937147369   edel =  -0.117240D-12 
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The above results indicate that the total energy is converging. 

 

4.1.3 Output of calculation results 

 

The calculated total energy is printed to the F_ENF file. In the example Si8 calculation, the results were 

printed to the F_ENF file (nfefn.data) as follows: 

iter_ion, iter_total, etotal, forcmx 

1 12 -31.587937147369 0.0000004495 

 

After the calculation is finished, the charge density file “nfchr.cube” is generated. The charge density 

distribution is shown in Figure 4.2. Note: You may need to fix the number of atoms written in the cube file. 

 

 

Figure 4.2 Visualized charge density distribution of a silicon crystal 
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4.2 Calculations using symmetry properties 

 

PHASE can reduce its computational costs by using the symmetry of crystals. A type of symmetry can be 

automatically identified, or you can manually specify the generator. Atomic positions can be specified in 

either of two ways: basic lattice or Bravais lattice. To choose between these, you need to set the unit_cell_type 

to “primitive” or “Bravais.” 

 

4.2.1 Input parameters 

 

4.2.1.1 Specifying the unit cell 

 

（１） Specifying the unit cell by basic lattice 

 

     unit_cell_type = primitive 
     unit_cell{ 
          #units bohr  
          a_vector =  0.00000  5.13000  5.13000 
          b_vector =  5.13000  0.00000  5.13000 
          c_vector =  5.13000  5.13000  0.00000 
     } 

 

This specification is available not only to unit_cell_type=primitive but also to unit_cell_type =Bravais. 

 

（２） Specifying the unit cell by lattice parameters 

 

   unit_cell_type = Bravais 
   unit_cell{ 
        #units bohr 
        a = 10.26, b = 10.26, c = 10.26 
        alpha = 90, beta = 90, gamma = 90  
   } 

 

This specification is enabled only when unit_cell_type=Bravais. When the Bravais lattice is used, the basic 

lattice is automatically determined on the basis of a specification of symmetry. Note that the actual 

calculation will be carried out using the automatically determined basic lattice; thus, you need to specify 

atomic positions, number of k-points, symmetry of k-points, and other parameters that are suitable for the 

basic lattice.  

 

If the unit_cell_type is “Bravais,” you should input only the atom on a lattice point. For example, for a 

body-centered lattice, input only the atom on (0, 0, 0) and do not input the atom on (0.5, 0.5, 0.5). The type of 

lattice is specified by the lattice_system variable (See Table 4.1) For a rhombohedral crystal, you need to 

specify the lattice parameters for the corresponding hexagonal crystal. The relationship between the lattice 

vectors of rhombohedral and hexagonal crystals is shown in Figure 4.3. 

 

Table 4.1 The Bravais lattices and crystal systems 

crystal systems lattice 

parameters 

description of unit cell type of lattice keywords for the 

lattic_system 

cubic (c)     a =  , b =  , c =    

alpha = 90, beta = 90, gamma = 

90 

primitive (P)  

face-centered 

(F) 

body-centered 

primitive  

face-centered 

bodycentered 
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(I) 

tetragonal (t)      a =  , b =  , c =    

alpha = 90, beta = 90, gamma = 

90 

primitive (P) 

body-centered 

(I) 

primitive 

body-centered 

orthorhombic (o)        a =  , b =  , c =    

alpha = 90, beta = 90, gamma = 

90 

primitive (P)  

base-centered 

(C) 

face-centered 

(F) 

body-centered 

(I) 

primitive  

base-centered 

face-centered 

body-centered 

hexagonal (h)      a =  , b =  , c =    

alpha = 90, beta = 90, gamma = 

120 

primitive (P)  hexagonal  

trigonal (h) 

rhombohedral  

 

     a = , b =  , c =    

alpha = 90, beta = 90, gamma = 

120 

rhombohedral 

(R)  

primitive (P) 

rhombohedral  

hexagonal 

monoclinic (m)        

  
a =  , b =  , c =    

alpha = 90, beta =  , gamma = 90 

primitive (P) 

base-centered 

(C) 

primitive 

base-centered 

triclinic (a)       

       
a =  , b =  , c =    

alpha =  , beta =  , gamma =   

primitive (P) primitive 

 

 

 

Figure 4.3 Relationship between the lattice vectors of rhombohedral and hexagonal crystals (view along the 

c-axis of hexagonal).     
 
    are the lattice vectors for hexagonal, and     

 
    are the lattice 

vectors for rhombohedral crystals 

Table 4.2 Primitive translation vectors for Bravias lattice 

the Bravais 

lattices  

         

primitive cubic 

(cP)  

             

face-centered 

cubic (cF)  

 

 
           

 

 
           

 

 
           

body-centered 
 

 
                 

 

 
    –           
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cubic (cI)  

primitive 

tetragonal (tP)  

             

body-centered 

tetragonal (tI)  

 

 
             

       

 

 
                 

 

 
               

primitive 

orthorhombic 

(oP)  

             

base-centered 

orthorhombic 

(oC)  

 

 
           

 

 
                

face-centered 

orthorhombic 

(oF)  

 

 
           

 

 
           

 

 
           

body-centered 

orthorhombic 

(oI)  

 

 
          

      

 

 
               

 

 
               

primitive 

hexagonal (hP)  

        
 

 
   

  

 
          

primitive 

rhombohedral 

(hR)  

 

 
   

 

   
   

 

 
      

 

 
   

 

   
   

 

 
      

 

  
   

 

 
     

primitive 

monoclinic (mP)  

                            

base-centered 

monoclinic (mC)  

 

 
           

 

 
                               

primitive 

triclinic (aP)  

               
          

          
                

     
      

     
   

 
     

 
                  

   
 

 
    

 

4.2.1.2 Specifying symmetry  

 

Symmetry can be specified in three ways: the crystal_structure variable, automatic identification of the 

symmetry operation, and specification of the generator. 

 

1. The crystal_structure variable 

You can specify a type of crystal structure by the crystal_structure variable. Options are diamond, hexagonal, 

fcc, bcc, and simple_cubic. For the Si crystal, diamond is specified. 

 

（１） Automatic identification of the symmetry operation  

If the method variable is set to automatic, then symmetry is automatically identified. The lattice_system 

variable in the tspace block should be specified if the type of lattice is not primitive. 

  symmetry{ 
      method = automatic 
      tspace{ 
         lattice_system = facecentered 
     !{rhombohedral|hexagonal|primitive|facecentered|bodycentered|basecentered} 
      } 
  } 

 

（２） Specification of generator  
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The generator is specified by the tspace block. For the Si crystal, the tspace block is specified as follows: 

      tspace{ 
         lattice_system = facecentered 
     !{rhombohedral|hexagonal|primitive|facecentered|bodycentered|basecentered} 
         num_generators = 3 
         generators{ 
         #tag rotation  tx   ty   tz 
                IE      0    0    0 
                C31+    0    0    0 
                C4X+    1/4  1/2  3/4 
         } 
      } 

 

The lattice_system=facecenterd indicates that the symmetry is face-centered, and num_generators=3 sets 

the number of generators to three. In the generators block, IE, C31+, and C4X+ are specified as the 

generators. 

 

Here we describe how to specify the generators. The rotational operation is specified by the following codes. 

Each line corresponds to one rotation. The numbers in the first column or the symbol in the second column is 

used in the rotation column in the generators block to specify the symmetry operations. The third to fifth 

columns represent rotational operations. For trigonal and hexagonal lattices, W represents X-Y. The rotation 

can be specified either by the numbers in the first column or by the symbol in the second column. 

 

For the trigonal and hexagonal, 

                1   E     X  Y  Z                      13  IE    -X -Y -Z 
                2   C6+   W  X  Z                      14  IC6+  -W -X -Z 
                3   C3+  -Y  W  Z                      15  IC3+   Y -W -Z 
                4   C2   -X -Y  Z                      16  IC2    X  Y -Z 
                5   C3-  -W -X  Z                      17  IC3-   W  X -Z 
                6   C6-   Y -W  Z                      18  IC6-  -Y  W -Z 
                7   C211 -W  Y -Z                      19  IC211  W -Y  Z 
                8   C221  X  W -Z                      20  IC221 -X -W  Z 
                9   C231 -Y -X -Z                      21  IC231  Y  X  Z 
               10   C212  W -Y -Z                      22  IC212 -W  Y  Z 
               11   C222 -X -W -Z                      23  IC222  X  W  Z 
               12   C232  Y  X -Z                      24  IC232 -Y -X  Z 

 

and for the others, 

                1   E     X  Y  Z                      25  IE    -X -Y -Z 
                2   C2X   X -Y -Z                      26  IC2X  -X  Y  Z 
                3   C2Y  -X  Y -Z                      27  IC2Y   X -Y  Z 
                4   C2Z  -X -Y  Z                      28  IC2Z   X  Y -Z 
                5   C31+  Z  X  Y                      29  IC31+ -Z -X -Y 
                6   C32+ -Z  X -Y                      30  IC32+  Z -X  Y 
                7   C33+ -Z -X  Y                      31  IC33+  Z  X -Y 
                8   C34+  Z -X -Y                      32  IC34+ -Z  X  Y 
                9   C31-  Y  Z  X                      33  IC31- -Y -Z -X 
               10   C32-  Y -Z -X                      34  IC32- -Y  Z  X 
               11   C33- -Y  Z -X                      35  IC33-  Y -Z  X 
               12   C34- -Y -Z  X                      36  IC34-  Y  Z -X 
               13   C2A   Y  X -Z                      37  IC2A  -Y -X  Z 
               14   C2B  -Y -X -Z                      38  IC2B   Y  X  Z 
               15   C2C   Z -Y  X                      39  IC2C  -Z  Y -X 
               16   C2D  -X  Z  Y                      40  IC2D   X -Z -Y 
               17   C2E  -Z -Y -X                      41  IC2E   Z  Y  X 
               18   C2F  -X -Z -Y                      42  IC2F   X  Z  Y 
               19   C4X+  X -Z  Y                      43  IC4X+ -X  Z -Y 
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               20   C4Y+  Z  Y -X                      44  IC4Y+ -Z -Y  X 
               21   C4Z+ -Y  X  Z                      45  IC4Z+  Y -X -Z 
               22   C4X-  X  Z -Y                      46  IC4X- -X -Z  Y 
               23   C4Y- -Z  Y  X                      47  IC4Y-  Z -Y -X 
               24   C4Z-  Y -X  Z                      48  IC4Z- -Y  X -Z 

 

However, translation operations, which are associated with a rotational operation, are specified by the tx, ty, 

tz columns in the generators table. Fractional numbers refer to the lattice vectors being used. 

 

4.2.1.3 Using inversion symmetry 

If the system has inversion symmetry, this can be used to reduce the computational cost.   

 

2. Using no inversion symmetry 

If the variable sw_inversion is “off,” inversion symmetry is not used. In this case, the atom_list block for the 

Si crystal is specified as below. 

        atom_list{ 
             atoms{ 
                  !#tag  rx        ry        rz    element 
                       0.125     0.125     0.125      Si 
                      -0.125    -0.125    -0.125      Si 
             } 
        } 

 

3. Using inversion symmetry 

To use inversion symmetry, set the sw_inversion variable to “on.” For example, the following atomic 

coordinates have inversion symmetry whose center is the origin; thus, the computational cost can be reduced 

using the sw_inversion variable. 

     atom_list{ 
          coordinate_system = internal ! {cartesian|internal} 
          atoms{ 
          #units  !{angstrom(cartesian) | bohr(cartesian)} 
          #tag  rx        ry        rz      weight    element    mobile 
               0.125     0.125     0.125       1          Si        1 
              -0.125    -0.125    -0.125       1          Si        1 
               } 
     } 

Set the sw_inversion to “on” in the symmetry block and specify the atomic coordinates as below. 

     atom_list{ 
          coordinate_system = internal ! {cartesian|internal} 
          atoms{ 
          #units  !{angstrom(cartesian) | bohr(cartesian)} 
          #tag  rx        ry        rz      weight    element    mobile 
               0.125     0.125     0.125       2          Si        1 
               } 
     } 

      symmetry{ 

sw_inversion = on 

      } 

 

In the above example, the weight column of the atom is set to 2. This indicates that the atoms will be copied 

by the inversion symmetry operation. It is recommended to use this option if the system has inversion 

symmetry. The origin is the center of the inversion symmetry operation. Note that if this option is applied to 

a system that has no inversion symmetry, an incorrect calculation will be carried out. 
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4.2.2 Example: Silicon crystal (Si2) 

 

A diamond-structured silicon crystal (Figure 4.4) has two unique atoms in its unit cell. Here we introduce a 

sample input for the silicon crystal (hereafter referred to as Si2). This input file is in “sample/Si2/.” 

 

 

Figure 4.4 Atomic structure of Si2. The orange lines represent  

the primitive lattice composed of two silicon atoms. 

 

4. SCF calculation 

 

First, perform the SCF calculation to obtain the charge density. The input file is “sample/Si2/scf.” 

 

In the file “file_names.data,” the input parameter file and the pseudopotential files are specified. 

F_INP    = './input_scf_Si.data' 
F_POT(1) = '../../pp/Si_ldapw91_nc_01.pp' 

F_CHGT   = '../scf/nfchgt.data' 
   ... 

 

In this input parameter file, “diamond” is specified for the crystal_structure variable. 

accuracy{ 
        cutoff_wf =   9.00  rydberg 
        cutoff_cd =  36.00  rydberg 
        num_bands = 8 
} 

 
structure{ 
        unit_cell_type = Bravais 
        unit_cell{ 
             a = 10.26, b = 10.26, c = 10.26 
             alpha = 90, beta = 90, gamma = 90 
        } 
        symmetry{ 
             crystal_structure = diamond 
        } 
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        atom_list{ 
             atoms{ 
                  #tag   rx        ry        rz    element 
                       0.125     0.125     0.125      Si 
                      -0.125    -0.125    -0.125      Si 
             } 
        } 
} 

The number of energy levels, num_bands, is set to 8 because the number of atoms is two. 

 

Execute PHASE as below. 

% mpirun  ../../../bin/phase 

After the calculation is complete, the charge density is output to the file “nfchgt.data,” as specified by the 

F_CHGT variable in file_names.data. 

 

 

5. Density of states 

 

To calculate the density of states (DOS), use an input file like sample/Si2/dos. Execute the calculation in a 

different directory from the previous directory, where the SCF calculation was done, to avoid overwriting 

output files.  

 

In the file_names.data file, input and output files are specified as follows. 

F_INP    = './input_dos_Si.data' 
F_POT(1) = '../../pp/Si_ldapw91_nc_01.pp' 
   ...          ... 
F_CHGT   = '../scf/nfchgt.data' 
   ...          ... 
F_ENERG  = './nfenergy.data' 
   ...          ... 

The data file for charge density, specified by F_CHGT, is an output file created by the SCF calculation. 

 

Input files are input_dos_Si.data and nfchgt.data. The following parameters are specified in the input file 

input_dos_Si.data. 

Control{ 
       condition = fixed_charge 
} 

 
accuracy{ 
        cutoff_wf =   9.00  rydberg 
        cutoff_cd =  36.00  rydberg 
        num_bands = 8 
        ksampling{ 
                method = mesh 
                mesh{  nx = 4, ny =  4, nz =  4   } 
        } 
        smearing{ 
                method = tetrahedral 
        } 
        xctype = ldapw91 
        initial_wavefunctions = matrix_diagon 
            matrix_diagon{ 
               cutoff_wf =  9.00  rydberg 
            } 
        ek_convergence{ 
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                num_max_iteration = 200 
                sw_eval_eig_diff = on 
                delta_eigenvalue = 1.e-8 hartree 
                succession   = 2 
       } 
} 

 
postprocessing{ 
       dos{ 
          sw_dos      = ON 
          method      = tetrahedral   !{ tetrahedral | Gaussian } 
          deltaE_dos  = 1.e-3 eV 
          nwd_window_width = 10 
       } 
} 

 

The first block in Control specifies that the charge density, obtained from the SCF calculation, is fixed. The 

parameter ksampling specifies that k-points are sampled by       and that tetrahedral is employed for 

smearing. Convergence criteria are set by ek_convergence. The postprocessing block specifies parameters 

used for the calculation of DOS based on the tetrahedral method. 

 

Calculate the DOS by using the program ekcal and these input files. 

 % mpirun  ../../../bin/ekcal 

 

After the calculation is done, the output file nfenergy.data is generated. In this file, energy eigenvalues are 

printed for every k-points in order of increasing energy. The header part of the file is shown below. 

 num_kpoints =    141 
 num_bands   =      8 
 nspin       =      1 
 Valence band max   =   0.233846 

 
=== energy_eigen_values === 
 ik =    1 (  0.000000  0.500000  0.500000 ) 
     -0.0484324491     -0.0484324491      0.1258095002      0.1258095002 
      0.2619554320      0.2619554320      0.6015285289      0.6015285289 
=== energy_eigen_values === 
 ik =    2 (  0.000000  0.490000  0.490000 ) 
     -0.0540717117     -0.0427149546      0.1258687813      0.1258687813 
      0.2607026827      0.2633829946      0.6006244013      0.6006244013 
=== energy_eigen_values === 
 ik =    3 (  0.000000  0.480000  0.480000 ) 
     -0.0596299923     -0.0369220783      0.1260465996      0.1260465996 
      0.2596226501      0.2649874134      0.5980547648      0.5980547648 
=== energy_eigen_values === 
 ik =    4 (  0.000000  0.470000  0.470000 ) 
     -0.0651046420     -0.0310567694      0.1263428799      0.1263428799 
      0.2587131916      0.2667706685      0.5941566835      0.5941566835 
=== energy_eigen_values === 
 ik =    5 (  0.000000  0.460000  0.460000 ) 
     -0.0704931128     -0.0251220735      0.1267574962      0.1267574962 
      0.2579721226      0.2687346642      0.5892968047      0.5892968047 

 

T The first two lines give the number of k-points and the number of bands. The third line indicates that spin 

polarization was not considered in this calculation. The fourth line gives the highest valence band energy. 

 

DOS can be plotted by the tool dos.pl as below. Here the option -erange is used to specify the energy range, 

where E1 and E2 are the minimum and maximum energy levels, respectively. 
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 % dos.pl dos.data -erange=E1,E2 

This command creates density_of_states.eps, a postscript format file for the DOS. If the command is 

executed with the –with_fermi option, a dashed line is drawn at the specified fermi level. Note that the 

dashed line is drawn at the level of the highest valence band for systems having a band gap. 

 

 % dos.pl dos.data -erange=-13,5 -with_fermi 

 

Figure 4.5 shows the DOS for Si2. 

 

Figure 4.5 Density of states for Si2 

 

6. Band structure 

 

Band structure is calculated by the following procedure. The input file is sample/Si2/band. 

 

In file_names.data, input and output files are specified as below. 

 F_INP    = './input_band_Si.data' 
 F_POT(1) = '../../pp/Si_ldapw91_nc_01.pp' 
 F_KPOINT = '../tools/kpoint.data' 
 F_CHGT   = '../scf/nfchgt.data' 
   ...         ... 

 

The above example specifies that the input file is input_band_Si.data and that k-points are to be read from 

kpoint.data. The kpoint.data file is generated using the tool band_kpoint.pl as below. Here 

bandkpt_fcc_xglux.in specifies parameters used to generate the k-points. 

 % band_kpoint.pl bandkpt_fcc_xglux.in 

 

Execute the program ekcal with these input files. 

 % mpirun  ../../../bin/ekcal 

 

By using the tool band.pl, band structures can be plotted from the output file nfenergy.data. The file 

band_structure.eps, a postscript format file for band structures, is generated by the following command. 

% band.pl nfenergy.data bandkpt_fcc_xglux.in -erange=E1,E2 -with_fermi 
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In this example, the band structure is plotted in the energy range from E1 = −13 to E2 = 5; these are the 

same values as in the previous calculation. 

% band.pl nfenergy.data bandkpt_fcc_xglux.in -erange=-13,5 -with_fermi 

 

Figure 4.6 shows the band structure of Si2. 

 

 

Figure 4.6 Band structure of Si2. 
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4.3 Spin-polarized calculation 

 

Spin polarization needs to be considered to study ferromagnetic or antiferromagnetic substances. This 

section describes procedures for spin-polarized calculations. In these examples, body-centered cubic iron and 

body-centered cubic chrome are employed as examples for ferromagnetic and antiferromagnetic substances, 

respectively. 

 

4.3.1 Calculations for a ferromagnetic substance 

 

4.3.1.1 Input parameters 

 

As an example of a ferromagnetic substance, the input file for body-centered cubic iron is shown below. This 

file is in sample/bcc_Fe. 

Control{ 
        condition = initial 
        cpumax = 3 hour 
        max_iteration = 250 
} 

 
accuracy{ 
        cutoff_wf =   25  rydberg 
        cutoff_cd =  225.00  rydberg 
        num_bands =  20 
        ksampling{ 
                method = mesh 
                mesh{ nx = 10, ny = 10, nz = 10 } 
        } 
        smearing{ 
                method = tetrahedral 
        } 
        xctype = ggapbe 
        scf_convergence{ 
                delta_total_energy = 1.e-10  hartree 
                succession = 3 
        } 
} 

 
structure{ 
        unit_cell_type = Bravais 
        unit_cell{ 
                 #units angstrom 
                 a = 2.845, b = 2.845, c = 2.845 
                 alpha = 90, beta = 90, gamma = 90 
        } 

 
        symmetry{ 
             crystal_structure = bcc 
        } 

 
        magnetic_state = ferro 

 
        atom_list{ 
             atoms{ 
                !#tag  rx       ry         rz      element 
                     0.000     0.000     0.000          Fe 
             } 
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        } 
        element_list{ !#tag element  atomicnumber     zeta  dev 
                                 Fe            26    0.275  1.5 } 

 
} 

 
Postprocessing{ 
        dos{ 
                sw_dos = ON 
                method = tetrahedral 
                deltaE = 1.e-4 hartree 
                nwd_dos_window_width = 10 
        } 
        charge{ 
                sw_charge_rspace    = OFF 
                filetype            = cube 
                title  = "This is a title line for FM bcc Fe" 
        } 
} 

 
printlevel{ 
        base = 1 
} 

 

 

7. Specifying the crystal structure 

The crystal_structure variable is set to “bcc,” which means that the crystal structure is body-centered cubic. 

The unit cell is defined by the Bravais lattice, and only one atom is listed in the atom_list block. Note that 

the atom at body center is not listed. Since the crystal_structure is “bcc,” PHASE converts the specified 

lattice to the basic lattice. 

 

 

8. Specifying spin freedom 

To calculate for a ferromagnetic substance, set the variable magnetic_state to “ferro.” 

structure{ 
        magnetic_state =  ferro   !{para|antiferro|ferro} 
} 

 

In addition, you need to set an initial value of spin polarization for each atom. In the following input file, 

        element_list{ #tag element  atomicnumber     zeta  dev 
                             Fe          26         0.275  1.5 
        } 

the variable zeta specifies the initial value of spin polarization                  , which is the 

difference between up- and down-spin densities. 

 

4.3.1.2 Output 

 

Transition of spin polarization is printed to the log file output000. You can check the change by using the 

grep command as below. 

% grep charge output000 | grep NEW | more 

 
 !*--- input-file style = NEW 
 !NEW total charge (UP, DOWN, SUM) =     4.91749982 (+)    3.08250018 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.75677803 (+)    3.24322197 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.64472738 (+)    3.35527262 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.55104317 (+)    3.44895683 (=)    8.00000000 
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 !NEW total charge (UP, DOWN, SUM) =     4.47221206 (+)    3.52778794 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.46057861 (+)    3.53942139 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.48476557 (+)    3.51523443 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.52141098 (+)    3.47858902 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.56555794 (+)    3.43444206 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.61364243 (+)    3.38635757 (=)    8.00000000 
   ................................................................. 
   ................................................................. 
   ................................................................. 

 
 !NEW total charge (UP, DOWN, SUM) =     5.11286684 (+)    2.88713316 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     5.11285665 (+)    2.88714335 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     5.11284790 (+)    2.88715210 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     5.11284030 (+)    2.88715970 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     5.11283035 (+)    2.88716965 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     5.11282059 (+)    2.88717941 (=)    8.00000000 

 

By the definition of spin polarization                  , the above result indicates that the spin 

polarization has converged to         . 

 

You can check the change in values between before and after updating spin by using the grep command as 

below. 

 % grep charge output000 | more 

 
 F_CHGT     = ./nfcharge.data                                              opened = false 
 !** --- charge preconditioning --- 
 !** sw_charge_rspace   =      0 
 !** charge_filetype    =      1 
 !** charge_title    =  
 !** deviation( 1) of the Gauss. distrib. func. for the initial charge construction =    1.50000 
 F_CHGT     = ./nfcharge.data                                              
 F_CHGT     = ./nfcharge.data                                              
 !! total_charge =        8.000000 (m_CD_initial_CD_by_Gauss_func) 
 !OLD total charge (UP, DOWN, SUM) =     5.10000000 (+)    2.90000000 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.91749982 (+)    3.08250018 (=)    8.00000000 
 !OLD total charge (UP, DOWN, SUM) =     4.91749982 (+)    3.08250018 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.75677803 (+)    3.24322197 (=)    8.00000000 
 !OLD total charge (UP, DOWN, SUM) =     4.75677803 (+)    3.24322197 (=)    8.00000000 
 !NEW total charge (UP, DOWN, SUM) =     4.64472738 (+)    3.35527262 (=)    8.00000000 
   ................................................................. 
   ................................................................. 
   ................................................................. 

 

4.3.2 Calculation for an antiferromagnetic substance 

 

To reproduce an antiferromagnetic state, the initial spin must be set to an antiferromagnetic spin 

configuration. Otherwise, the configuration is more likely to converge to a ferromagnetic state, which is 

metastable. As described in the section for ferromagnetic substances, the initial value of spin polarization can 

be specified only for each element. Therefore, to assign different initial spins to these elements, you need to 

prepare two elements whose pseudopotentials are the same. 

 

4.3.2.1 Input parameters 

 

As an example of an antiferromagnetic substance, the input file for a body-centered cubic chrome is shown 

below.  

 

The Cr atom is specified as “Cr1” and “Cr2” in the element_list. 

    element_list{ 
        #tag element  atomicnumber zeta 
          Cr1           24     0.3 



 90 

          Cr2           24    -0.3 
        } 
    } 

 

The two different elements, Cr1 and Cr2, are defined with different values of spin polarization, zeta = 0.3 

and zeta = −0.3, assigned to each. Atomic coordinates are specified as below. 

    atom_list{ 
         atoms{ 
         #tag  rx       ry         rz      element 
             0.000     0.000     0.000         Cr1 
             0.500     0.500     0.500         Cr2 
         } 
    } 

The atom at the origin is defined as Cr1, and the atom at the body center is defined as Cr2. 

 

The magnetic_state is set to “ferro” as the spin freedom. 

 

        magnetic_state =  ferro   !{para|antiferro|ferro} 

 

 

In the file_names.data file, the pseudopotentials are specified as below. 

&fnames 
 F_INP    = './nfinp.data' 
 F_POT(1) = '../../Cr_ggapbe_paw_002.gncpp2' 
 F_POT(2) = '../../Cr_ggapbe_paw_002.gncpp2' 
/ 

By this specification, the same pseudopotential is used for both elements Cr1 and Cr2. 

 

Similarly, you can perform calculations for systems having more complex magnetic states.   
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4.4 Geometry optimization 

 

PHASE can perform geometry optimizations by calculating the atomic force. This section describes how to 

use geometry optimization. 

 

4.4.1 Input parameter 

 

An example of an input file for geometry optimization is shown below. Convergence criteria of geometry 

optimization are specified in the accuracy block. The parameter max_force specifies the maximum value of 

atomic force. 

... 
accuracy{ 
    ... 
    max_force = 1.0e-3 hartree/bohr 
    ... 
} 
... 

The default value of the max_force is      hartree/bohr. 

 

The mobile attribute is defined in the atom_list block to specify whether the atom is optimized. If the flag is 1, 

the position of the atom is optimized. Set the flag 0 or * to fix the position of the atom. 

... 
structure{ 
    ... 
    atom_list{ 
    !#tag element  rx     ry     rz     mobile 
          Ba       0.0000 0.5000 0.05   0 
          O        0.5000 0.0000 0.05   1 
          Ba       0.5000 0.0000 0.15   1 
          O        0.0000 0.5000 0.15   1 
          ... 
    } 
} 
... 

In the above example, the first Ba atom is fixed, and the remaining atoms are optimized. 

 

The parameters used for geometry optimization are specified in the structure_evolution block. 

... 
structure_evolution{ 
    method = quench 
    dt = 50 
    ... 
} 
... 

 

 

method A method of structure relaxation. Options are: 

quench: quenched MD method (default) 

cg: CG method 

gdiis: GDIIS method 

bgfs: BFGS method 

dt Time step for the structure relaxation. Appropriately large value get the iterations converged 

faster, but too much large value may make the calculation incorrect.  

Defaults to 100 au. 
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Because the GDIIS or BFGS method does not work stably when atomic forces are large, the quenched MD or 

CG method is employed for earlier steps, and the method will be switched to the GDIIS (or BFGS) after the 

force become small enough. 

 

The initial method for the earlier steps and the criterion for switching the method to GDIIS (or BFGS) are 

specified by the variables initial_method and c_forc2gdiis, respectively. 

... 
structure_evolution{ 

    method = gdiis 
    dt = 50 
    gdiis{ 
        initial_method = cg 
        c_forc2gdiis = 0.0025 hartree/bohr 
    } 
} 
... 

The block gdiis is common to GDIIS and BFGS. Default values are quench for initial_method and 0.0025 

hartree/bohr for c_forc2gdiis. 

 

4.4.2 Output 

 

If geometry optimization is performed, changes in the energy and maximum atomic force are printed to the 

F_ENF file (default name: nfefn.data), and trajectories of atomic positions are stored in the F_DYNM file 

(default name: nfdynm.data). 

 

 

4.4.3 Example: geometry optimization of a silicon crystal 

 

Here we introduce an example of geometry optimization for a silicon crystal. In this example, atomic 

positions are manually displaced from their stable positions, and then geometry optimization is performed. 

The input file is in sample/Si2/relax. 

 

9. Input files 

 

In the file_names.data file, input_relx_Si.data is an input file, and nfdynm.data is an output file in which 

atomic positions and the atomic force are stored. 

 F_INP    = './input_relax_Si.data' 
  ... 
 F_DYNM   = './nfdynm.data' 
  ... 

 

In the input file input_relax_Si.data, atomic positions are displaced from their stable positions by changing 

the interval from 0.125 to 0.130. To optimize the atomic positions, the mobile variables are set to “yes.” 

structure{ 
         ... 
        atom_list{ 
             atoms{ 
                #tag    rx        ry        rz    element mobile 
                       0.130     0.130     0.130     Si   yes  
                      -0.130    -0.130    -0.130     Si   yes  
             } 
       } 
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} 

  

The accuracy block specifies the convergence criterion for the maximum atomic force. 

accuracy{ 
        force_convergence{ 
                max_force = 1.0e-3 
        } 
} 

 

 

10. Calculation results 

 

The output file for geometry optimization, nfdynm.data, is shown below. 
# 
#   a_vector =         0.0000000000        5.1300000000        5.1300000000 
#   b_vector =         5.1300000000        0.0000000000        5.1300000000 
#   c_vector =         5.1300000000        5.1300000000        0.0000000000 
#   ntyp =        1 natm =        2 
# (natm->type)     1    1 
# (speciesname)     1 :   Si 
# 
 cps and forc at (iter_ion, iter_total =     1      34 ) 
    1    1.333800000    1.333800000    1.333800000   -0.010794   -0.010794   -0.010794 
    2   -1.333800000   -1.333800000   -1.333800000    0.010794    0.010794    0.010794 
 cps and forc at (iter_ion, iter_total =     2      53 ) 
    1    1.331707297    1.331707297    1.331707297   -0.010402   -0.010402   -0.010402 
    2   -1.331707297   -1.331707297   -1.331707297    0.010402    0.010402    0.010402 
 cps and forc at (iter_ion, iter_total =     3      75 ) 
    1    1.327597870    1.327597870    1.327597870   -0.009614   -0.009614   -0.009614 
    2   -1.327597870   -1.327597870   -1.327597870    0.009614    0.009614    0.009614 
 cps and forc at (iter_ion, iter_total =     4     100 ) 
    1    1.321624355    1.321624355    1.321624355   -0.008433   -0.008433   -0.008433 
    2   -1.321624355   -1.321624355   -1.321624355    0.008433    0.008433    0.008433 
 cps and forc at (iter_ion, iter_total =     5     127 ) 
    1    1.314015753    1.314015753    1.314015753   -0.006865   -0.006865   -0.006865 
    2   -1.314015753   -1.314015753   -1.314015753    0.006865    0.006865    0.006865 
 cps and forc at (iter_ion, iter_total =     6     155 ) 
    1    1.305076108    1.305076108    1.305076108   -0.004930   -0.004930   -0.004930 
    2   -1.305076108   -1.305076108   -1.305076108    0.004930    0.004930    0.004930 
 cps and forc at (iter_ion, iter_total =     7     184 ) 
    1    1.295180554    1.295180554    1.295180554   -0.002671   -0.002671   -0.002671 
    2   -1.295180554   -1.295180554   -1.295180554    0.002671    0.002671    0.002671 
 cps and forc at (iter_ion, iter_total =     8     213 ) 
    1    1.284767108    1.284767108    1.284767108   -0.000159   -0.000159   -0.000159 
    2   -1.284767108   -1.284767108   -1.284767108    0.000159    0.000159    0.000159 

 

The first lines beginning with # contain a part of the input data. The next line gives the number of the 

optimization cycles and the total number of SCF iterations. Therefore, the above output shows that the 

wavefunctions were updated 34 times in the first optimization cycle. Convergence criteria for the SCF 

calculation are specified in the same manner as described in Section 3. 

 

The next two lines contain the atomic number, atomic position (x,y,z coordinates, in units of bohr), and 

atomic forces (x,y,z components, in units of hartree/bohr). The above results show that the atomic forces 

drastically decreased. In the final step, all atomic forces are below the specified threshold, and the 

optimization is terminated. 
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4.5 Calculation of surface 

 

4.5.1 How to calculate surface 

 

Strictly speaking, PHASE cannot treat finite systems, including surfaces, because periodic boundary 

conditions must be applied. However, you can treat a system as a surface by creating a “vacuum layer” 

between slabs. The vacuum layer should be sufficiently large to avoid interactions between the surface and 

the bottom of the slab. Typically, a vacuum layer with a thickness of 10Å is employed. 

 

Here we introduce an example calculation for a hydrogen-terminated silicon surface. Figure 4.7 shows the 

slab model for the silicon surface. The Si atoms on the bottom are terminated by artificial hydrogen atoms.   

 

 

Figure 4.7 Atomic structure for the hydrogen  

terminated Si(001)-p(2×1) surface 

 

The following shows the file_names.data of this example. 

&fnames 
 F_INP    = './input_SiH2x1.data' 
 F_POT(1) = '../pp/Si_ldapw91_nc_01.pp' 
 F_POT(2) = '../pp/H_ldapw91_nc_01.pp' 
  ................................ 
&end  

Pseudopotentials for Si and H atoms are specified by F_POT(1) and F_POT(2). 

 

Input parameters are described below. 

 

The parameters for k-point sampling are specified as follows: 

accuracy{ 
        cutoff_wf =  15.00  rydberg 
        cutoff_cd =  60.00  rydberg 
        num_bands =  25 
        ksampling{ 
                method = monk  ! {mesh|file|directin|gamma} 
                mesh{  nx = 2, ny =  4, nz =  1  } 
                kshift{ k1 = 0.5, k2 = 0.5, k3 = 0.0 } 
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        } 

 
        ........................... 
} 

 

Since this example is a slab model, only one k-point is sampled in the    direction. 

structure{ 
        unit_cell_type = primitive 
        unit_cell{ 
                a_vector =  14.512      0.000      0.000 
                b_vector =   0.000      7.256      0.000 
                c_vector =   0.000      0.000     30.784 
        } 
        symmetry{} 

 
        magnetic_state = para   !{para|af|ferro} 

 
        atom_list{ 
            coordinate_system = internal 
            atoms{ 
                #default weight = 1, element = Si, mobile = 0 
                #tag   rx       ry       rz         element 
                       0.26177  0.50000  0.65651       H    
                       0.73823  0.50000  0.65643       H    
                       0.34138  0.50000  0.56971          
                       0.65858  0.50000  0.56966          
                       0.26229  0.00000  0.49388          
                       0.73763  0.00000  0.49385          
                       0.00000  0.00000  0.41498          
                       0.50000  0.00000  0.40298          
                       0.00000  0.50000  0.32769          
                       0.50000  0.50000  0.32150          
                       0.25000  0.50000  0.24167          
                       0.75000  0.50000  0.24167          
                       0.25000  0.20000  0.18269       H    
                       0.25000  0.80000  0.18269       H    
                       0.75000  0.20000  0.18269       H    
                       0.75000  0.80000  0.18269       H    
            } 
       } 
} 

 
postprocessing{ 
    charge{ 
        sw_charge_rspace    = ON 
        filetype            = cube  !{cube|density_only} 
        title  = "Si(001) p(2x1) surface terminated by H atoms" 
    } 
} 

 

In the atoms block, the default element is set to Si, so the atoms not specified as H by the element attribute 

are treated as Si atoms. Since mobile = 0 is set by default, the positions of all atoms are fixed. 

 % grep TOTAL output000 

By the above command, the convergence progress of the total energy can be checked as follows.  

 
TOTAL ENERGY FOR     1 -TH ITER=    -41.206501960258  edel =  -0.412065D+02 : SOLVER = MATDIAGON 
 TOTAL ENERGY FOR     2 -TH ITER=    -42.928541839902  edel =  -0.172204D+01 : SOLVER = DAVIDSON 
 TOTAL ENERGY FOR     3 -TH ITER=    -42.956734520103  edel =  -0.281927D-01 : SOLVER = DAVIDSON 
 TOTAL ENERGY FOR     4 -TH ITER=    -42.960659333525  edel =  -0.392481D-02 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR     5 -TH ITER=    -42.961623666220  edel =  -0.964333D-03 : SOLVER = SUBMAT + RMM3 
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 TOTAL ENERGY FOR     6 -TH ITER=    -42.962559338199  edel =  -0.935672D-03 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR     7 -TH ITER=    -42.964136746929  edel =  -0.157741D-02 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR     8 -TH ITER=    -42.964791285123  edel =  -0.654538D-03 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR     9 -TH ITER=    -42.964953052183  edel =  -0.161767D-03 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    10 -TH ITER=    -42.965045860995  edel =  -0.928088D-04 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    11 -TH ITER=    -42.965076083146  edel =  -0.302222D-04 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    12 -TH ITER=    -42.965088896548  edel =  -0.128134D-04 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    13 -TH ITER=    -42.965091550789  edel =  -0.265424D-05 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    14 -TH ITER=    -42.965092402734  edel =  -0.851945D-06 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    15 -TH ITER=    -42.965092972980  edel =  -0.570245D-06 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    16 -TH ITER=    -42.965093291397  edel =  -0.318417D-06 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    17 -TH ITER=    -42.965093454357  edel =  -0.162961D-06 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    18 -TH ITER=    -42.965093580068  edel =  -0.125710D-06 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    19 -TH ITER=    -42.965093601039  edel =  -0.209711D-07 : SOLVER = SUBMAT + RMM3 
 TOTAL ENERGY FOR    20 -TH ITER=    -42.965093604435  edel =  -0.339656D-08 : SOLVER = SUBMAT + RMM3 
 

 

Although the above example is only for the energy calculation, you can perform structure relaxations of a 

surface, too. To execute a relaxation calculation, you need fix the bottom artificial hydrogen atoms and the 

atoms connected to them. In this example, the value of the mobile variable is set to 1, and the mobile 

attribute of the fixed atom is set to 0. 

        atoms{ 
                #default weight = 1, element = Si, mobile = 1 
                #tag   rx       ry       rz         element  mobile 
                       0.26177  0.50000  0.65651       H    
                       0.73823  0.50000  0.65643       H    
                       0.34138  0.50000  0.56971          
                       0.65858  0.50000  0.56966          
                       0.26229  0.00000  0.49388          
                       0.73763  0.00000  0.49385          
                       0.00000  0.00000  0.41498          
                       0.50000  0.00000  0.40298          
                       0.00000  0.50000  0.32769          
                       0.50000  0.50000  0.32150          
                       0.25000  0.50000  0.24167       *       0   
                       0.75000  0.50000  0.24167       *       0   
                       0.25000  0.20000  0.18269       H       0   
                       0.25000  0.80000  0.18269       H       0    
                       0.75000  0.20000  0.18269       H       0    
                       0.75000  0.80000  0.18269       H       0    
         } 

 

Note that the stable structure of the buckled dimer for a Si(001) surface is c     , not p     . To 

reproduce this structure, you need to add one more Si dimer so that the number of Si dimers on the surface 

is even. 

 

4.5.2 Surface calculation using inversion symmetry 

 

Some surfaces have inversion symmetry. By taking advantage of this, you can reduce the computational cost 

by half. The following input is for a Pt(111) surface. In this example, the structure block is specified as below. 

structure{ 
    element_list{ 
        #tag element atomicnumber mass zeta deviation 
         Pt 78 355606.909 0.0 1.83 
    } 
    atom_list{ 
        coordinate_system = cartesian 
        atoms{ 
            #units angstrom 
            #tag element rx ry rz mobile weight 
Pt 0.00 0.00 0.00 
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Pt 1.4142135624 2.4494897428 0.00 
Pt 2.8284271248 0.00 0.00 
Pt 4.2426406871 2.4494897428 0.00 
Pt 5.6568542497 3.2659863239 2.30940111 
Pt 4.2426406874 0.8164965811 2.30940111 
Pt 2.828427125 3.2659863239 2.30940111 
Pt 1.4142135626 0.8164965811 2.30940111 
Pt 2.8284271245 1.6329931617 4.618802187 
Pt 4.2426406868 4.0824829045 4.618802187 
Pt 5.6568542492 1.6329931617 4.618802187 
Pt 7.0710678116 4.0824829045 4.618802187 
Pt 5.6568543525 0.0000002214 6.928203264 
Pt 1.4142137683 2.4494897428 6.928203264 
Pt 2.8284271248 0.00 6.928203264 
Pt 4.2426406871 2.4494897428 6.928203264 
Pt 5.6568542497 3.2659863239 9.237604341 
Pt 4.2426406874 0.8164965811 9.237604341 
Pt 2.828427125 3.2659863239 9.237604341 
Pt 1.4142135626 0.8164965811 9.237604341 
Pt 2.8284271245 1.6329931617 -2.30940111 
Pt 4.2426406868 4.0824829045 -2.30940111 
Pt 5.6568542492 1.6329931617 -2.30940111 
Pt 7.0710678116 4.0824829045 -2.30940111 
Pt 5.6568542497 3.2659863239 -4.618802187 
Pt 4.2426406874 0.8164965811 -4.618802187 
Pt 2.828427125 3.2659863239 -4.618802187 
Pt 1.4142135626 0.8164965811 -4.618802187 
Pt 2.8284270217 4.8989792642 -6.928203264 
Pt 7.0710676059 2.4494897428 -6.928203264 
Pt 2.8284271248 0.00 -6.928203264 
Pt 4.2426406871 2.4494897428 -6.928203264 
Pt 2.8284271245 1.6329931617 -9.237604341 
Pt 4.2426406868 4.0824829045 -9.237604341 
Pt 5.6568542492 1.6329931617 -9.237604341 
Pt 7.0710678116 4.0824829045 -9.237604341 
        } 
    } 
    unit_cell{ 
        #units angstrom 
        a_vector = 5.6568542495 0.00 0.00  
        b_vector = 2.8284271247 4.8989794856 0.00  
        c_vector = 0.00 0.00 30.00  
    } 
    symmetry{ 
        method = automatic  
        tspace{ 
            lattice_system = primitive  
        } 
        sw_inversion = on 
    } 
} 

 

 

This structure has inversion symmetry whose center is on the origin. To utilize this symmetry, set the 

variable sw_inversion to “on.” The structure is shown in Figure 4.8. 

 

In this example, the surface has inversion symmetry along the thickness direction. In such cases, you can 

reduce the computational cost to half by setting sw_inversion to “on.” Calculations in which molecules or 

atoms are adsorbed on the surface can also be executed by arranging the adsorbent on both sides to preserve 
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the inversion symmetry. 

 

 

 

Figure 4.8 Atomic positions of Pt(111) surface.  

This structure has an inversion symmetry whose center is at the origin. 

 

4.5.3 Example: generation energy of metallic surfaces 

 

Generation energy of a surface at 0 K can be estimated by the equation 

             

Here   is the surface generation energy,    is the total energy of the surface,    is the total energy of the 

buck structure, and   is the surface area. The above equation is divided by 2A because two surfaces appear 

in the calculation. Note that the total energy of the buckled structure is scaled to fit the number of atoms in 

the surface model. 

 

Here we introduce an example for calculating the generation energy of a Pt surface. 

 

Pt(111) 

surface 

nine-layered (111) surface, total 36 atoms 

lattice parameters are                                   

See Fig. 4.8. 

Pt(110) MR 

surface  

Fifteen-layered missing-row (MR) (110) surface, total 28 atoms 

MR surface means that the surfaces in which the atoms that compose a “row” of surface are 

missing every second row. 

lattice parameters are                                        

See Fig. 4.10 (This figure is displayed in super cell.)  

Pt(110) 

surface 

Fifteen-layered (110) surface, total 15 atoms 

lattice parameters are                                         

See Fig. 4.9 (This figure is displayed in super cell.) 
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Figure 4.9 Pt(110) ideal surface (viewed in super cell) 

 

 

Figure 4.10 Pt(110) missing-row surface model (viewed in super cell) 

 

Generally speaking, the (111) surface is the most stable Pt surface, and surface reconstruction occurs in the 

(110) surface to generate a mission-row surface. Here we confirm that the calculated surface generation 

energy can explain these results. 

 all models employ inversion symmetry 

 cutoff energy is 25 Rydberg 

 k-point samplings are 6×6×1, 6×8×1, and 3×8×1 for (111), (110), and (110) MR surface, respectively 

 geometry optimization is performed by the BGFS method; the convergence criteria is        

hartree/bohr 

 four layers from the surface are optimized 

Table 4.3 lists the surface generation energy obtained from the above conditions. These results indicate that 

the (111) surface has the lowest energy, followed by (110) MR and by (110) surface. 

 

Table 4.3 Generation energies for the platinum surface  

The (111) surface has the lowest energy, followed by (110) MR and (110) surfaces. 

 (111)  (110) MR  (110)   

generation energy (eV/Å 2)  0.089  0.099  0.108   
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4.6 Calculation of atoms and molecules 

 

Isolated atoms and molecules can also be calculated by creating a vacuum layer. In such cases, the vacuum 

layer needs to be created in all directions to negate the effects of periodic boundary conditions. Normally, 

k-point is sampled only at the   point. 

 

4.6.1 Input parameters 

 

To calculate isolated atoms or molecules, a large unit cell is defined. 

        unit_cell{ 
              a_vector =  15.0               0.0                0.0 
              b_vector =   0.0              15.0                0.0 
              c_vector =   0.0               0.0               15.0 
        } 

 

The following example is for the calculation of a water molecule. The unit cell is large compared to the 

molecule. 

Control{ 
        condition = initial  
        cpumax = 1 day ! maximum cpu time 
        max_iteration = 6000 
} 

 
accuracy{ 
        cutoff_wf =   25.00  rydberg 
        cutoff_cd =  225.00  rydberg 
        num_bands = 8 
        xctype = ggapbe 
        initial_wavefunctions = matrix_diagon 
        matrix_diagon { 
          cutoff_wf = 5.0 rydberg 
        } 
        ksampling{ 
          method = gamma 
        } 
        scf_convergence{ 
          delta_total_energy = 1.e-10 
          succession = 3 
          num_max_iteration = 300 
        } 
        force_convergence{ 
          delta_force = 1.e-4 
        } 
        initial_charge_density = Gauss 
} 

 
structure{ 
        unit_cell_type = primitive 
        unit_cell{ 
              a_vector =  15.0               0.0                0.0 
              b_vector =   0.0              15.0                0.0 
              c_vector =   0.0               0.0               15.0 
        } 
        symmetry{ 
             tspace{ 
                lattice_system = primitive 
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                generators{ 
                   #tag rotation tx ty tz 
                        C2z      0  0  0 
                        IC2x     0  0  0 
                } 
             } 
        } 

 
        atom_list{ 
             coordinate_system = cartesian 
             atoms{ 
                !#default mobile=on 
                !#tag  rx             ry       rz          element 
                      -1.45           0.000    1.123       H 
                       1.45           0.000    1.123       H 
                       0.0            0.0      0.0         O 
             } 
        } 
        element_list{  #units atomic_mass 
                       #tag element  atomicnumber zeta  dev 
                            H             1       1.00  0.5 
                            O             8       0.17  1.0    } 
} 

 
wf_solver{ 
        solvers { 
        !#tag sol    till_n dts dte itr  var    prec cmix submat 
              msd      5    0.1 0.1   1    tanh on   1    on 
              lm+msd  10    0.1 0.4  50    tanh on   1    on 
              rmm2p   -1    0.4 0.4   1    tanh on   2    on 
        } 
        rmm { 
          edelta_change_to_rmm = 1.d-6 
        } 
        lineminimization { 
          dt_lower_critical = 0.1 
          dt_upper_critical = 3.0 
        } 
} 

 
charge_mixing{ 
        mixing_methods { 
        !#tag id method   rmxs rmxe itr var    prec istr nbxmix update 
              1  broyden2 0.3  0.3  1   linear on   5    10     RENEW 
              2  simple   0.2  0.5  100 linear on   *    *      * 
        } 
} 
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4.7 Output of charge density 

 

Although the charge density is treated in reciprocal space during an SCF calculation, the converged charge 

density can be converted to real space and outputted to a file. PHASE-Viewer and other viewers can then be 

used to visualize the charge density. To output the charge density to real space, define the postprocessing 

block at the head of the input file and specify the charge block in it. 

  postprocessing{ 
      charge{ 
          sw_charge_rspace = on 
          filetype = cube 
      } 
  } 

 

The charge block contains the following variables. 

 

sw_charge_rspace Switch that specifies whether to generate the charge density in real space. Options 

are on or off. 

filetype Specifies the file format for the charge density data. Options are 

density_only: only the charge density is written to the file. (default) 

cube: charge density is stored in the Gaussian cube format. 

Using the cube option is recommended. 

title Title of the Gaussian Cube file. Double quotes “ ” are used to include spaces in the 

title. 

 

If filetype=cube, it is recommended to change the file name of the charge density file. The filename can be 

specified in the file “file_names.data” as shown below. 

 

  &fnames 
  ... 
  F_CHR = './nfchr.cube' 
  / 

 

The default name of the file is “nfchr.data.” If spin polarization is considered and “nfchr.cube” is set to the 

filename, two cube files “nfchr.up.cube” and “nfchr.down.cube,” which are the respective densities of up and 

down spins, will be generated. 

 

As an example, Figure 4.11 shows the charge densities of minority and majority spins, visualized by 

PHASE-Viewer. In addition, PHASE can extract and output the charge density within a specific energy 

range. This function is described later in the section on advanced functions. 
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Figure 4.11 Charge density distribution of Fe. Blue and orange surfaces denote the respective isosurfaces for 

the charge densities of minority and majority spins generated by spontaneous magnetization 
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4.8 Density of states 

 

The DOS can be calculated after SCF iterations converge. Calculation of DOS is specified in the dos block in 

the postprocessing block as follows. 

  postprocessing{ 
      dos{ 
          sw_dos = on 
          method = gaussian 
          deltaE_dos = 1e-4 hartree 
      } 
  } 

 

The following variables are available in the dos block. 

sw_dos Switch that specifies whether to calculate the DOS. Options are on and off. 

method Method for calculating the DOS. Options are 

gaussian: simple Gaussian broadening  

tetrahedral: accurate calculation based on the tetrahedral method 

Note that the tetrahedral method is available only under limited conditions (See below).  

deltaE_dos Specifies the broadening used in the DOS calculation, in units of energy. 

Defaults to 1e−4 hartee. 

 

The tetrahedral method is available when 

 mesh method is employed for k-sampling 

        accuracy{ 
            ksampling{ 
                method = mesh 
            } 
        } 

 tetrahedral method is used for smearing 

        accuracy{ 
            smearing{ 
                method = tetrahedral 
            } 
        } 

If the above conditions are not satisfied, the DOS is calculated by the Gaussian method. 

 

Figure 4.12 and Figure 4.13 show the DOS for body-centered cubic iron that are calculated by the Gaussian 

method and the tetraheral method, respectively. Both calculations employed a 10 × 10 × 10 k-point mesh. 

These figures indicate that the tetrahedral method can calculate the DOS more sharply and accurately than 

the Gaussian method. 
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Figure 4.12 Density of states of bcc Fe 

calculated by the Gaussian method 

 

Figure 4.13 Density of states of bcc Fe 

calculated by the tetrahedral method 

 

PHASE can also calculate a “partial DOS;” that is a DOS for specific atoms, layers, etc. This function is 

described later in the section on advanced functions. 
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4.9 Calculation of band structure 

 

4.9.1 Generating k-point data 

 

To obtain band structures, we need k-point data to calculate band dispersion. The k-point data are generated 

by the script band_kpoint.pl. First, you need to prepare an input file for the band_kpoint.pl. The format of 

the input file is shown below. 

dkv 
b1x b2x b3x 
b1y b2y b3y 
b1z b2z b3z 
n1 n2 n3 nd # Symbol 
... 

 

The dkv of the first line is the interval between k-points. In the second line, b1x, b1y, and b1z represent the x, 

y, and z components of the reciprocal lattice vector   , respectively. The third and fourth lines are the x, y, 

and z components of reciprocal lattice vectors   ,  . In the fifth line, special k-points and their symbols are 

specified. The specifications of these symbols are not required. However, if the symbols are specified, they are 

used to output a band structure figure. 

 

The vectors of these k-points   are specified by the integers             as 

  
  

  
   

  

  
   

  

  
   

The symbols are written after the #. An example for a face-centered cubic lattice is shown below. 

0.02                        <---- interval of k-points 
-1.0  1.0  1.0 
1.0 -1.0  1.0               <---- reciprocal lattice vector 
1.0  1.0 -1.0 
0 1 1 2 # X                 <---- n1 n2 n3 nd # Symbol 
0 0 0 1 # {/Symbol G} 
1 1 1 2 # L 
5 2 5 8 # U 
1 0 1 2 # X 

 

After preparing the input file, a file kpoint.data can be generated using the script band_kpoint.pl as shown 

below. 

 

% band_kpoint.pl bandkpt.in 

 

The following is an example of kpoint.data. 

141 141         (a) 
0 50 50 100 1   (b) 
0 49 49 100 1    
0 48 48 100 1    
0 47 47 100 1 
0 46 46 100 1 
0 45 45 100 1 
0 44 44 100 1 
0 43 43 100 1 
   ...... 
   ...... 
   ...... 

 

The content of this file is as follows: 
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(a) The first line gives the number of k-points. This example used 141 k-points. 

 

(b) The remaining lines contain five integers:              . These are used in 

 

       
  

  
  
     

  

  
  
      

  

  
  
       

 

where   
       

        
      are reciprocal lattice vectors. 
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4.9.2 Calculation with fixed charge 

 

The program ekcal is used to calculate the DOS or band structure with fixed charges as obtained from a 

previous SCF calculation. Although you can execute this calculation in the same directory for the SCF 

calculation, it is recommended that you create a new directory and execute the calculation in it to avoid 

overwriting other output files, such as those containing wavefunction data. 

 

 

4.9.2.1 Input parameters 

 

11. file_names.data 

In case of ekcal, you need to specify the charge density file created by the SCF calculation. The name of this 

file is specified by the F_CHGT keyword in filenames.data of the previous SCF calculation; its default name 

is nfchgt.data. For example, if the calculation is executed in the directory created in the SCF directory, the 

charge density file is specified in the file_names.data as follows. The k-points data file kpoint.data, which is 

used to plot the band structure, can be identified by the F_KPOINT keyword. 

     &fnames 

     ... 

     F_CHGT = '../nfchgt.data' 

F_KPOINT = 'kpoint.data' 

     ... 

     / 

 

If the PAW method is employed, in addition to the F_CHGT keyword, the F_CNTN_BIN_PAW keyword 

must also be specified to the file created by the SCF calculation. If the DFT+U method is employed, the 

occupied matrix data file must be specified by the F_OCCMAT keyword. See the example below. 

     &fnames 
     ... 
     F_CHGT = '../nfchgt.data' 
     F_OCCMAT = '../occmat.data'                        <--- necessary for DFT+U 

     F_CNTN_BIN_PAW = '../continue_bin_paw.data'        <--- necessary for PAW 

     ... 
     / 

 

12. Input parameter file 

Here we explain how to create the input file for calculations with fixed charge. Basically, it is easier to make 

the input file from the input file used in the previous SCF calculation. However, note the following. 

 

 Atomic coordinates 

If geometry optimization was performed in the previous calculation, the ekcal calculation must be executed 

with the optimized structure. In this case, use the final atomic coordinates printed in the output file specified 

by the F_DYNM keyword. 

 

 Calculation condition 

Set the condition variable to fixed_charge. 

        Control{ 
            ... 
            condition = fixed_charge 
            ... 
        } 
        ... 
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The fixed_charge calculation can also be restarted. To restart the calculation, set the condition variable to 

“fixed_charge_continuation.” 

 

 k-point sampling 

Set the method variable in the ksampling block to “file” to read the generated kpoint.data. 

        accuracy{ 
            ... 
            ksampling{ 
                method = file 
            } 
            ... 
        } 

 

 ek_convergence block 

The ek_convergence block in the accuracy block specifies convergence criteria. Set the block as follows. 

        accuracy{ 
            ... 
            ek_convergence{ 
                num_max_iteration = 500 
                delta_eigenvalue = 1.e-5 
                succession = 2 
            } 
            ... 
        } 

 

 The ek_convergence block contains the following variables. 

num_max_iteration Specifies the maximum number of iterations 

delta_eigenvalue Specifies the convergence criterion for the energy difference. The default value, 1.e−15 

hartree, is very small. Use about 1.e−4 rydberg for insulator/semiconductor materials 

and about 1.e−6 rydberg for metals.  

succession Iterations are terminated when the energy difference is smaller than the criterion 

delta_eigenvalue n-times in succession. The variable succession specifies the number 

n. Default is 3. 

 

 Solver 

The default solver used in the ekcal is the steepest descent method. Since this simple method requires a 

large number of iterations, use one of the other solvers, such as lm+msd, davidson, rmm3. 
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4.9.3 Plotting band structure  

 

As an output of the calculation, eigenenergies of bands for all k-points are printed to the file nfenergy.data. 
 num_kpoints =    117                                                         (a) 
 num_bands   =      8                                                         (b) 
 nspin       =      1                                                         (c) 
 Valence band max   =   0.233846                                              (d) 

 
 nk_converged =      117                                                      (e) 
 ik =    1 (  0.500000  0.500000  0.000000 ) 
 ik =    2 (  0.487805  0.487805  0.000000 ) 
 ik =    3 (  0.475610  0.475610  0.000000 ) 
 ik =    4 (  0.463415  0.463415  0.000000 ) 
 ik =    5 (  0.451220  0.451220  0.000000 ) 
 ik =    6 (  0.439024  0.439024  0.000000 ) 
... 
... 
... 

 
=== energy_eigen_values === 
 ik =    1 (  0.000000  0.500000  0.500000 )                                  (f) 
     -0.0484324576     -0.0484324576      0.1258094928      0.1258094928      (g) 
      0.2619554301      0.2619554301      0.6015285208      0.6015285208 
=== energy_eigen_values === 
 ik =    2 (  0.000000  0.490000  0.490000 ) 
     -0.0540717201     -0.0427149632      0.1258687739      0.1258687739 
      0.2607026807      0.2633829927      0.6006243932      0.6006243932 
                           ...... 
                           ...... 
                           ...... 

 

The above items are 

(a) Number of k-points. This example has 117 k-points. 

 

(b) Number of bands. This example has eight bands.  

 

(c) Spin degree of freedom, 1 or 2. In this example, the value is 1, which means that spin polarization 

was not considered in the calculation. 

 

(d) Fermi energy. For semiconductor/insulator materials, the energy of the valence-band edge is printed. 

The unit is hartree. 

 

(e) Calculated k-points. 

 

(f) Eigenvalues are printed here. This first line identifies the k-point to which the eigenvalues apply. In 

this example, the first k-point corresponds to the (0,0.5,0.5) reciprocal lattice vector. 

 

(g) Eigenvalues for all bands are printed. The unit is hartree. 

 

 

If spin polarization is considered, the output of eigenenergies is almost same, but “UP” or “DOWN” is added 

next to item (f). Eigenvalues corresponding to the major and minor spin are printed. 

 
                           ...... 
                           ...... 
                           ...... 
=== energy_eigen_values === 
 ik =    1 (  0.000000  0.000000  0.000000)    UP  
     -0.1998699758      0.0267639589      0.0267639589      0.0267639589 
      0.0725171077      0.0725171077      1.0289118953      1.0289118953 
      1.0289118953      1.1650173104      1.1650173104      1.1650173104 
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      1.2129026022      1.2129026022      1.2994754011      1.2994754011 
      1.2994754011      1.6365336765      2.2629596795      2.2629596795 
=== energy_eigen_values === 
 ik =    2 (  0.000000  0.000000  0.000000)  DOWN  
     -0.1960420390      0.1062941746      0.1062941746      0.1062941746 
      0.1799862148      0.1799862148      1.0183970612      1.0183970612 
      1.0183970612      1.2174266166      1.2174266166      1.2192701193 
      1.2192701193      1.2192701193      1.3289165100      1.3289165100 
      1.3289165100      1.6910264603      2.2876818717      2.2876818717 
                           ...... 
                           ...... 
                           ...... 

 

To plot the band structure from this data, a useful Perl script band.pl, which is contained in PHASE, is 

available. The script band.pl is executed as shown below. 

 

% band.pl nfenergy.data bandkpt.in -erange=-10,10 -color -with_fermi 

 

As an example, band structure of body-centered cubic iron is shown in Figure 4.14. 

 

 

Figure 4.14 Band structure of body-centered cubic iron 
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4.10 Lattice constant 

 

4.10.1 Calculation method 

 

The equilibrium lattice constant can be obtained from total energies that are calculated for several different 

lattice constants. In addition, if the lattice is cubic, the bulk modulus can also be determined by fitting the 

Murnaghan equation of state, 

 

        
  

 ′  ′   
  ′   

  

 
   

  

 
 

 ′

             

 

Here         is the total energy with the lattice constant whose unit cell volume is  ,   is the bulk 

modulus,  ′is the bulk modulus pressure derivative, and    is the unit cell volume for the equilibrium 

lattice constant. The four variables    ′             are fitting parameters. 

 

 

4.10.2 Example: Si crystal 

 

Here we describe an example for calculating the equilibrium lattice constant of a Si crystal. This example is 

stored in the directory sample/Si_lat. In this directory, there are several subdirectories named volxxx. Each 

subdirectory contains input data for a unit cell having volume xxx. For example, the calculation model in the 

directory vol1200 is specified as shown below. 

structure{ 
  element_list{ 
    #tag    element    atomicnumber 
            Si    14 
  } 
  atom_list{ 
    atoms{ 
      #units angstrom 
      #tag    element    rx    ry    rz 
              Si    0.125  0.125  0.125 
              Si   -0.125 -0.125 -0.125 
    } 
    coordinate_system = internal 
  } 
  unit_cell{ 
    a_vector = 10.62658569182611066038 0 0 
    b_vector = 0 10.62658569182611066038 0 
    c_vector = 0 0 10.62658569182611066038 
  } 
  symmetry{ 
    method = automatic 
    tspace{ 
        lattice_system = facecentered 
    } 
    sw_inversion = on 
  } 
  unit_cell_type = bravais 
} 
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Atomic coordinates are given in fractional coordinates (atomic positions are referred to the lattice vectors). 

Fractional coordinates are more appropriate than Cartesian coordinates because Cartesian coordinates need 

to be modified every time the lattice constant is changed. 

 

In this example, the unit_cell_type is set to “bravais,” and the lattice_system is set to “facecentered.” By 

using this variable, you can input the lattice using a bravais lattice, which is easy to specify. However, the 

actual calculations are performed using a basic lattice, which is easy to calculate. Note that if the volume of 

Bravais lattice is employed, you need to scale the results. In this example, the bulk modulus is 

quadruplicated because the volume of the Bravais lattice is four times larger than that of the basic lattice. 

 

Figure 4.15 shows the energy–volume curve fitted to the Murnaghan equation of state, and Table 4.4 lists 

the equilibrium lattice constant and bulk modulus obtained from the fit. Cohesive energy is also separately 

calculated and is listed in Table 4.4. The cohesive energy is the difference between the average energy of the 

atoms of a crystal and that of the free atoms. It can be obtained by                        , where           

is the total energy of a free atom,        is the total energy of a crystal at equilibrium lattice constant, and 

      is the number of atoms in the crystal. 

 

 

 

Figure 4.15  Energy-volume curve for a Si crystal. The white circles represent  

calculated values, and the solid line represents the result from the fit. 

 

Table 4.4 Resulting equilibrium lattice constant and bulk modulus 

 PHASE  Experimental data 

a (Å) 5.48  5.43   

B (GPa) 87.5  98.8   

Ecoh (eV/atom) 4.60  4.63   
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5. Advanced functions 
 

5.1 Analysis functions 

 

5.1.1 Stress tensor 

 

5.1.1.1 Overview 

 

PHASE has a function to calculate the stress tensor. By calculating it, the bulk modulus can be estimated. 

 

5.1.1.2 Input parameters 

 

To calculate the stress tensor, you need to define sw_stress=1 in the stress block in the structure_evolution 

block. The following example is an input parameter file for Si (cubic). This file is in sample/stress/. 

 

Control{ 
  cpumax = 24 hour 
} 

 
accuracy{ 
  cutoff_wf =  20.25  rydberg 
  cutoff_cd =  81.00  rydberg 
  num_bands = 20 
  xctype = ggapbe 
  ksampling{ 
    method = mesh 
    mesh{ nx = 8, ny = 8, nz = 8 } 
  } 
  smearing{ 
    method = tetrahedral 
  } 
  scf_convergence{ 
    delta_total_energy = 1.0e-10  hartree 
    succession = 3 
  } 
  force_convergence{ 
    delta_force = 1.0e-4 
  } 
  initial_wavefunctions = matrix_diagon 
  matrix_diagon{ 
    cutoff_wf = 5.00  rydberg 
  } 
  initial_charge_density = Gauss 
} 

 
structure{ 
  unit_cell_type = primitive 
  unit_cell{ 
    #units angstrom  ! Unit of LENGTH changes to Angstrom. 
    a_vector =   0.0000000000   2.7296850000   2.7296850000 
    b_vector =   2.7296850000   0.0000000000   2.7296850000 
    c_vector =   2.7296850000   2.7296850000   0.0000000000 
  } 

 
  symmetry{ 
    crystal_structure = diamond 
  } 
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  atom_list{ 
    coordinate_system = internal 
    atoms{ 
      #tag    rx      ry      rz   element  mobile  weight 
           0.125   0.125   0.125        Si     yes       1 
          -0.125  -0.125  -0.125        Si     yes       1 
    } 
  } 
  element_list{ #tag   element   atomicnumber   dev 
                            Si            14    1.2 
  } 
} 

 
structure_evolution{ 
  stress{ 
    sw_stress=1 
  } 
} 

 

Execute PHASE as usual. 

% mpirun PATH_TO_PHASE 

 

Check results after the calculation is completed. The calculated stress tensor can be extracted from the 

output file by the following command. 

% grep –A3 ‘STRESS TENSOR$' OUTPUT_FILE 

 

  STRESS TENSOR 
        0.0000003475        0.0000000000        0.0000000000 
        0.0000000000        0.0000003475        0.0000000000 
        0.0000000000        0.0000000000        0.0000003475 

 

The stress tensor is printed in the matrix form below: 

 

      

      

      

  

The unit is [Hartree/Bohr3]. Because slightly smaller values were given to the lattice constants in the above 

example, positive values were obtained for the diagonal elements         . These values become 0 if the 

lattice constants are the equilibrium ones. Here the following Hooke’s law holds: 

 

                       

                       

                       

              

              

               
  
 

  
 

 

where   represents a lattice deformation from the equilibrium constants, and   represents the stiffness 

constant. 

 

 

5.1.1.3 Elastic constant 

 

The elastic constant can be obtained from the calculated stress tensor. Here we calculate the elastic constant 

of a Si (cubic) crystal from its stress tensor. First, the equilibrium lattice constant, in which the stress tensor 

is 0, needs to be calculated. An accurate value for the lattice constant is necessary to calculate an accurate 
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stress tensor. In this example, the following lattice vectors, in which the stress tensor is almost 0, are 

employed. 

    a_vector =   0.0000000000   2.7297895000   2.7297895000 
    b_vector =   2.7297895000   0.0000000000   2.7297895000 
    c_vector =   2.7297895000   2.7297895000   0.0000000000 

 

The following stress tensor is obtained after the calculation is completed. 

% grep -A3 'STRESS TENSOR$' OUTPUT_FILE 

 

  STRESS TENSOR 
        0.0000000000        0.0000000000        0.0000000000 
        0.0000000000        0.0000000000        0.0000000000 
        0.0000000000        0.0000000000        0.0000000000 

 

Make sure that all elements are zero or sufficiently small. Next, you need to deform the unit cell; e.g., make 

the unit cell 0.01 angstrom larger in the x-direction. Modify the lattice vector as follows. Note that the 

symmetry block in the input file must be removed or commented out. 

    a_vector =   0.0000000000   2.7296850000   2.7296850000 
    b_vector =   2.7296850000   0.0000000000   2.7296850000 
    c_vector =   2.7296850000   2.7296850000   0.0000000000 

 

The following stress tensor is obtained for the modified lattice. 

% grep -A3 'STRESS TENSOR$' OUTPUT_FILE 

 

  STRESS TENSOR 
       -0.0000093954        0.0000000063        0.0000000016 
        0.0000000063       -0.0000033142        0.0000000000 
        0.0000000016        0.0000000000       -0.0000033163 

 

In this example, the elastic constant is obtained from the diagonal elements of the stress tensor.    and    

are supposed to be equivalent because of symmetry; thus, their mean value −0.00000331525 is used for both 

   and   . Since a twist or shearing strain is not given in this example, the off-diagonal elements become 

zero in theory. Some off-diagonal elements are not exactly zero because of numerical error. 

 

By using a deformation from the equilibrium constants (0.01 angstrom in the x-direction) and the calculated 

stress tensor, the stiffness constants    ,     can be obtained as follows: 

 

                       

                       

                       

              

              

               
  
 

  
 

 

 

In this example, the stiffness constants    ,     are calculated as below (units are [           ]): 

              
             

  

Further, elastic constants, Young’s modulus(  ), Poisson’s ratio(  ), and the bulk modulus(  ) can be 

obtained by from the following equations. 



 117 

 

  
   

             
 

       

   
   

       
 

  
        

  
  
 

  
 

 

The modulus of rigidity is given by         . By substituting the stiffness constants    ,     into the 

above equations, the elastic constants of Si are obtained: 

 
                               
           

                              

  

 

To accurately calculate elastic constants, cutoff_wf and cutoff_cd must be sufficiently large to get 

well-converged wave functions. However, this calculation is time consuming. 
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5.1.2 Local density of states and energy-dependent charge density 

 

5.1.2.1 General features 

 

To analyze electronic states, the local density of states (DOS) and energy-dependent charge density are 

very useful. With the atom-divided local DOS, bonding states become clear. For a laminated structure or an 

interface between two materials, the layer-divided local DOS is a powerful tool that enables users to identify 

layer-dependent electronic states or a change in electronic states around an interface. An energy-dependent 

charge density provides the charge density over a limited range of energies. This enables users to identify the 

atoms that contribute to the states in that energy range. 

 In the following, both functions are described using the interface between BaO/Si(001) as an example. For 

convenience, the lattice constant of BaO is taken to be the same as that of Si (5.43 Å). The left part of Figure 

5.1 shows the structural model, which consists of five layers of Si and six layers of BaO with the connecting 

atom being O. The sample files for this calculation are in the directory “sample/BaO_Si001.” 

 

The “structure” block of an input parameter file is as follows. 

structure{ 
        unit_cell_type=bravais 
        unit_cell{ 
          !! a_Si=5.43 A, c-axis=5*a_Si 
          !! (c.f. a_BaO=5.52 A) 
          !#units angstrom degree 
          a = 3.83958982184, b= 3.83958982184, c= 27.15 
          alpha=90.0, beta=90.0, gamma=90.0 
        } 

 
        symmetry{ 
           tspace{ 
              system = primitive 
              generators { 
                 !#tag rotation tx  ty  tz 
                       E         0   0   0 
                       C2z       0   0   0 
              } 
           } 
           sw_inversion = off 
        } 
        magnetic_state = para  !{para|af|ferro} 

 
        atom_list{ 
             coordinate_system = internal ! {cartesian|internal} 
             atoms{ 
             !#default mobile=no 
!#tag element  rx     ry     rz     num_layer 
      Ba       0.0000 0.5000 0.05   1 
      O        0.5000 0.0000 0.05   1 
      Ba       0.5000 0.0000 0.15   2 
      O        0.0000 0.5000 0.15   2 
      Ba       0.0000 0.5000 0.25   3 
      O        0.5000 0.0000 0.25   3 
      O        0.0000 0.5000 0.35   4 
      Si       0.0000 0.0000 0.40   5 
      Si       0.5000 0.0000 0.45   6 
      Si       0.5000 0.5000 0.50   7 
      Si       0.0000 0.5000 0.55   8 
      Si       0.0000 0.0000 0.60   9 
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      O        0.5000 0.0000 0.65  10 
      Ba       0.5000 0.0000 0.75  11 
      O        0.0000 0.5000 0.75  11 
      Ba       0.0000 0.5000 0.85  12 
      O        0.5000 0.0000 0.85  12 
      Ba       0.5000 0.0000 0.95  13 
      O        0.0000 0.5000 0.95  13 
             } 
        } 
        element_list{ !#tag element  atomicnumber  zeta  dev 
                                 Si            14  0.00  1.5 
                                 Ba            56  0.00  1.5 
                                 O              8  0.00  1.5 
        } 
} 

 

In this example, “mobile” is set as “no,” because the optimization calculation takes a significant amount of 

time. 

 

5.1.2.2 Atom-divided local density of states 

 

To calculate an atom-divided local density of states (ALDOS), edit the “postprocessing” block in an input 

parameter file as follows. Add “dos” and “ldos” sub-blocks in the “postprocessing” block. Set the 

“sw_dos” tag in the “dos” sub-block and the “sw_aldos” tag in the “ldos” sub-block to be “ON.” 

 

Postprocessing{ 
   dos{ 
       sw_dos = ON 
       method = g 
   } 
   ldos{ 
      sw_aldos = ON 
      aldos{ 
         crtdst = 6.0 bohr 
         naldos_from = 1 
         naldos_to   = 19 
      } 
   } 
} 

 

The “crtdst” tag specifies the length at which the Voronoi polyhedrons are cut. Regions that are farther 

than this value from any atom are treated as vacuum. The local DOS for vacuum is output as atom “number 

of atoms + 1” in the file “dos.data.” Tags “naldos_from” and “naldos_to” are used to indicate atoms for 

which ALDOS are calculated. In the example, ALDOS are calculated for atoms from 1 to 19 that appear in 

the atom list of an input parameter file. If these tags are not specified, ALDOS are calculated for all atoms in 

the list. To calculate ALDOS, the column “aldos” of the atom list in an input parameter file is also available. 

If this column is “off,” the DOS for that atom is not calculated. The tags “naldos_from” and “naldos_to” 

are superior to “aldos.”  

  

Calculation results are output to “dos.dat.” To draw a graph of ALDOS, a PHASE tool “dos.pl” is useful. 

Execute this Perl script as follows, and files “dos_a001.eps,” “dos_a002.eps,”…, “dos_axxx.eps” are generated.  

 % ../../../tools/bin/dos.pl dos.data -erange=-30,5 -dosrange=0,12 -mode=atom 

 

Calculated ALDOS for the BaO/Si(001) interface are shown on the right in Figure 5.1. This figure clearly 

shows the characteristics of Si, Ba, and O atoms in the interface. 
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Figure 5.1  Atom-divided local density of states for a BaO/Si(001) interface. On the right, the upper panel is 

for a Si atom at the center of Si layers, and the middle panel is for a Ba atom at the center of BaO layers, and 

the bottom one is for an O atom at the center of BaO layers. 

 

5.1.2.3 Layer-divided local density of states 

 

To calculate layer-divided local density of states (LayerDOS), edit the “postprocessing” block in an input 

parameter file as follows. Add “dos” and “ldos” sub-blocks in the “postprocessing” block. Set the 

“sw_dos” tag in the “dos” sub-block and the “sw_layerdos” tag in the “ldos” sub-block to be “ON.” 

   dos{ 
       sw_dos = ON 
       method = g 
   } 
   ldos{ 
      sw_layerdos = ON 
      layerdos{ 
         slicing_way = by_atomic_positions !{regular_intervals|by_atomic_positions
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} 
         deltaz = 1.0 angstrom 
         normal_axis = 3crtdst 
         crtdst = 3.5 bohr 
      } 
   } 

 

The “normal_axis” tag specifies the direction normal to the divided layers; “1” means the direction is along 

the “a_vector,” “2” means along the “b_vector,” and “3” means along the “c_vector.” If 

“by_atomic_positions” is set to the “slicing_way” tag, LayerDOS output depends on an atomic 

coordinate of the defined axis. In this case, the “num_layer” column in the atom list of an input parameter 

file specifies which atoms are classified into which layer. In the example input parameter file shown above, 

atoms are classified into 13 layers. If “regular_intervals” is set to the “slicing_way” tag, the unit cell is 

divided into layers of widths “deltaz.” The “crtdst” tag specifies the distance from the outermost atoms to 

which LayerDOS are calculated. This tag is meaningless if a slab model is not used in the calculation.  

 

Information about the range of each divided layer is output to a logfile “output000” as follows. 

 !!ldos     no,        min,           max 
 !!ldos    1          0.00000000          5.13060607 
 !!ldos    2          5.13060607         10.26121214 
 !!ldos    3         10.26121214         15.39181821 
 !!ldos    4         15.39181821         19.23977276 
 !!ldos    5         19.23977276         21.80507579 
 !!ldos    6         21.80507579         24.37037883 
 !!ldos    7         24.37037883         26.93568186 
 !!ldos    8         26.93568186         29.50098489 
 !!ldos    9         29.50098489         32.06628793 
 !!ldos   10         32.06628793         35.91424248 
 !!ldos   11         35.91424248         41.04484855 
 !!ldos   12         41.04484855         46.17545462 
 !!ldos   13         46.17545462         51.30606069 
 !!ldos   14          0.00000000          0.00000000 

 

Here “no” means a layer number, while “min” and “max” mean the lower and upper limits of a layer in 

atomic units, respectively. The last line in the list corresponds to the sum of the other areas. 

The calculation results are output to file “dos.data.” To draw a graph of DOS, “dos.pl” is available. Execute it 

as follows, and files “dos_l001.eps,” “dos_l002.eps,”…,” “dos_lxxx.eps” are created. 

 % ../../../tools/bin/dos.pl dos.data -erange=-20,5 -dosrange=0,20 -mode=layer 

 

The calculated LayerDOS for the BaO/Si(001) interface are shown in Figure 5.2.  
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Figure 5.2  Layer-divided local density of states for a BaO/Si(001) interface. On the right, the upper panel is 

for the center layer of a Si slab, the second panel is for a Si layer at the interface, the third panel is for an O 

layer at the interface, the fourth panel is for a BaO layer at the interface, and the bottom panel is for a center 

layer of the BaO slab. 

 

5.1.2.4 Energy-dependent charge density 

 

To calculate an energy-dependent charge density, edit the “postprocessing” block in an input parameter 

file as follows. Add a “charge” sub-block in the “postprocessing” block and in the “charge” sub-block add 

a “partial_charge” sub-block. In it, set the “sw_partial_charge” tag to be “ON.” The tags 

“Erange_max” and “Erange_min” mean the maximum and minimum of the energy range, respectively, for 

which the user wants to calculate the energy-dependent charge density. For these two tags, energy values 

are based on the Fermi energy for metals or on the top of the valance band for insulators. The tag 

“Erange_delta” means the width of energy windows; then the number of energy windows is calculated by 

(Erange_max–Erange_min) / Erange_delta. Note that two additional energy windows are calculated and 

output: one is just above Erange_max and the other is just below Erange_min. 

 
dos{ 
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sw_dos = ON 

  method = g 
} 
charge{ 

sw_charge_rspace    = On 

filetype              = cube !{cube|density_only} 

title = “a BaO/Si(001) interface” 

partial_charge{ 

sw_partial_charge       = On 

Erange_min              = -0.50    eV 

Erange_max              =  0.50 eV 

Erange_delta            = 0.05 eV 

partial_charge_filetype = individual 

} 

} 

 

Information about the energy window for each energy-dependent charge density is output to the logfile 

“output000” as follows. 
 !pc nEwindows =   20, nvb_windows =   10, ncb_windows =   10 <<m_ESoc_set_nEwindows_pc>> 
 !pc    iw  if_elec_state                erange(hartree)                        erange(eV) 
 !pc                             (asis)                  (shifted)             (shifted) 
 !pc     1       1       (  0.094537  0.096374 ) ( -0.018375 -0.016537 ) ( -0.500000 -0.450000 ) 
 !pc     2       1       (  0.096374  0.098211 ) ( -0.016537 -0.014700 ) ( -0.450000 -0.400000 ) 
 !pc     3       1       (  0.098211  0.100049 ) ( -0.014700 -0.012862 ) ( -0.400000 -0.350000 ) 
 !pc     4       1       (  0.100049  0.101886 ) ( -0.012862 -0.011025 ) ( -0.350000 -0.300000 ) 
 !pc     5       0       (  0.101886  0.103724 ) ( -0.011025 -0.009187 ) ( -0.300000 -0.250000 ) 
 !pc     6       1       (  0.103724  0.105561 ) ( -0.009187 -0.007350 ) ( -0.250000 -0.200000 ) 
 !pc     7       1       (  0.105561  0.107399 ) ( -0.007350 -0.005512 ) ( -0.200000 -0.150000 ) 
 !pc     8       0       (  0.107399  0.109236 ) ( -0.005512 -0.003675 ) ( -0.150000 -0.100000 ) 
 !pc     9       0       (  0.109236  0.111074 ) ( -0.003675 -0.001837 ) ( -0.100000 -0.050000 ) 
 !pc    10       1       (  0.111074  0.112911 ) ( -0.001837  0.000000 ) ( -0.050000  0.000000 ) 
 !pc    11       1       (  0.112911  0.114749 ) (  0.000000  0.001837 ) (  0.000000  0.050000 ) 
 !pc    12       0       (  0.114749  0.116586 ) (  0.001837  0.003675 ) (  0.050000  0.100000 ) 
 !pc    13       0       (  0.116586  0.118424 ) (  0.003675  0.005512 ) (  0.100000  0.150000 ) 
 !pc    14       0       (  0.118424  0.120261 ) (  0.005512  0.007350 ) (  0.150000  0.200000 ) 
 !pc    15       0       (  0.120261  0.122099 ) (  0.007350  0.009187 ) (  0.200000  0.250000 ) 
 !pc    16       1       (  0.122099  0.123936 ) (  0.009187  0.011025 ) (  0.250000  0.300000 ) 
 !pc    17       1       (  0.123936  0.125773 ) (  0.011025  0.012862 ) (  0.300000  0.350000 ) 
 !pc    18       0       (  0.125773  0.127611 ) (  0.012862  0.014700 ) (  0.350000  0.400000 ) 
 !pc    19       0       (  0.127611  0.129448 ) (  0.014700  0.016537 ) (  0.400000  0.450000 ) 
 !pc    20       0       (  0.129448  0.131286 ) (  0.016537  0.018375 ) (  0.450000  0.500000 ) 

 

Here “nEwindows” means the number of energy windows; “nvb_windows” is the number of energy windows 

for valence-band states, and “ncb_windows” is that for conduction-band states. The quantity “iw” is a 

window number. The parameter “if_elec_state” indicates whether there are electronic states in the 

corresponding energy window: “0” means there are no electronic states in the energy window, while “1” 

means that one or more electronic states exist in the energy window. The energy-window range in atomic 

units is “asis,” while “shifted” gives the energy-window range based on the Fermi level. 

 

When the “partial_charge_filetype” tag is set to “individual” or “separate,” each charge density 

file is output separately with its file name being “nfchr.00xx.cube,” where “nfchr” comes from file_names.data 

and “xx” comes from “iw.” If spin freedom is considered, two files are created: one is “nfchr.up.00xx.cube,” and 

the other is “nfchr.down.00xx.cube.” When “if_elec_state” is “0,” the corresponding charge density file is 

not created. When the “partial_charge_filetype” tag is set to “integrated,” the charge density data 

for all energy windows are output to one file in which “PARTIALCHARGE” is written above each set of 

charge density data, and “END” is written below the data. 

 

The calculated energy-dependent charge densities for the BaO/Si(001) interface are shown in Figure 5.3. 
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Figure 5.3  Energy-dependent charge density distributions for a BaO/Si(001) interface. (a) Structural model 

of a BaO/Si(001) interface. (b) Charge density for the energy range from −0.05 eV to 0 eV (Fermi energy). (c) 

Charge density for the energy range from 0 eV to 0.05 eV. Blue indicates less charge, and red indicates more 

charge. 
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5.1.3 Projected density of states 

 

PHASE has a function to calculate the projected density of states (PDOS). This section describes how to 

calculate PDOS. 

 

5.1.3.1 Input parameters 

 

To calculate PDOS, the projector_list block is defined to specify the orbitals projected. 

accuraccy{ 

... 

projector_list{ 

projectors{ 

#tag no group radius l t 

1 1 1.0 0 1 

2 1 1.0 1 1 

3 2 1.5 0 2 

4 2 1.5 1 2 

5 2 1.5 2 2 

} 

} 

} 

 

Here the column labeled no contains identification numbers for orbitals. This can be omitted. The group 

specifies “orbital group.” Give the same numbers to the orbitals that you want to treat as the same group. 

The radius indicates the orbital radius in units of Bohr. Half of the atomic distance may be appropriate; the 

default is 1 Bohr. The column labeled l contains the orbital angular momentum. The values 0, 1, 2, and 3 

correspond to orbitals s, p, d, and f, respectively. The column t contains the principal quantum numbers. 

However, this principal quantum number is counted from the pseudopotential and is 1 in most cases. Some 

pseudopotential files contain two orbitals whose angular momenta are the same. In such cases, the orbital 

with a higher energy should be used when the variable t is set to 2.  

 

Next, assign the above-defined projectors to atoms. These projectors can be assigned by adding the 

proj_group attribute to the atom_list block as follows: 

 

structure{ 

atom_list{ 

atoms{ 

#tag element rx ry rz mobile proj_group 

Fe1 0.0 0.0 0.14783 on 1 

Fe2 0.0 0.0 0.35217 on 2 

Fe1 0.0 0.0 0.85217 on 1 

Fe2 0.0 0.0 0.64783 on 2 

... 

... 

} 

} 

} 

 

Here is a correspondence table between magnetic quantum numbers and orbital characteristics: 

index                      

1                             
2                          

3                       
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4                   

5              

6                 

7                 

 

In this example, group 1 and group 2 are defined as orbital groups for Fe1 and Fe2, respectively. Different 

groups must be assigned to different elements. 

 

Set the sw_pdos switch in the postprocessing block to “on.” 

postprocessing{ 

... 

pdos{ 

sw_pdos = on 

} 

} 

 

The PDOS is calculated by the same methods as normal DOS. 

 

5.1.3.2 Output 

 
PDOS: ia= 2 l= 1 m= 1 t= 1 

No. E(hr.) dos(hr.) E(eV) dos(eV) sum 

6 -1.95781 0.0000000000 -56.762838 0.0000000000 0.0000000000 

16 -1.95681 0.0000000000 -56.735626 0.0000000000 0.0000000000 

26 -1.95581 0.0000000000 -56.708415 0.0000000000 0.0000000000 

36 -1.95481 0.0000000000 -56.681204 0.0000000000 0.0000000000 

46 -1.95381 0.0085366260 -56.653992 0.0003137151 0.0000002437 

56 -1.95281 0.0176460501 -56.626781 0.0006484801 0.0000254127 

 

The first line beginning with “PDOS” indicates the beginning of PDOS data. The variables ia, l, m, and t 

indicate the atom ID, angular momentum, magnetic quantum number, and principal quantum number of 

the projected orbitals. The next lines contain the PDOS, which are printed in the same data format as the 

normal DOS. The relationships between the magnetic quantum numbers and orbital characteristics are 

shown in the previous table. 

 

The generated PDOS file, dos.data, is processed by the script dos.pl with –mode=projected option. 

% dos.pl dos.data -mode=projected -color -with_fermi 

After execution, an EPS format file dos_aAAAlLmMtT.eps is written. In this filename, AAA indicates the ID 

of atoms, L indicates the orbital angular momentum, M indicates the magnetic quantum number, and T 

indicates the principal quantum number. If the –data=yes option is given, DOS data files are provided for 

each orbital. In that case, the filename becomes dos_aAAAlLmMtT.data. 

 

5.1.3.3 Example: PDOS of BaTiO3 crystal 

 

Here we introduce a calculation example of PDOS for a BaTiO3 crystal. The BaTiO3 crystal forms a 

perovskite structure. Strictly speaking, this crystal structure is tetragonal, but it is very similar to cubic. In 

this example, this crystal was treated as cubic, as shown below. 

 

structure{ 

atom_list{ 

atoms{ 

#units angstrom 

#tag element rx ry rz proj_group 

Ba 0.00 0.00 0.00 
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O 0.50 0.50 0.00 2 

O 0.50 0.00 0.50 2 

O 0.00 0.50 0.50 2 

Ti 0.50 0.50 0.50 1 

} 

} 

unit_cell{ 

#units angstrom 

a_vector = 4 0.00 0.00 

b_vector = 0.00 4 0.00 

c_vector = 0.00 0.00 4 

} 

} 

 

The projector block is defined as follows: 

accuracy{ 

projector_list{ 

projectors{ 

#tag no group radius l 

1 1 1.0 2 

2 2 1.0 1 

} 

} 

} 

 

In the above example, group 1, in which l is 2 (i.e., d-orbital), is assigned to the Ti atom, and group 2, in 

which l is 1 (i.e., p-orbital) is assigned to an O atom. 

 

The sw_pdos switch in the postprocessing block is set to “on” to calculate PDOS. 

postprocessing{ 

dos{ 

sw_dos = on 

method = tetrahedral 

} 

pdos{ 

sw_pdos = on 

} 

} 

 

In this example, DOS is calculated by the tetrahedral method. Therefore, k-sampling must be performed by 

the mesh method, and the tetrahedral method needs to be employed for smearing. 

 

エラー! 参照元が見つかりません。 shows the total DOS for the BaTiO3 crystal, and エラー! 参照元が見つか

りません。 shows the PDOS for d-orbitals of the Ti atom. 
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Figure 5.4 Total DOS of a BaTiO3 crystal 

 

 

Figure 5.5 PDOS for a d-orbital of a Ti atom 
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5.1.4 Positron lifetime 

 

5.1.4.1 Functions 

 

Since a positron is an antiparticle of the electron, it has the same mass as an electron but has a positive 

charge. The positron annihilates an electron, resulting in the emission of a  -  y. This annihilation can be 

used to study material defects, and in general, the quality of materials. To obtain useful information from 

positron annihilation experiments, it is necessary to compare the experimental results with first-principles 

calculations. PHASE has a function for predicting positron lifetimes by the following procedure. 

 

(A) First, electronic-structure calculations (band calculations) are carried out. The calculations are based 

on the pseudopotential and the plane-wave method that have been implemented in PHASE. From a 

band calculation, the electron density of valence electrons    can be obtained. The electron density 

of all electrons is given by 

            (1) 

 

where    denotes the density of core electrons. The published pseudopotential data file, which is 

created by CIAO, contains information about electron densities of core electrons in free atoms. We 

read this data to evaluate equation (1).  

(B) The positron wave function    is given by the following equation (in atomic units), 

  
 

 
     ′

          ′
      

      ′
      

 

     ′
      

 
                           (2) 

where    denotes the potential energy derived from the electron–positron correlation, and    

represents the point charge of the nucleus. Now, since there is only one positron assumed in the solid, 

it is sufficient to only calculate the most stable eigenstate. Therefore, eigenstates of the positron 

belong to the   point in the Brillouin zone. This wave function can be expanded by plane waves, 

                       (3) 

Here to suppress the finite summation over  the reciprocal lattice periodic vector   , we need to set 

an upper limit on the kinetic energy of the plane wave. 

(C) The electron density of the positron is obtained from 

            . 

(D) Using electron and positron charge densities, the positron lifetime is evaluated by 
 

 
    

                    , (4) 

where    is the classical radius of an electron, and   is the speed of light. The quantity   is an 

enhancement factor caused by electron–positron correlations. In PHASE, evaluation of the above 

equation is performed under the following approximation, 

                       . (5) 

For this approximation to hold, the overlap of the distributions of valence electrons and core electrons 

should be small. 

 

In the calculation of the correlation of electron and positron, the local density approximation is used. In 

other words, based on calculation results, when there is a single positron in a homogeneous electron gas, the 

correlation potential and the enhancement factor are given as functions of electron density. The following 

equation has been proposed for the enhancement factor [Puska95], 

                   
   

        
         

   
   

    

where 
  

 
  

      . In addition, in systems with a gap (dielectric), since the screening effect of electrons is 

much smaller than that of the metal, it is recommended that this expression be corrected for   as follows 

[Puska91], [ Nakamoto07]. 
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where      is the dielectric constant of the electron system. If the dielectric constant has not been 

determined by experiment, it can be evaluated using UVSOR, which is based on density functional theory. 

For details on the calculation method, please refer to the literature [akamoto07]. 

 

5.1.4.2 Input file 

 

Here is an example calculation for a Si crystal. In the sample of PHASE, there is a folder named positron Si, 

in which there are folders named “input” and “output.” In the folder named “input,” there is the input file for 

the calculation of positron lifetimes in Si crystals using PHASE. 

 

The file that contains input parameters for the calculation of positron lifetimes is samples/positron 

Si/input/nfposnew.data. Here we explain only those parts of the file that relate to the calculation of positron 

lifetimes. 

 

 Use the control tag to enable calculation of a positron lifetime, 

 

Control{  

positron = BULK 

} 

Declaring positron = BULK causes the electronic-structure calculation (band calculation) to be done first 

followed by calculation of the positron lifetime. 

 

 Use the accuracy tag to specify options for the positron lifetime calculation, 

 

accuracy{ 
    cutoff_pwf = 50.00 rydberg 
    positron_convergence{ 
      num_extra_bands = 8 
      delta_eigenvalue = 1.d-8 rydberg 
      succession = 6 
      num_max_iteration = 32000 
      dtim = 0.01 
      epsilon_ele = 12} 
} 

 

cutoff_pwf = 50.00 rydberg Cutoff energy for expanded positron wave functions [See equation (3)]  

positron_convergence｛｝ Positron wave functions are obtained by an iterative calculation; this tag 

specifies options for identifying a converged solution when solving equation 

(2). 

 

num_extra_bands = 8 For the eigenstate of the positron, it is sufficient to only calculate the ground 

state. However, for the converged solution obtained by the iterative 

calculation, wave functions having higher energies than the ground state 

should also be calculated. This tag specifies the number of those extra wave 

functions. Note that the resulting wave functions all belong to points in the 

Brillouin zone. 

 

delta_eigenvalue = 1.d-8 

rydberg 

Refer to the explanation of line 5. 

succession = 6 In the iterative calculation, if physical quantities from the previous and 

current iterations (refer to line 7) are consistent within a range given by line 
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4, and if they are continuous over the times specified by line 5, the 

calculation is considered to have converged. 

 

num_max_iteration = 32000 If the calculation has not converged by this number of iterations, the 

calculation will stop. 

 

dtim = 0.01 In the iterative calculation, dtim measures the extent of change permitted 

from one wave function to the next. When dtim is large, the calculation will 

converge faster. However, if it is very large, no converged solution will be 

obtained. In contrast, when dtim is small, the calculation will be more stable, 

but the calculation time will increase. Thus, depending to the system being 

studied, it is recommended that users seek an optimum value for dtim. 

 

epsilon_ele = 12 This tag is used when the system has a gap; hence, a correction is needed 

that involves the dielectric constant of the electron system of LDA. In this 

example, the tag is set to “12,” which is the dielectric constant for Si. If the 

system has no gap (e.g., if it is a metal), then no value should be assigned to 

this parameter, and line 8 should be deleted. 

 

 

5.1.4.3 Output file 

 

After performing the calculation for a positron lifetime, an output file and three cube files will be generated. 

They are placed in the directory /samples/positron Si/output/. 

 

13. Log outputfile, output000 

 

The first part of this file contains information related to the calculation of the electronic bands of Si. After the 

calculation of electronic bands, the charge density of electrons will be obtained, and then the calculation of 

the positron lifetime will be performed. 

 

In the output, the part related to positron calculations starts at 

 

  “--- initial positron energy eigen values ---” 

 

The positron wave function is determined by the iterative calculation. In the following output, at the first 

iteration, there is an eigenvalue 14.6379 eV. There are also extra bands (14.9628460558–15.0292289699) 

that are higher than the positron eigenvalue. In the second iteration, the eigenvalue becomes 0.0021898139 

eV. 

--- initial positron energy eigen values --- 
 === positron eigen values === 
     14.6378982055 
 -- extra_bands -- 
     14.9628460558     14.6842242625     14.9879179620     15.2755174303 
     14.8070539395     14.6061318397     14.8086346971     15.0292289699 

 
 === positron eigen values === 
      0.0021898139 
 -- extra_bands -- 
      0.0892687578      0.1056325893      0.2037689630      0.2140559068 
      0.3115605599      0.3359746459      0.3540270556      0.4738130045 

 

Then, the file below contains the following output:. 

*************************************************** 
 positron lifetime(ps)   220.184723312044      



 132 

 core rate   3.79328791767622      % 
 ************************************************* 

This means that, after the iterative calculation converges, the calculated positron lifetime is 220 ps. Here the 

core rate is the percentage of the annihilation rate of core electrons relative to the total annihilation rate. 

 

 

14. Cube file 

 

After the calculation, the following files are created: electron.cube, positron.cube, and ep_pair.cube. These 

cube files contain the charge distribution of electrons, the charge distribution of the positron, and the 

distribution of the electron–positron pair, respectively. The latter can be visualized using the Biostation 

viewer. (This software is not part of PHASE, but it can be downloaded from the web.) 

 

Figure 5.6 shows distributions computed for the example Si crystal. This figure shows that the valence 

electron mainly exists in the bond region, while the positron exists in the interstitial  region. While the 

positron wave function is energetically favorable when the kinetic energy of spreading is low, the positron 

commonly tends to be in the interstitial  region. The distribution of the electron–positron pair in Fig. 5.7(c) 

indicates that when the distribution is high, annihilation of the positron occurs at a high rate. 

 

 

Figure 5.6 Distributions of (a) electron, (b) positron, and (c) electron–positron pair computed for a Si crystal. 

 

5.1.4.4 Notes on calculation of positron lifetimes 

 

Summary of the notes upon the calculation of positron lifetime. 

 

 Selection of pseudopotential 

 

There may be a semi-core state that depends on the chemical element.  

 A semi-core state arises when the overlap between the core and valence electrons cannot be neglevted..  

The semi-core electrons need to be classified into valence electrons in making pseudopotentials,  If no such 

published pseudopotential is available for a chemical element, a pseudopotential of this element can be 

created by using  CIAO . 

 

 Selection of cutoff energy 

 

In the band calculation for the Si crystal, the input file contains the following, 

accuracy{ 
    cutoff_wf =  50.00  rydberg  ! cke_wf 
    cutoff_cd =  200.00  rydberg  ! cke_cd 
    cutoff_pwf = 50.00 rydberg 

These set the cutoff energies for electron wave function, charge density, and positron wave function. To 

confirm that the positron-lifetime calculation has sufficiently converged, change these cutoff values and 
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repeat the calculation. 

 

 output 

 

The positron wave function and the electron wave function are provided by the iterative calculation. For each 

iteration, the output000 file, which is the output for the last iteration, contains the following: 

=== positron eigen values === 
     -0.5674635596 
 -- extra_bands -- 
     -0.0490686179     -0.0460091253     -0.0446118499     -0.0275856742 
     -0.0102856694      0.0069403602      0.0274419414      0.2284487012 
lifetime:    220.180365487100        220.179503204077  

 

This output, near the end of the calculation, confirms that the positron eigenvalue is sufficiently converged. 

In this output (output000) from the sample calculation, there are the eigenvalues 

  -0.5674635596 

  -0.5674635638 

etc., suggesting that the calculation is sufficiently converged. In addition, the successive lifetime values 

220.180365487100 ps and 220.179503204077 ps suggest that a converged value for the lifetime is being 

approached. If the electronic band calculation is converged, and it can be observed the 3.4.4, it is considered 

that this calculation is sufficient. It is recommended that you first do a calculation for a relatively simple 

system and then confirm the calculation results by comparing with experimental data. After that, you can 

perform calculations on the system of interest. It is fortunate that these calculations can be helpful in the 

analysis of positron annihilation experiments in various systems. 
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5.2 Atomic dynamics 

 

5.2.2 Molecular dynamics simulation 

 

5.2.2.1 Overview 

 

By calculating the forces acting on atoms, molecular dynamics (MD) simulations are carried out. PHASE can 

perform constant-energy and constant-temperature MD simulations. 

 

5.2.2.2 Input parameters 

 

The following table lists blocks and variables related to MD simulations. 

 

1st level block 2nd, 3rd level block Tag keyword Description 

structure_evolution   Block for specifying a method for 

updating atomic coordinates. 

  method Specify a method for updating atomic 

coordinates. Options are either 

velocity_verlet (constant-energy MD 

simulation) OR 

temperature_control 

(constant-temperature MD simulation). 

  dt Specify the time step. Defaults to 100 au 

(nearly equals 2.4 fs). 

 thermostat  Tabular block that defines thermostat. 

  temp Specify the target temperature. 

  qmass Specify the mass Q. This parameter must 

be given if a constant-temperature 

simulation is performed. 

structure atom_list   

 atoms  Tabular block that defines atomic 

positions. 

  thermo group This column is used to assign 

thermostats to atoms.  

This column must be defined even if only 

one thermostat is defined. 

 element_list  Tabular block that defines elements 

  mass Specify mass of atoms. Unit is atomic 

unit. 

printlevel    

  iprivelocity If this variable is set to 2, velocity is also 

printed into the F_DYNM file. 

 

5.2.2.3 Output 

 

Atomic coordinates at each step are printed to the F_DYNM file. Its format is the same as that for geometry 

optimization. 

 

 Atomic coordinates 

Atomic coordinates are written into the F_DYNM file (default name is nfdynm.data) defined in 

file_names.data.  
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A Perl script, animate.pl, can convert the format of this file so it can be read by the PHASE viewer. 

 

 

The velocities of atoms are also printed to this file, if the iprivelocity variable in the printoutlevel block is set 

to more than 2. The velocities are printed in atomic units after printing the atomic forces. 

 

 Total energy 

The total energy at each step is dumped into a file designated by the F_ENF keyword in the file_name.data 

(default filename is nfefn.data). The following shows an example of this file. 

 

  iter_ion，iter_total，etotal，ekina，econst，forcmx 
     1      18    -7.8953179624     0.0000042358    -7.8953179624     0.0186964345 
     2      30    -7.8953851218     0.0000665502    -7.8953185716     0.0183575424 
     3      43    -7.8955768901     0.0002565396    -7.8953203505     0.0173392067 
     4      56    -7.8958649874     0.0005418445    -7.8953231430     0.0156398790 
     5      69    -7.8962052587     0.0008785990    -7.8953266596     0.0132645441 
     6      83    -7.8965425397     0.0012120826    -7.8953304571     0.0102355854 
     7      97    -7.8968179539     0.0014840140    -7.8953339398     0.0066063151 
     8     111    -7.8969784478     0.0016420281    -7.8953364197     0.0024736141 
     9     125    -7.8969875377     0.0016502900    -7.8953372478     0.0020111576 
    10     139    -7.8968352058     0.0014992046    -7.8953360011     0.0066379641 
    11     153    -7.8965440599     0.0012113794    -7.8953326806     0.0111430822 
                            ............................... 
                            ............................... 
                            ............................... 

 

The first column indicates the number of MD steps, the second column indicates the number of total SCF 

calculations, the third column indicates the total potential energy, the fourth column indicates the kinetic 

energy of the system, the fifth column is the sum of the total potential energy and kinetic energy. The fifth 

column contains the conserved quantity in constant-energy MD simulations. 

 

 

5.2.2.4 Usage: constant-energy MD simulation 

 

The following is an example of the input parameters for a constant-energy MD simulation. This sample file 

is in sample/molecular_dynamics/NVE. 

 

accuracy{ 
    cutoff_wf = 9.00 rydberg 
    cutoff_cd = 36.00 rydberg 
    num_bands = 8  
    xctype = ldapw91  
    force_convergence{ 
        max_force = 1.0e-8 Hartree/Bohr 
    } 
    initial_wavefunctions = matrix_diagon  
    ksampling{ 
        mesh{ 
            nx = 4  
            ny = 4  
            nz = 4  
        } 
    } 
    scf_convergence{ 
        delta_total_energy = 1e-12 Hartree 
        succession = 3  
    } 
} 
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... 

... 
structure{ 
    unit_cell_type = primitive  
    unit_cell{ 
        a_vector = 0.0000000000        5.1300000000        5.1300000000  
        b_vector = 5.1300000000        0.0000000000        5.1300000000  
        c_vector = 5.1300000000        5.1300000000        0.0000000000  
    } 
    atom_list{ 
        atoms{ 
            #tag element rx ry rz mobile 
             Si 0.130 0.130 0.130 yes 
             Si -0.130 -0.130 -0.130 yes 
        } 
    } 
    element_list{ 
        #tag element atomicnumber 
         Si 14 
    } 
} 
... 
... 
structure_evolution{ 
    method = velocity_verlet  
    dt = 100  
} 
... 
... 

 

In the atoms block, the mobile attribute is set to “yes.” If “no” or “0” is given, the atom is fixed during the MD 

simulation. In this example, intentionally unstable atomic coordinates are given. To be more specific, the two 

silicon atoms are slightly shifted to separate one from the other in the (111) direction. The 

structure_evolution block identifies the method as “velocity_verlet.” By using this method, a microcanonical 

ensemble MD simulation is carried out. The dt variable sets the time step of each cycle to “100” in atomic 

units. As mentioned before, this value is equivalent to 2.418   10−15 s. In the above example, the initial 

velocities of all atoms are set to “0.” To give initial velocities to the atoms, the following input needs to be 

prepared. 

 

structure_evolution{ 
    method = velocity_verlet 
    dt  = 100 
    temperature_control{ 
        thermostat{ 
            #tag temp 
                 300  
        } 
    } 
} 

 

Here the temp variable gives the initial temperature in Kelvin. Initial velocities, given by normalized 

random numbers, correspond to this temperature such that the total momentum is 0. One can set different 

initial temperatures to each atomic species. In such cases, several target temperatures are defined in the 

thermostat block as follows: 

 

structure_evolution{ 
    method = velocity_verlet 
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    dt  = 100 
    temperature_control{ 
        thermostat{!#tag temp 
                         300  
                         500  
                         700  
        } 
    } 
} 

 

Next, define the thermo_group attribute in the atoms block. 

structure{ 
     ... 
    atom_list{ 
        atoms{ 
        !#tag rx ry rz  element mobile weight  thermo_group 
            0.1159672611      0.1235205209      0.1215156388    Si   1   1  1 
           -0.1329067626     -0.1264216714     -0.1225370484    Si   1   1  2 
            0.1273740089      0.6305999369      0.6247606249    Si   1   1  3 
            ... 
            ... 
        } 
    } 
    ... 
} 

 

The above example indicates that the initial velocities of the first, second, and third atoms are assigned to 

reproduce the temperatures 300 K, 500 K, and 700 K, respectively. 

 

Figure 5.7 shows the potential energy, kinetic energy, and total energy of this sample simulation. 

 

 

Figure 5.7 Time evolution of potential energy, kinetic energy, and total energy. 
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5.2.2.5 Usage: constant-temperature MD simulation 

 

The following is an example of input parameters for a constant-temperature MD simulation. This sample file 

is in sampe/molecular_dynamics/NVT. 

 

 Setting the thermostat 

Define the temperature_control block as below: 

structure_evolution{ 
    method = temperature_control 
    dt  = 50.0 
    temperature_control{ 
        thermostat{ 
            #tag temp  qmass 
                 300   5000 
        } 
    } 
} 

 

In the above example, “temperature_control” is chosen for the MD method; this indicates that a 

constant-temperature MD simulation is to be carried out. The dt gives the time step in atomic units. The 

value “50.0” in this example is equivalent to about 1.2 fs. In addition, temperature_control is defined to give 

settings for the thermostat. The temp variable sets the target temperature, and qmass sets the effective 

mass Q.  

 

To assign the above-defined temperature and mass to atoms, define the thermo_group attribute in the atoms 

block as follows: 

structure{ 
     ... 
    atom_list{ 
        num_atoms = 8 
        cooordinate_system = internal 
        atoms{ 
        !#tag rx ry rz  element mobile weight  thermo_group 
            0.1159672611      0.1235205209      0.1215156388    Si   1   1  1 
           -0.1329067626     -0.1264216714     -0.1225370484    Si   1   1  1 
            0.1273740089      0.6305999369      0.6247606249    Si   1   1  1 
           -0.1152089939     -0.6164829779     -0.6221565128    Si   1   1  1 
            0.6299472943      0.1341313888      0.6253193197    Si   1   1  1 
           -0.6305720382     -0.1290073650     -0.6187967685    Si   1   1  1 
            0.6151271805      0.6206113965      0.1333834419    Si   1   1  1 
           -0.6276524003     -0.6268549639     -0.1175099372    Si   1   1  1 
        } 
    } 
    ... 
} 

 

In this example, the thermo_group attribute is defined for all atoms. The number given to this attribute 

corresponds to the order of thermostat parameters defined in the thermostat block. As well as other 

attributes, the default value of the thermostat parameter can be defined by the “#default” tag. Although the 

same group is given to the thermo_group in this example, you can set different groups to the atoms. 

 

 

5.2.2.6 Precaution for use 

 

There are no specific limitations for the MD simulation function. This function supports ultra-soft and PAW 
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pseudopotentials, parallel calculations, and continuation calculations (restarting). However, note the 

following. 

 

 Masses of atoms must be correctly defined when an MD simulation is performed. The default unit of 

mass in PHASE is in atomic units. For example, the mass of a proton is 1822.877333 in atomic units. 

 The kinetic energy      [Hartree] is given by      
 

 
          , where       represents the 

number of atoms,    represents the Boltzmann constant, and   represents the instantaneous 

absolute temperature. Therefore, to know the temperature of the system, divide the kinetic energy by 

the number of atoms, multiply by           , which is the unit conversion factor from Hartree to 

   , and then finally divide by 
 

 
. 

 The total simulation time can be obtained by multiplying the number of MD cycles by the time step 

given by the dt variable. Although the unit of time can be defined by users, the default unit is in atomic 

units. One can convert the time from atomic units to seconds by multiplying by            . For 

example, 100 a.u. corresponds to 2.418 fs. 

 

 In constant-temperature MD simulations, the parameter Q should be carefully chosen. If the value of Q 

is very small, an artificial mode is created in the dynamics. This is caused by the thermostat and leads 

to a collapse of the calculation. Alternatively, if the value of Q is very large, the system requires a large 

number of steps to thermally equilibrate. Generally speaking, it is recommended to set the parameter Q 

such that the period of oscillation of the thermostat is almost equivalent to or longer than the period of 

characteristic oscillations of the system. The period of oscillation of the thermostat can be approximately 

estimated by the equation (S. Nos  ，Progress of Theoretical Physics Supplement No 103, 1991, pp.1–46): 

  
  

 
    

 

     
 
   

 

where   and   represent the period and frequency of the system,   is the number of degrees of 

freedom of the system (3   N, where N is the number of atoms related to the thermostat),    is 

Boltzmann’s constant, and   is the target absolute temperature of the thermostat. For example, if   is 

0.05 ps, the number of atoms is 8，and the target temperature is 300 K, then the parameter Q is 

estimated to about 4600 in atomic units. 
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5.3 Advanced DFT calculations 

 

5.3.1 DFT+U Method 

 

5.3.1.1 General features 

 

The software PHASE, which is based on density functional theory (DFT), accurately calculates the 

electronic states of most materials. However, for strongly correlated systems, high accuracy cannot be 

expected owing to limitations in the local density approximation (LDA) adopted in DFT. To overcome this 

drawback, PHASE also supplies the LDA+U method, or alternatively DFT+U, in which repulsive 

interactions between localized electrons are incorporated as on-site Coulomb interactions. 

 

Among various DFT+U models proposed, PHASE adopts a simplified rotationally invariant model, in which 

the total energy (      ) is written as a sum of the energy of DFT (    ) and a “+U” correction energy. (The 

latter contribution is also called the Hubbard correction.) The Hubbard correction is a function of the 

occupation matrix   that is calculated on each atomic site. 

            
    

 
   

   
     

   ′

  

 ′

 
 ′  

   

     

  

Here index l denotes the atomic site, m and m are magnetic quantum numbers, and   is the spin index. 

The quantity      represents the strength of the effective Coulomb interaction. 

The occupation matrix is constructed by projecting the wavefunctions onto the localized orbitals such as 

atomic orbitals. 

 
   ′
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Here the index   denotes the wavenumber vector and   is the band index. The quantity  
  
  denotes the 

occupation number of the electronic state specified by the three indices  ,  , and  . 

  

 The Hubbard correction causes splitting of the degenerate energy levels of the localized orbitals. In 

particular, when the corresponding energy level is fully occupied (unoccupied), its energy is decreased 

(increased) by 
    

 
 (see Figure 5.8). The value of      should be chosen so as to experimentally reproduce 

observed quantities; otherwise, use values reported in previous studies. 
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Figure 5.8 Energy level splitting caused by the Hubbard correction 

 

5.3.1.2 Input parameters 

 

To use the DFT+U method, the following steps are essential. First, in the “accuracy” block, you should add 

the “hubbard” and “projector_list” blocks. In the former, specify the strength of the effective Coulomb 

interaction (Ueff). Note that the keyword “sw_hubbard = on” is needed to declare that the Hubbard correction 

will be used. In the latter part, specify the radius of the atomic orbital that will be used in calculating the 

occupation matrix. The keyword “no” denotes the projector number, “group” denotes the projector group 

number, “radius” denotes the radius of the atomic orbital, and “l” denotes the azimuthal quantum number. 

Note that the projector number specified in the “hubbard” block corresponds to the projector number in the 

“projector_list” block. 

 

accuracy{ 
        ... 
        hubbard{ 
           sw_hubbard = on 
           projectors{ 
             #units eV 
             #tag no ueff 
                  1  10.0 
           } 
        } 
        projector_list{ 
          projectors{ 
            #tag no group radius l 
                 1  1     2.75   2 
          } 
        } 
... 
} 

 

Next, in the “structure” block, you should specify the atoms to which the Hubbard correction is applied. The 

numbers specified with the keyword “proj_group” correspond to the projector group numbers defined in the 

“accuracy” block. The number “0” indicates that the Hubbard correction is not to be applied to the 

corresponding atom. 

 

structure{ 
  ... 
  atom_list{ 
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    coordinate_system = internal ! {cartesian|internal} 
      atoms{ 
        !#default mobile=no 
        !#tag  rx   ry   rz  element proj_group 
               0.0  0.0  0.0 Sr      0 
               0.5  0.5  0.5 Ti      1 
               0.0  0.5  0.5 O       0 
               0.5  0.0  0.5 O       0 
               0.5  0.5  0.0 O       0 
             } 
        } 
... 
} 

 

Finally, in the “wavefunction_solver” block, we recommend using the Davidson method to prevent electronic 

states from being trapped in a local energy minimum. 

 

wavefunction_solver{ 
  solvers{ 
  !#tag   sol      till_n  dts  dte  itr  var  prec cmix 
          Davidson     -1  0.1  0.1  100  tanh off  1   
  } 
} 

 

5.3.1.3 Outputs 

 

 Standard output file 

 

In the standard output file, you will find the words “HE” and “HP” when you use the Hubbard correction. 

The former and latter terms correspond to the Hubbard energy and Hubbard potential energy, respectively. 

 

 TOTAL ENERGY FOR     2 -TH ITER=    -79.756461901287   edel =   0.482992D+01 
 KI=     45.2522902 HA=    125.6089055 XC=    -43.2979227 LO=   -147.0597534 
 NL=     19.3280980 EW=    -92.0686823 PC=     12.2272681 EN=      0.0000000 
 HE=      0.2533348 HP=      0.6709743 

 

In the same file, you will also be able to confirm the elements of the occupation matrix on each of the 

atomic sites to which you apply the Hubbard correction. The keyword “is” denotes the spin index, “ia” 

denotes the atom index, and “l” denotes the azimuthal quantum number. Note that the dimensions of the 

occupation matrix are (2l + 1) × (2l + 1). 

 

The (m, m)th element of this matrix indicates the occupation matrix between the atomic orbital with the 

magnetic quantum numbers, m and m (1 <= m, m <= 2l + 1). The character of the mth orbital used in 

PHASE is summarized in Table 5.1. 

Subsequently, you will find the occupancy of the atomic orbitals by diagonalizing the occupation matrix. The 

first column indicates the eigenvalues of the occupation matrix, and the numbers on the right hand side of 

the colon indicate the corresponding eigenvectors. 

 

Occupation Mattrix: is,ia,l=    1    2    2 
   0.583   0.000   0.000   0.000   0.000 
   0.000   0.583   0.000   0.000   0.000 
   0.000   0.000   0.529   0.000   0.000 
   0.000   0.000   0.000   0.529   0.000 
   0.000   0.000   0.000   0.000   0.529 
Diagonalizing Occupation Mattrix: is,ia,l=    1    2    2 



 143 

   0.529:   0.000   0.000   0.000  -1.000   0.000 
   0.529:   0.000   0.000   1.000   0.000   0.000 
   0.529:   0.000   0.000   0.000   0.000   1.000 
   0.583:   0.000   1.000   0.000   0.000   0.000 
   0.583:  -1.000   0.000   0.000   0.000   0.000 

 

occmat.data 

 

In the file “occmat.data,” you will find the elements of the occupation matrix at the last SCF iteration before 

the calculation is terminated. The first line, which contains the word “num_om,” indicates the number of 

generated occupation matrices,    . Below that line, you will find the elements of the occupation matrix at 

each of the atomic sites to which you apply the Hubbard correction. The keyword “is” denotes the spin index, 

“ia” denotes the atom index, “iproj” denotes the projector number, “it” denotes the atom species, and “l” 

denotes the azimuthal quantum number. Note that the number of occupation matrices printed equals   . 

 

16 : num_om 

……. 

  1     3     1     3     1 : is, ia, iproj; it, l 

    0.17441054E+01      -0.20464246E-02      -0.99899010E-03 

   -0.20464246E-02       0.17539484E+01      -0.39442624E-02 

    -0.99899010E-03      -0.39442624E-02       0.17529809E+01 

  1     4     1     3     1 : is, ia, iproj; it, l 

    0.17365161E+01      -0.12145064E-01      -0.11970673E-01 

   -0.12145064E-01       0.17903944E+01      -0.85524320E-02 

   -0.11970673E-01      -0.85524320E-02       0.17856965E+01 

…… 

 

 

 

Table 5.1 Orbital character 

magnetic quantum 

number 
                     

1                             
2                          

3                       

4                   

5              

6                 

7                 
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5.3.1.4 Sample : cubic SrTiO3 

 

In the directory “sample/DFT+U/SrTiO3/cubic+u,” you will find the following samples. 

 

 DFT+U/SrTiO3/cubic+u   (      is set to 10 eV for the Ti 3d orbitals. ) 

 DFT+U/SrTiO3/cubic     (      is set to 0 eV ) 

 

These two samples are compared in Figure 5.9. 

 

 

Figure 5.9 Density of states for cubic SrTiO3 

 

5.3.1.5 Sample : cubic LaVO3 

 

 DFT+U/LaVO3/cubic+u  (      is set to 20 eV for the La 4f orbitals. ) 

 DFT+U/LaVO3/cubic    (      is set to 0 eV ) 

 

In the latter, the 4f band appears at 1.5 eV above the Fermi level. 

In the former, this band appears at 8.0 eV above the Fermi level. 

 

5.3.1.6 Sample : orthrombic LaVO3 

 

 DFT+U/LaVO3/orthrombic+u 

(      is set to 5 for the V 3d orbital and to 20 eV for La 4f orbital. ) 

 DFT+U/LaVO3/orthrombic   (      is set to 0 eV ) 

 

In the former, the magnetic moments on the V atoms are aligned in an anti-ferromagnetic manner.. 

 

5.3.1.7 Sample : cubic FeO 
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 DFT+U/FeO/gga+u (      is 5 eV for the Fe 3d orbital. ) 

 DFT+U/FeO/gga   (      is set to 0 eV ) 

 

Note that these two samples use the data in file occmat.data as initial values for the occupation matrix. For 

the up-spin component, the diagonal elements of the occupation matrix are set to 1. For the down-spin 

component, these elements are set to 0 except for the        orbital.  

In the former, the d-band with the        character appears above the Fermi level. In the latter, this 

band occurs below the Fermi level, which indicates that a band gap is opened. 
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5.3.2 Hybrid functionals 

 

5.3.2.1 Overview 

 

The exact exchange energy is given by 

  
       

 

 
    

   

    

      

 
  
        

       
        

    

       
 

where  
  

    is a wavefunction of the  -th   spin. Note that the summation over     only applies to 

occupied states. Here we define the hybrid exchange-correlation functional: 

  
      

    
             

      
    

where   
    represents the PBE exchange functional, and   

    represents the PBE correlation functional. 

When   
 

 
, the   

      
 corresponds to the PBE0 functional. 

 

5.3.2.2 Input parameters 

 

To calculate the electronic states by the PBE0 functional, input parameters are set as follows: 

accuracy{ 
    ksampling{ 
        method = gamma 
        base_reduction_for_GAMMA = OFF 
        base_symmetrization_for_GAMMA = OFF 
    } 
    xctype = ggapbe 
    hybrid_functional{ 
        sw_hybrid_functional = ON 
        alpha = 0.25 
    } 
}  

 

In addition, wavefunctions and the charge density calculated by the PBE functional are given as initial 

guesses for the PBE0 functional calculation: 

accuracy{ 
    initial_wavefunctions = file 
    initial_charge_density = file 
} 

 

Make sure that the wavefunction file (zaj.data) and charge-density file (nfchgt.data) obtained by the PBE 

calculation are copied into the work directory. Note that for the hybrid functional, only the MSD method can 

be used as the wavefunction solver, and only norm-conserving pseudopotentials can be used as 

pseudopotentials. 

 

Hartree–Fock calculations can also be performed by the following input. 

 

accuracy{ 
    hybrid_functional{ 
        sw_hybrid_functional = ON 
        sw_exchage_only = ON 
        alpha = 1.00 
    } 
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} 

 

However, convergence of a Hatree–Fock calculation is significantly slower than that for a PBE0 calculation. 

 

5.3.2.3 Examples: a hydrogen molecule 

 

Sample input files of PBE, PBE0, and Hartree–Fock calculations of a hydrogen molecule are in the directory 

samples/hybrid/H2. By executing go_h2.sh, these calculations are executed in order. The results of these 

calculations and reference data obtained by Gaussian03 are compared in Figure 5.10. 

 

 

Figure 5.10 Energy levels of HOMO and LUMO of the hydrogen molecule, 

calculated by PBE functional, PBE0 functional, and the Hartree–Fock method. 

The results obtained from PHASE and Gaussian03 are compared. 

 

5.3.2.4 Examples: a water molecule 

 

Sample input files for PBE and PBE0 calculations for a water molecule are in the directory 

samples/hybrid/H2O. By executing go_h2o.sh, these calculations are executed in order. The results of these 

calculations and reference data obtained by Gaussian03 are compared in Figure 5.11. 
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Figure 5.11 Energy levels of HOMO and LUMO of the water molecule  

calculated by the PBE functional and PBE0 functional. 

The results obtained from PHASE and Gaussian03 are compared. 
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5.3.3 Non-local correlation term (van der Waals interaction) 

 

5.3.3.1 Introduction for the van der Waals interaction 

 

 PHASE can calculate total energies and electronic states, including the van der Waals (vdW) interaction. In 

this section, the function used for the vdW term is explained. The vdW interaction is calculated by a 

nonempirical method. It is based on the van der Waals density functional (vdW-DF) given by Dion et al. [*1] 

It is widely known that the generalized gradient approximation (GGA) fails to reproduce the vdW interaction. 

Therefore, GGA cannot be used for systems in which the vdW interaction makes a large contribution, such 

as for interlayer interactions of stacked graphene sheets. The function described in this section avoids this 

defect. It can provide total energies and electronic states more accurately than GGA. The function contains 

no experimental parameters; thus, it is appropriate for any type of system. 

 This function is implemented via two Fortran 90 programs, vdW.F90 and vc_nl.F90. One program, 

vdW.F90, is used for “1-shot calculations (post-calculations)” to determine total energies, including the vdW 

interaction. The other, vc_nl.F90, is self-consistently implemented into the main program “PHASE.” This 

program computes the vdW potential and directly implements it into the Kohn–Sham equation; hence, 

electronic states will be calculated with the vdW interaction included 

 

5.3.3.2 Total energy (1-shot calculation) 

 

15. Basic formula 

 

The program vdW.F90 calculates the nonlocal correlation term   
   (i.e., the vdW term) and the local 

correlation term   
   . The total exchange-correlation term, including the vdW interaction, is obtained by 

adding the local and nonlocal terms to the GGA exchange term. Thus, the total exchange-correlation energy 

is written as 

       
      

      
   (1) 

The third term on the right hand side of Eq. (1) is the most difficult to calculate. This is what we call the van 

der Waals interaction; to calculate this term, we use the vdW-DF given by Dion et al. [*1]. They write   
   as 

 
  

   
 

 
                         

(2) 

Equation (2) contains two spatial variables:   and  . This means that Eq. (2) considers nonlocal interactions 

between electron densities at points    and   . This is the main difference between Eq. (2) and the formula 

used in GGA and LDA. The function containing these two variables,         , is given by 

 
         

 

  
  

 

 

          
(3) 

Here 

 
       

 

    
                                      

                                     

(4) 

and 

 
                           

 

 
 

 

           
 

 

           
  

  
 

                          
  

   

                          
  

(5) 

The remaining variables are given by 
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(6) 

                   (7) 

 
        

  

 
   

         
   

 
 

      

            
 

 

          
(8) 

   
                               (9) 

 

The coefficient             is determined by a first-principle calculation, and it does not change with a 

change in system. From these equations, we can see that the electron density      is the only input data to 

the functional         . The quantity    
    in (8) is the exchange-correlation energy density in LDA [*2]. 

These formulas are based on the plasmon-pole model, and because of this, the vdW interaction can be 

obtained with a relatively low computational cost. 

 

16. Algorism 

The total energy, including the vdW interaction, is calculated using output files obtained from a GGA 

calculation implemented through PHASE. However, to avoid double counting, the GGA correlation term 

must be excluded from the original GGA. Thus, we represent the total energy obtained by this 

GGA-exchange-only calculation as       
    . The correlation term, which will be calculated by vdW.F90, 

consists of two parts: a “local” part and a “nonlocal” part. These are determined in a 1-shot (post-) calculation 

by using the charge density file “nfchr.cube” generated by PHASE. The total energy including the vdW 

interaction       
       is obtained by adding these energy terms: 

       
             

       
      

   (10) 

Here   
    is the local correlation term, and   

   is the nonlocal correlation term. Figure 5.12 shows the 

calculation flow to obtain       
       from the 1-shot program vdW.F90. The green box represents the vdW 

routine, while the blue box represents the GGA (exchange-only) routine. Before running vdW.F90, we need to 

run PHASE to obtain two output files: “nfchr.cube” for the electron density           and “nfefn.data” for 

      
    . 

 

Figure 5.12 Calculation flow for vdW.F90 
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17. Execution of 1-shot calculations 

 

 Running PHASE in advance 

 

The program vdW.F90 is designed to perform a 1-shot (post-) calculation. This program needs two input files: 

“nfchr.cube” and “nfefn.data’. (See Fig.*1.) Here “nfchr.cube” contains the charge density and “nfefn.data” 

contains the total energy       
    ; both files are obtained by running PHASE. 

To obtain “nfchr.cube” from PHASE, we need to set parameters in “nfinp.data”. Here are representative 

examples for “file_names.data” and “nfinp.data.” 

 

 

file_names.data (PHASE)： 

F_ENF =  ‘./nfefn.data’ 

F_CHR =  ‘./nfchr.cube’ 

 

 

nfinp.data (PHASE) 

accuracy{ 

xctype = ggapbex 

} 

  

postprocessing{ 

charge{ 

sw_charge_rspace  = ON 

filetype    = cube 

  } 

} 

 

Although a “ggapbe”-type pseudopotential will be used in PHASE, the correlation term must be excluded to 

avoid double counting. To exclude this term, a new word “ggapbex” is added as a possible value for “xctype” 

in PHASE. By setting “xctype = ggapbex,” only the exchange term in ggapbe will be calculated. The same 

pseudopotential files are available for “ggapbex” with “ggapbe.” 

 

 Compiling vdW.F90 

 

The program vdW.F90 is parallelized with OpenMP and is compiled by a Fortran 90 compiler. Add the 

“-openmp” option when compiling for parallel calculations, 

 

$  ifort -openmp -o vdW vdW.F90 

 

 Executing ‘vdW’ 

 

Put the two input files “nfchr.cube” and “nfefn.data” into the same directory with the execution file “vdW” 

and do not change their names. These two files will be read automatically; hence, no additional input is 

needed for “vdW.” 

 

 

 Writing output from “vdW” 

 

Output data from “vdW” will be written in the format shown below. The units are all in Hartree, the same 

as in PHASE. 
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Output example: 

 These results were calculated by a serial calculation using the output files “nfchr.cube” and “nfefn.data” in 

phase/samples/vdW/input_scf_Si.data. 

 

E_total(GGA exchange) = -7.5363221703000 

 

Ec(LDA) = -0.5429739815997 

Ec(nl) = 0.0203272639208 

Ec (= Ec(LDA) + Ec(nl) ) = -0.5226467176789 

 

E_total(vdW-DF)  = -8.0589688879789 

 

Given in Hartree atomic units 

 

# Calculation time 0 : 11 : 33.7280 

 

Meaning of each variable: 

E_total(GGA exchange) Total energy of GGA (exchange only) 

Ec(LDA) Local correlation term from LDA 

Ec(nl) Non-local correlation term 

Ec (= Ec(LDA) + Ec(nl) ) Total correlation term 

E_total(vdW-DF)  Total energy including the vdW-DF 

Calculation time Hours : minutes : seconds 

Here “E_total(vdW-DF)” is the main objective in “vdW.” 

 

5.3.3.3 Example: Silicone Diamond 

 

These results can be tested by using files in “phase/samples/vdW/.” First, execute PHASE with 

“file_names.data” and “input_scf_Si.data”; two output files “nfchr.cube” and “nfefn.data” will be 

automatically created. Next, compile the vdW.F90 program prepared in the same directory and execute it. 

Thus, use the following commands: 

 

$  cd phase/samples/vdW/            (Change directory to samples/vdW/) 

$  ../../bin/phase           (Execute PHASE and do the GGA (exchange only) calculation)  

$  ifort -openmp -o vdW vdW.F90  (Compile vdW.F90 and prepare the execution file ‘vdW’) 

$  ./vdW                             (Execute ‘vdW’ at the same directory) 

 

Outputs 

E_total(GGA exchange) = -7.5363221703000 

 
Ec(LDA) = -0.5429739815997 
Ec(nl) = 0.0203272639208 
Ec (= Ec(LDA) + Ec(nl) ) = -0.5226467176789 

 
E_total(vdW-DF) = -8.0589688879789 

 
Given in Hartree atomic units 

 
# Calculation time 0 : 11 : 33.7280 

 

 

5.3.3.4 Electron state calculation (self-consistent field calculation) 

 

18. Basic formula 
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To calculate electronic states, considering the vdW interaction, the vdW potential term must be directly 

implemented into the Kohn–Sham equation that is used in self-consistent field (SCF) calculations. The 

functional derivatives with respect to the charge density      of the energy terms   
   and   

    (i.e., the 

potential terms) will be calculated by 

 
  

   
   

  

     
 

  
    

   
   

     
 

(10) 

Then, self-consistent implementation will be done by adding each potential term, 

       
      

      
   (11) 

Equation (3) shows that   
   and   

    include      in a relatively simple manner; thus, those derivations 

can be obtained analytically. 

The total energies should be calculated with SCF; however, the difference between the 1-shot result and the 

SCF result is confirmed to be negligible. [3] Therefore, for calculating only total energies, we recommend 

using only the 1-shot calculation since the CPU cost will be much lesser than when using SCF calculations. 

 

 

19. Execution of SCF calculations 

 

This routine self-consistently solves the Kohn–Sham equation by adding the local   
    and nonlocal 

correlation potentials   
   to the GGA exchange potential   

   . Calculation of electronic states, including 

the vdW interaction, are performed only by running PHASE similar to normal GGA or LDA calculations. 

Note that a unit cell of a system needs to be cuboid in this version. There is no such limitation in the 1-shot 

program; e.g., rhombic unit cells can be used in vdW.F90. 

To implement the vdW term in the self-consistent calculations, “nfinp.data” needs to be written as follows. 

 

nfinp.data (PHASE) : 

accuracy{ 

xctype = vdwdf 

} 

 

The program vc_nl.F90, which is used for the self-consistent implementation of the vdW term, is located in 

directory src_phase/. It is parallelized by OpenMP and is automatically compiled by executing the command 

“make” for compiling a normal PHASE. 
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5.3.4 Van der Waals corrected DFT 

 

5.3.4.1 Overview 

 

 Williams method (R.W. Williams, et al., Chemical Physics 327 (2006) 54–62) 
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Parameters: 

vdw radius 20.0 bohr 

scaling factor CS  0.8095 (PHASE), RS  0.80    reference  PBE  CS  0.85  RS  0.80 

damping factor d  3.0 

 

 polarizabilities 

A3 

vde coef C6 

Hartree*bohr6 

vdw radius 

 

 polarizabilities 

A3 

vde coef C6 

Hartree*bohr6 

vdw radius 

 

H 0.387 2.831179918 1.17 NTE 0.964 20.89758657 1.50 

F 0.296 3.94987377  NTR2 1.030 23.08003267 1.50 

Cl 2.315 3.94987377  NPI2 1.090 25.12582491 1.50 

Br 3.013 128.2756865  NDI 0.956 20.63799109 1.50 

I 5.415 309.0603852  OTE 0.637 11.86370812 1.40 

CTE 1.061 22.67403316 1.70 OTR4 0.569 10.01566303 1.40 

CTR 1.352 32.61525204 1.70 OPI2 0.274 3.346856941 1.40 

CAR 1.352 49.790/Sc 1.70 STE 3.000 121.2531939 1.80 

CBR 1.896 54.16430826 1.70 STR4 3.729 168.0350502 1.80 

CDI 1.283 30.15058105 1.70 SPI2 2.700 103.5277919 1.80 

    PTE 1.538 42.11289383 1.80 

 

 

 Grimme method (DFT-D2) (S. Grimme, J. Comp. Chem. 27 (2006) 1787) 
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Parameters: 

vdw radius  30.0A 

scaling factor 6s  0.75,  damping factor d  20.0 

 

 
C6 

Jnm6/mol 

R0 

A 
 

C6 

Jnm6/mol 

R0 

A 

H 0.14 1.001 K 10.80 1.485 
He 0.08 1.012 Ca 10.80 1.474 
Li 1.61 0.825 Sc-Zn 10.80 1.562 
Be 1.61 1.408 Ga 16.99 1.650 
B 3.13 1.485 Ge 17.10 1.727 
C 1.75 1.452 As 16.37 1.760 
N 1.23 1.397 Se 12.64 1.771 
O 0.70 1.342 Br 12.47 1.749 
F 0.75 1.287 Kr 12.01 1.727 
Ne 0.63 1.243 Rb 24.67 1.628 
Na 5.71 1.144 Sr 24.67 1.606 
Mg 5.71 1.364 Y-Cd 24.67 1.639 
Al 10.79 1.716 In 37.32 1.672 
Si 9.23 1.716 Sn 38.71 1.804 
P 7.84 1.705 Sb 38.44 1.881 
S 5.57 1.683 Te 31.74 1.892 
Cl 5.07 1.639 I 31.50 1.892 
Ar 4.61 1.595 Xe 29.99 1.881 
1 J/mol = 3.8088e-7 hartree,  1 bohr = 0.5291772480 A 

 

5.3.4.2 Input parameters 

 

A list of tag keyword related to the vdW correction 

1st level block 2nd, 3rd level block Tag keyword Description 

Control sw_vdw_correction *   

Accuracy vdw_method williams 

grimme or dft-d2 

default 

 vdw_radius  20 Bohr 

30 A (Grimme DFT-D2) 

 vdw_scaling_factor  0.805 (Williams) 

0.75 (Grimme DFT-D2) 

 vdw_scaling_factor_r  0.8 (Williams) 

 vdw_damping_factor  3.0 (Williams) 

20.0 (Grimme DFT-D2) 

Structure atom_list   

 atoms * a type of vdW correction 

is specified by #tag vdw 

 

 vdw_list parameters for each 

element for vdW 

correction are defined 

Williams 

#tag type c6   r0  p 

Grimme 

    #tag type c6   r0 

    

* required for the vdW correction 
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Parameters for the vdW correction for each element 

 

Parameters in the William’s method and Grimme method (DFT-D2) for each element are internally defined 

in PHASE and used as default values. The type attribute in the vdw_list must correspond to the type of vdW 

in the atom_list. 

 

Williams method 
       vdw_list{ 

             #tag type  c6  r0  p 

                   H     2.831179918  1.17  0.387 

                   CTE   22.67403316  1.70  1.061 

       } 

Grimme method (DFT-D2) 
       vdw_list{ 

             #tag type  c6  r0 

                   H     0.14  1.001 

                   C     1.75  1.452 

       } 

 

Example of input parameters 

 

Input data for vdW corrections are illustrated below. 

 

Methane Dimer by the Williams method 
Control{ 

        sw_vdw_correction = ON 

} 

accuracy{ 

        vdw_method = williams 

        vdw_radius = 20.0 

        vdw_scaling_factor = 0.8095 

        vdw_scaling_factor_r = 0.8 

        vdw_damping_factor = 3.0 

} 

structure{ 

        atom_list{ 

             coordinate_system = cartesian ! {cartesian|internal} 

             atoms{ 

                 #units angstrom 

                 #default mobile=on 

#tag  element  rx        ry        rz   vdw 

C       0       0       0       CTE 

H       0       1.093   0       H 

H       1.030490282     -0.364333333    0       H 

H       -0.515245141    -0.364333333    0.892430763     H 

H       -0.515245141    -0.364333333    -0.892430763    H 

C       0       -3.7    0       CTE 

H       0       -4.793  0       H 

H       -1.030490282    -3.335666667    0       H 

H       0.515245141     -3.335666667    -0.892430763    H 

H       0.515245141     -3.335666667    0.892430763     H 

             } 

        } 

       vdw_list{ 

             #tag type  c6  r0  p 

                   H     2.831179918  1.17  0.387 

                   CTE   22.67403316  1.70  1.061 

       } 

} 

 

Methane Dimer by the Grimme method (DFT-D2) 
Control{ 
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        sw_vdw_correction = ON 

} 

accuracy{ 

        vdw_method = grimme 

        vdw_radius = 30.0 

        vdw_scaling_factor = 0.75 

        vdw_damping_factor = 20.0 

} 

structure{ 

        atom_list{ 

             coordinate_system = cartesian ! {cartesian|internal} 

             atoms{ 

                 #units angstrom 

                 #default mobile=on 

#tag  element  rx        ry        rz   vdw 

C       0       0       0       C 

H       0       1.093   0       H 

H       1.030490282     -0.364333333    0       H 

H       -0.515245141    -0.364333333    0.892430763     H 

H       -0.515245141    -0.364333333    -0.892430763    H 

C       0       -3.7    0       C 

H       0       -4.793  0       H 

H       -1.030490282    -3.335666667    0       H 

H       0.515245141     -3.335666667    -0.892430763    H 

H       0.515245141     -3.335666667    0.892430763     H 

             } 

        } 

       vdw_list{ 

             #tag type  c6  r0 

                   H     0.14  1.001 

                   C     1.75  1.452 

       } 

} 

 

5.3.4.3 Calculation examples 

 

 Water_Dimer (Williams, Grimme(DFT-D2)) 

 Methane_Dimer (Williams, Grimme(DFT-D2)) 

 Ethane_Dimer (Williams, Grimme(DFT-D2)) 

 ATstack (Williams) 
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5.4 Analysis of chemical reactions 

 

5.4.1 The NEB method 

 

5.4.1.1 Outline of the feature 

 

The nudged elastic band (NEB) method and the climbing image (CI)–NEB method enable us to obtain the 

minimum energy path for a chemical reaction (or more generally, for any process having finite activation 

energy).  

 

In reaction-path calculations based on the NEB and CI–NEB methods, we assume that the atomic 

configurations of the initial state (      and final state (    ) are known in advance. The atomic configurations 

and energies of the intermediate states (            ), hereafter referred to as either “images” or 

“replicas,” are obtained by performing structural optimization under the constraint that adjacent images are 

coupled by hypothetical “springs.” Here      denotes the atomic coordinates of the i-th image. Initial 

intermediate images can be arbitrarily generated, although they are usually built by a simple linear 

interpolation between the initial and final states. 

 

 Ordinary NEB method 

 

In the ordinary NEB method, forces acting on each image are calculated by 

       
                

Here    
    is the component of the spring force that is parallel to the reaction path; it is calculated by 

   
                                         

Here k is the spring constant, and    is the unit vector along the reaction path, which is calculated from 

   
           

             
 

           

             
  

           is the component of the atomic forces that is perpendicular to the reaction path; it is calculated by 

                                   

 

 CI–NEB method 

 

The CI–NEB method is a revision of the NEB method, in which the forces of the image with the highest 

energy (the image closest to the transition state) are modified. First, the reaction-path calculations are 

advanced to a certain extent by the ordinary NEB method. Then, the image with the highest energy is 

identified, and the forces acting on it are modified by 
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Using this formula, the highest-energy replica will “climb” the reaction path toward the transition state. 

When convergence is reached, the highest-energy replica will be exactly located at the transition state. 

 

 Calculation method for the spring constants 

 

When calculating the minimum energy path of a reaction, it is preferable to increase the accuracy of the 

states in the vicinity of the saddle point. Thus, it is preferable to increase the “density” of images near the 

saddle point and accurately calculate the tangent to the path. One way to do this is to strengthen the spring 

constant of images near the saddle point. To this end, the following formula for the spring constant has been 

suggested in the literature: 

         
       

         
                

                                            

Here      is the maximum value of the spring constant,    is the difference between the maximum and 

minimum spring constants,    denotes the higher of the energies between the two images connected to the 

i-th spring,      is the highest energy among the images, and      is the higher of the energies between 

the initial and final states. 

 

 

5.4.1.2 Input parameters 

 

20. Specification of the input parameter file 

 

The tags related to the NEB method are tabulated below. 

1st level block 2nd, 3rd level block identifiers description 

Control    

  multiple_replica_mode  Set this switch to “ON” to 

operate PHASE in the NEB 

mode. 

  multiple_replica_max_iteration  Specify the maximum number 

of NEB iterations. 

multiple_replica    

 accuracy   

  dt  Specify the time step for NEB 

optimization. 

  neb_time_integral  Specify the integration 

method (either quench or 

steepest_descent) for the NEB 

method. Defaults to 

steepest_descent. 

  penalty_function  Specify whether to enable the 

penalty function. Defaults to 

NO. 

  neb_convergence_condition  Specify the convergence 

condition for NEB 

optimization (further details 

will be given in the 

explanations below) 

  neb_convergence_threshold  Specify the threshold for 

convergence. 

 constraint   

  ci_neb  Switch to whichever specifies 
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whether the CI–NEB should 

be enabled. Defaults to NO. 

  sp_k_init  Specify the initial value of the 

spring constant. 

  sp_k_min  Specify the minimum value of 

the spring constant.  

  sp_k_max  Specify the maximum value of 

the spring constant. 

  sp_k_variable  Switch to whichever specifies 

whether the spring constants 

should be variable. Defaults to 

NO. 

 structure   

  number_of_replicas  Specify the number of replicas 

excluding the initial and final 

states. 

 replica    Block to specify information 

regarding the replicas.  

  endpoint_images  Specify the method (either 

“directin” or ”file”) used to 

specify the atomic coordinates 

of the initial and final states. 

When “directin” is specified, 

the coordinates are specified 

within the F_INP file. When 

“file” is specified, the 

coordinates are supplied from 

a separate file. Defaults to 

“directin.” 

 atom_list_end0   Block whichever specifies the 

atomic coordinates for the 

initial state. 

 atom_list_end1   Block whichever specifies the 

atomic coordinates for the 

final state.  

 

Now, we use concrete examples to illustrate the configuration of input parameters for the NEB method. 

 

The following must be configured when performing NEB calculations. 

 Enable the NEB method. 

 Configure the convergence condition and threshold specific to the NEB method. 

 Specify the atomic coordinates for the initial and final states. 

 Specify the atomic coordinates of the intermediate images. (You can instruct PHASE to automatically 

build the intermediate images by a linear interpolation between the initial and final states.)  

 

 Enable the NEB method 

To instruct PHASE to perform NEB calculations, define the variable “multiple_replica_mode” under the 

“control” block and set its value to “on.” 

control{ 
  multiple_replica_mode = on 
} 

 

 Configure the convergence condition and threshold specific to the NEB method 

The convergence condition is configured by the “neb_convergence_condition” variable under the “accuracy” 
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block under the “multiple_replica” block. 

multiple_replica{ 
accuracy{ 

  neb_convergence_condition = energy_e 

} 

} 

 

The value for the “neb_convergence_criteria” can be specified by either an integer or a string. The 

correspondence is as follows. 

 

integer  string description 

1 energy_e  dE < threshold   

2 phase_force  maximum force from PHASE   threshold   

3 neb_force  maximum NEB force  threshold   

4 force_at_transition_state  maximum force from PHASE for the highest-energy image < 

threshold   

5 phase_force_normal  maximum of the PHASE force component perpendicular to 

the tangent of the reaction path   threshold   

 

The threshold value is specified by the “neb_convergence_threshold” variable, definable under the same 

block as the “neb_convergence_criteria” variable. Note that the unit for this variable changes according to 

the value specified for the “neb_convergence_criteria” variable. Thus, the unit for this variable cannot be 

explicitly specified: the default units (atomic units) must be used. 

 

 Specify the atomic coordinates for the initial and final states: direct specification 

To directly specify atomic coordinates for the initial and final states in the F_INP file, set the 

“endpoint_images” variable to “directin” and define the “atom_list_end0” and “atom_list_end1” block. Here is 

an example. 

multiple_replica{ 
    .... 
    .... 
    structure{ 
        .... 
        .... 
        endpoint_images = directin 
        atom_list_end0{ 
                 coordinate_system = cartesian ! {internal|cartesian} 
            atoms{ 
            #units angstrom 
            #tag element rx ry rz 
            Si    0.000000000000      0.000000000000      0.000000000000 
            Si    2.751721694800      2.751721694800      0.000000000000 
            .... 
            .... 
            } 
        } 
        atom_list_end1{ 
                 coordinate_system = cartesian ! {internal|cartesian} 
            atoms{ 
            #units angstrom 
            #tag element rx  ry  rz     
            Si    0.000000000000      0.000000000000      0.000000000000 
            Si    2.751721694800      2.751721694800      0.000000000000 
            .... 
            .... 
            } 
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        } 
        .... 
        .... 
    } 
    .... 
    .... 

 

The atomic coordinates for the initial and final states are specified under the “atom_list_end0” block and the 

“atom_list_end1” block, respectively. The format of the specification is the same as that for the usual atomic 

coordinates, i.e., the specification under the “atom_list” block under the “structure” block. 

 

 Specify the atomic coordinates for the initial and final states: specification from external files. 

 

To specify atomic coordinates for the initial and final states from external files, set the value of the 

“endpoint_images” variable to “file.” 

 

multiple_replica{ 
    ... 
    ... 
    structure{ 
        endpoint_images = file 
    } 
    ... 
    ... 
} 

 

The names of the external files are specified in the “file_names.data” file as usual. The corresponding file 

pointers are F_IMAGE (–1) and F_IMAGE (0). Here is an example. 

 

&fnames 
... 
... 
/ 
&nebfiles 
F_IMAGE(0)  = './endpoint0.data' 
F_IMAGE(-1) = './endpoint1.data' 
... 
... 
/ 

Note that the F_IMAGE (0) and F_IMAGE (–1) pointers can only be used under the “&nebfiles” section.  

 

The file formats of the F_IMAGE (0) and F_IMAGE (–1) files are as follows. 

 

coordinate_system=cartesian 

 
#units angstrom 

 
Si      0.000000000000      0.000000000000      0.000000000000 
Si      2.751721694800      2.751721694800      0.000000000000 
Si      1.375860847400      1.375860847400      1.375860847400 
Si      4.127582542200      4.127582542200      1.375860847400 
Si      0.000000000000      2.751721694800      2.751721694800 
Si      2.751721694800      0.000000000000      2.751721694800 
Si      1.375860847400      4.127582542200      4.127582542200 
Si      4.127582542200      1.375860847400      4.127582542200 
Si      0.000000000000      0.000000000000      5.503443389600 
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Si      2.751721694800      2.751721694800      5.503443389600 
Si      1.375860847400      1.375860847400      6.879304237000 
H       1.644706293661      1.095414892118     11.000000000000 
H       1.095414929519      1.644706317263     11.000000000000 

 

 Specify the intermediate images from a linear interpolation 

The atomic coordinates of intermediate images can be specified by a linear interpolation of the initial and 

final states. This is done as follows. 

multiple_replica{ 

structure{ 

number_of_replicas = 6 

replicas{ 

#tag replica_number  howtogive_coordinates   end0  end1 

            1            proportional              0      -1 ! 0: end0, -1:end1 

            2            proportional              0      -1 

            3            proportional              0      -1 

            4            proportional              0      -1 

            5            proportional              0      -1 

            6            proportional              0      -1 

        } 

} 

} 

 

 Specify the intermediate images from external files 

To specify intermediate images from external files, the value of the “howtogive_coordinates” variable is set to 

“file.” Here is an example. 

 

multiple_replica{ 
    ... 
    ... 
    structure{ 
        number_of_replicas = 3 
        replicas{ 
                #tag replica_number  howtogive_coordinates   end0  end1 
                1            file              0      -1 ! 0: end0, -1:end1 
                2            file              0      -1 
                3            file              0      -1 
        } 
    } 
} 

 

The names of the external files are specified in the “file_names.data” file. The corresponding file pointers are 

F_IMAGE(N), where N is the ID for the intermediate image. Note that, only for initial and final images, 

F_IMAGE(N) file pointers must be defined under the “&nebfiles” section. 

&fnames 
... 
... 
/ 
&nebfiles 
F_IMAGE(0)  = './endpoint0.data' 
F_IMAGE(-1) = './endpoint1.data' 
F_IMAGE(1)  = './image1.data' 
F_IMAGE(2)  = './image2.data' 
F_IMAGE(3)  = './image3.data' 

 
/ 
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The file format for intermediate images is the same as that for the initial and final images described above. 

 

Finally, we present an example of the full input parameter file. 

 

Control{ 
    condition = initial   ! {initial|continuation|automatic} 
    cpumax = 1 day ! {sec|min|hour|day} 
    max_iteration = 10000000 
    multiple_replica_mode = ON 
    multiple_replica_max_iteration = 2000 
} 
accuracy{ 
    cutoff_wf =  10.00  rydberg 
    cutoff_cd =  40.00 rydberg 
    num_bands =  28 
    ksampling{ 
        method = monk  ! {mesh|file|directin|gamma} 
        mesh{  nx = 2, ny =  2, nz =  1  } 
    } 
    smearing{ 
        method = parabolic ! {parabolic|tetrahedral} 
        width  = 0.001 hartree 
    } 
    xctype = ggapbe 
    scf_convergence{ 
        delta_total_energy = 0.5e-7   hartree 
        succession   = 2   !default value = 3 
    } 
    initial_wavefunctions = matrix_diagon  !{random_numbers|matrix_diagion} 
    matrix_diagon{ 
        cutoff_wf =  3.00  hartree 
    } 
} 
structure{ 
    unit_cell_type = primitive 
    unit_cell{ 
         a_vector =  10.400      0.000      0.000 
         b_vector =   0.000     10.400      0.000 
         c_vector =   0.000      0.000     30.200 
    } 
    symmetry{ 
        sw_inversion = off  
    } 
    atom_list{ 
        coordinate_system = cartesian ! {cartesian|internal} 
        atoms{ 
        #units angstrom 
                #tag  element  rx  ry  rz   mobile 
    Si    0.000000000000      0.000000000000      0.000000000000    0 
    Si    2.751721694800      2.751721694800      0.000000000000    0 
    Si    1.375860847400      1.375860847400      1.375860847400    0     
    Si    4.127582542200      4.127582542200      1.375860847400    0     
    Si    0.000000000000      2.751721694800      2.751721694800    0     
    Si    2.751721694800      0.000000000000      2.751721694800    0     
    Si    1.375860847400      4.127582542200      4.127582542200    0     
    Si    4.127582542200      1.375860847400      4.127582542200    0     
    Si    0.000000000000      0.000000000000      5.503443389600    0     
    Si    2.751721694800      2.751721694800      5.503443389600    0     
    Si    1.375860847400      1.375860847400      6.879304237000    0     
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    H    1.644706293661      1.095414892118     11.000000000000    1 
    H    1.095414929519      1.644706317263     11.000000000000    1 
         } 
    } 
    element_list{  
            #tag element  atomicnumber  mass  zeta   dev 
            #units atomic_mass 
            Si        14     28.085 
            H          1     1.008  
    } 
} 
multiple_replica{ 
    method = nudged_elastic_band_method 
    accuracy{ 
        dt = 40 au_time 
        neb_time_integral = quench 
        penalty_function = off 
        neb_convergence_condition = 3 
        neb_convergence_threshold = 5.0e-04 
    } 
    constraint{ 
        ci_neb = OFF 
        sp_k_init = 0.03 
        sp_k_min = 0.03 
        sp_k_max = 0.03 
        sp_k_variable = OFF 
    } 
    structure{ 
        number_of_replicas = 6 
        replicas{ 
            #tag replica_number  howtogive_coordinates   end0  end1 
            1            proportional              0      -1 ! 0: end0, -1:end1 
            2            proportional              0      -1 
            3            proportional              0      -1 
            4            proportional              0      -1 
            5            proportional              0      -1 
            6            proportional              0      -1 
        } 
        endpoint_images = directin ! {no or nothing | file | directin} 
        howtogive_coordinates = from_endpoint_images 
        atom_list_end0{ 
                 coordinate_system = cartesian ! {internal|cartesian} 
            atoms{ 
            #units angstrom 
            #tag element rx ry rz 
            Si    0.000000000000      0.000000000000      0.000000000000 
            Si    2.751721694800      2.751721694800      0.000000000000 
            Si    1.375860847400      1.375860847400      1.375860847400 
            Si    4.127582542200      4.127582542200      1.375860847400 
            Si    0.000000000000      2.751721694800      2.751721694800 
            Si    2.751721694800      0.000000000000      2.751721694800 
            Si    1.375860847400      4.127582542200      4.127582542200 
            Si    4.127582542200      1.375860847400      4.127582542200 
            Si    0.000000000000      0.000000000000      5.503443389600 
            Si    2.751721694800      2.751721694800      5.503443389600 
            Si    1.375860847400      1.375860847400      6.879304237000 
            H    1.644706293661      1.095414892118     11.000000000000 
            H    1.095414929519      1.644706317263     11.000000000000 
            } 
        } 
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        atom_list_end1{ 
                 coordinate_system = cartesian ! {internal|cartesian} 
            atoms{ 
            #units angstrom 
            #tag element rx  ry  rz     
            Si    0.000000000000      0.000000000000      0.000000000000 
            Si    2.751721694800      2.751721694800      0.000000000000 
            Si    1.375860847400      1.375860847400      1.375860847400 
            Si    4.127582542200      4.127582542200      1.375860847400 
            Si    0.000000000000      2.751721694800      2.751721694800 
            Si    2.751721694800      0.000000000000      2.751721694800 
            Si    1.375860847400      4.127582542200      4.127582542200 
            Si    4.127582542200      1.375860847400      4.127582542200 
            Si    0.000000000000      0.000000000000      5.503443389600 
            Si    2.751721694800      2.751721694800      5.503443389600 
            Si    1.375860847400      1.375860847400      6.879304237000 
            H    2.22686927     0.48813212     7.65400988 
            H    0.48813224     2.22686933     7.65400957 
            } 
        } 
    } 
} 
wavefunction_solver{ 
    solvers{ 
        #tag   sol    till_n  dts  dte  itr  var    prec cmix submat 
          lmMSD   -1      0.2  0.2  1  linear   on    1   on 
    } 

 
} 
charge_mixing{ 
    mixing_methods{ 
    #tag no   method   rmxs   rmxe   itr  var     prec istr  nbmix  update 
          1  broyden2  0.10   0.10   1  linear  on  1  0   RENEW 
    } 
} 
printoutlevel{ 
    base=1 
} 

 

 

21. specification of the files related to the NEB method 

 

Files related to the NEB method is specified in the ‘file_names.data’ file as usual. Here is an example.  

 

&fnames 
F_INP='./nfinp.data' 
F_POT(1)='./Si_ggapbe_nc_01.pp' 
... 
... 
/ 
&nebfiles 
F_IMAGE(0)  = './endpoint0.data' 
F_IMAGE(-1) = './endpoint1.data' 
F_NEB_OUT   = './output_neb' 
F_NEB_ENF   = './nfnebenf.data' 
F_NEB_DYNM  = './nfnebdynm.data' 
/ 

 

Note that the “&nebfiles” section is used to specify NEB-related files. In Table 5.2, the file pointers usable 
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under the “&nebfiles” section are tabulated. 

Table 5.2 NEB-related files 

file pointer  unit 

number 

default value notes 

F_IMAGE(-1:99)  201  ./endpoint0.data (F_IMAGE(0)) 

./endpoint1.data (F_IMAGE(1)) 
Atomic coordinates of the 

images. 
F_NEB_STOP  202  ./nfnebstop.data  File used to terminate 

NEB calculations. 
F_NEB_OUT  203  ./output_neb  Log file for the NEB 

calculations.   
F_NEB_CNTN  204  ./neb_continue.data  Restart file for the NEB 

calculations. 
F_NEB_ENF  205  ./nfnebenf.data  File that records energy 

and forces specific to the 

NEB method. 
F_NEB_DYNM  206  ./nfnebdynm.data  Output the history of the 

atomic coordinates 

 

 

5.4.1.3 Execution 

 

NEB calculations are typically executed by the following command. 

% mpirun -n NP phase ne=NE nk=NK nr=NR 

Note the presence of the “nr=NR” argument. This argument specifies the number of replicas to be handled in 

parallel. The “ne=NE” and “nk=NK” arguments specify band parallelization and   point parallelization as 

usual. Note that the relation NP = NR x NE x NK must be met. 

 

 

5.4.1.4 Output of the results 

 

When NEB calculations are executed, several extra files will be obtained, along with those obtained from 

usual PHASE calculations. First, the log file (output000 file) and the restart files (such as the “continue.data” 

file) will be obtained for all images. To identify each file, the string “_rxxx” will be appended to the original 

file name, where xxx is the ID for the replica. Further, the following files specific to NEB calculations are 

obtained. 

 

 output_neb_pxxx 

This is the log file for the NEB calculations (xxx will be replaced by the MPI process number). 

 

 nfnebenf.data 

File that records energy and force specific to the NEB method. The format of this file is as follows. 
 #step  image  image_distance  energy   force_org  force_neb  force_normal 
    1    1    0.0000000000E+00   -0.4399458479E+02    0.1112676571E-01    0.1112676571E-01    0.0000000000E+00 
    1    2    0.1323772380E+01   -0.4397221867E+02    0.5212041989E-01    0.4899393390E-01    0.4899393390E-01 
    1    3    0.2640972887E+01   -0.4393533860E+02    0.5368141337E-01    0.5023308254E-01    0.5023308254E-01 
    1    4    0.3958252743E+01   -0.4389613534E+02    0.4830449879E-01    0.4474348402E-01    0.4474348402E-01 
    1    5    0.5277489255E+01   -0.4389237657E+02    0.4486782793E-01    0.4486782793E-01    0.4486782793E-01 
    1    6    0.6594794555E+01   -0.4396965451E+02    0.8881334200E-01    0.8881334200E-01    0.8881334200E-01 
    1    7    0.7911999993E+01   -0.4404244254E+02    0.5849229655E-01    0.5849229655E-01    0.5849229655E-01 
    1    8    0.9229437211E+01   -0.4405831588E+02    0.2414216682E-01    0.2414216682E-01    0.0000000000E+00 
    2    1    0.0000000000E+00   -0.4399458479E+02    0.1112676571E-01    0.1112676571E-01    0.0000000000E+00 
    2    2    0.1356841287E+01   -0.4398451885E+02    0.4270600251E-01    0.4018848625E-01    0.4018734489E-01 
    2    3    0.2677587331E+01   -0.4394948430E+02    0.5479419750E-01    0.5096369018E-01    0.5096445426E-01 
    2    4    0.4004269114E+01   -0.4390739111E+02    0.5004508819E-01    0.4463448973E-01    0.4464878761E-01 
    2    5    0.5328036512E+01   -0.4389409127E+02    0.4291037894E-01    0.4291037894E-01    0.4291037894E-01 
    2    6    0.6642907129E+01   -0.4397034020E+02    0.8879366098E-01    0.8879366098E-01    0.8879366098E-01 
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    2    7    0.7959713712E+01   -0.4404290631E+02    0.5713917408E-01    0.5713917408E-01    0.5713917408E-01 
    2    8    0.9278358213E+01   -0.4405831588E+02    0.2414216682E-01    0.2414216682E-01    0.0000000000E+00 
    3    1    0.0000000000E+00   -0.4399458479E+02    0.1112676571E-01    0.1112676571E-01    0.0000000000E+00 
    3    2    0.1356624500E+01   -0.4399408010E+02    0.1114085905E-01    0.1114085905E-01    0.1114085905E-01 
    3    3    0.2730952540E+01   -0.4397302719E+02    0.5096325231E-01    0.4680553493E-01    0.4683808222E-01 
    3    4    0.4090362450E+01   -0.4392669466E+02    0.5272530274E-01    0.4351975945E-01    0.4355359239E-01 
    3    5    0.5418808773E+01   -0.4389735067E+02    0.3886543373E-01    0.3886543373E-01    0.3886543373E-01 
    3    6    0.6726370673E+01   -0.4397144829E+02    0.8809362538E-01    0.8809362538E-01    0.8809362538E-01 
    3    7    0.8041492838E+01   -0.4404354368E+02    0.5543086596E-01    0.5543086596E-01    0.5543086596E-01 
                                                         ....... 
                                                         ....... 

 

In each row, the force and energy for a single replica are recorded. The first column is the number of NEB 

steps, the second column is the ID of the replica, the third column is the hypothetical distance from the 

initial state, the fourth column is the energy of the replica, the fifth column is the maximum force acting on 

the replica, the sixth column is the maximum NEB force, and the seventh column is the maximum 

component of the force from the system. 

 

 nfnebdynm.data 

The history of the atomic coordinates is recorded in this file. Compared with the format of the “nfdynm.data” 

file obtained from usual PHASE calculations, a simpler format is adopted. Below is a typical example. 

 #step  image  atom  cps 
    0    1    1        0.0000000000        0.0000000000        0.0000000000 
    0    1    2        5.2000000098        5.2000000098        0.0000000000 
    0    1    3        2.6000000049        2.6000000049        2.6000000049 
    0    1    4        7.8000000147        7.8000000147        2.6000000049 
    0    1    5        0.0000000000        5.2000000098        5.2000000098 
    0    1    6        5.2000000098        0.0000000000        5.2000000098 
    0    1    7        2.6000000049        7.8000000147        7.8000000147 
    0    1    8        7.8000000147        2.6000000049        7.8000000147 
    0    1    9        0.0000000000        0.0000000000       10.4000000197 
    0    1   10        5.2000000098        5.2000000098       10.4000000197 
    0    1   11        2.6000000049        2.6000000049       13.0000000246 
    0    1   12        3.1080442326        2.0700339938       20.7869859136 
    0    1   13        2.0700340645        3.1080442772       20.7869859136 
    0    2    1        0.0000000000        0.0000000000        0.0000000000 
    0    2    2        5.2000000098        5.2000000098        0.0000000000 
    0    2    3        2.6000000049        2.6000000049        2.6000000049 
    0    2    4        7.8000000147        7.8000000147        2.6000000049 
    0    2    5        0.0000000000        5.2000000098        5.2000000098 
    0    2    6        5.2000000098        0.0000000000        5.2000000098 
    0    2    7        2.6000000049        7.8000000147        7.8000000147 
    0    2    8        7.8000000147        2.6000000049        7.8000000147 
    0    2    9        0.0000000000        0.0000000000       10.4000000197 
    0    2   10        5.2000000098        5.2000000098       10.4000000197 
    0    2   11        2.6000000049        2.6000000049       13.0000000246 
    0    2   12        3.2652054480        1.9060914168       19.8836995566 
    0    2   13        1.9060915098        3.2652055024       19.8836994729 

 

Each row corresponds to an atom belonging to some replica at some NEB step. The first column is the NEB 

step, the second column is the ID of the replica to which the atom belongs, the third column is the ID of the 

atom, and the fourth, fifth, and sixth columns are the Cartesian x, y, z coordinates of the atom, respectively, 

in Bohr units. 

 

In usual PHASE calculations, the “nfefn.data” file and “nfdynm.data” file contain the history of the energies 

and atomic coordinates, respectively. In contrast, in NEB calculations, the energies and atomic coordinates 

corresponding to the most recent set of images are recorded; in other words, the energies and the atomic 

coordinates of the most recent reaction path are recorded in these files. 
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5.4.1.5 Example calculation: dissociative adsorption process of a hydrogen molecule on a silicon surface 

 

Here we present an example calculation in which the dissociative adsorption process of a hydrogen molecule 

on a silicon surface is analyzed. The input files for this example can be found under the directory 

samples/neb. 

 

The initial state for this example is a system with a surface and an H2 molecule located far from the surface. 

The final state is a system with two hydrogen atoms adsorbed at the surface. The atomic configurations of 

the initial and final states are shown in Figure 5.13 and Figure 5.14, respectively. Since this is only an 

example calculation, structural optimizations for the initial and final states were not performed. 

 

 

Figure 5.13 Initial state of the present example. 

 

 

Figure 5.14 Final state of the present example. 

 

22. input parameter file 

Here we inspect the sample input parameter file. Under the control block, the overall conditions of the 

calculation are configured. 

Control{ 
    condition = initial   ! {initial|continuation|automatic} 
    cpumax = 1 day ! {sec|min|hour|day} 
    max_iteration = 10000000 
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    multiple_replica_mode = ON 
    multiple_replica_max_iteration = 2000 
} 

By setting the “multiple_replica_mode” variable to “ON,” it is possible to perform NEB calculations. Also, the 

upper limit for the number of NEB iterations is set to 2000 by the “multiple_replica_max_iteration” variable. 

 

Atomic configurations for the images are specified under the “structure” block under the “multiple_replica” 

block as follows. 

 

multiple_replica{ 
    .... 
    structure{ 
        number_of_replicas = 6 
        replicas{ 
            #tag replica_number  howtogive_coordinates   end0  end1 
            1            proportional              0      -1 ! 0: end0, -1:end1 
            2            proportional              0      -1 
            3            proportional              0      -1 
            4            proportional              0      -1 
            5            proportional              0      -1 
            6            proportional              0      -1 
        } 
        endpoint_images = directin ! {no or nothing | file | directin} 
        howtogive_coordinates = from_endpoint_images 
        atom_list_end0{ 
                 coordinate_system = cartesian ! {internal|cartesian} 
            atoms{ 
            #units angstrom 
            #tag element rx ry rz 
            Si    0.000000000000      0.000000000000      0.000000000000 
            ... 
            ... 
            } 
        } 
        atom_list_end1{ 
                 coordinate_system = cartesian ! {internal|cartesian} 
            atoms{ 
            #units angstrom 
            #tag element rx  ry  rz 
            Si    0.000000000000      0.000000000000      0.000000000000 
            ... 
            ... 
            } 
        } 
    } 
    .... 
} 

 

We set the value of the “number_of_replica” variable (number of replicas) to six. Note that this number is the 

number of intermediate images. In this example, the atomic coordinates for all intermediate images are 

constructed by a linear interpolation of the initial and final states. Under the “atom_list_end0” block and 

“atom_list_end1” block, the atomic coordinates for the initial and final states are specified. The format for 

this specification is the same as that for the usual atomic coordinate specification.  

 

Under the “accuracy” block under the “multiple_replica” block, the optimization method and the convergence 

threshold are configured. 
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multiple_replica{ 
     ... 
     accuracy{ 
              dt = 40 au_time 
              neb_time_integral = quench 
              penalty_function = off 
              neb_convergence_condition = 3 
              neb_convergence_threshold = 5.0e-04 
     } 
} 

The time step is set to 40 au, the optimization method adopted is the “quench” method, the convergence 

method adopted is 3 (which means that the NEB force will be used to judge convergence), and the threshold 

for this convergence condition is 5(10)–4. 

 

23. results 

 

We now present the results that are obtained from the example. In Figure 5.15, the changes of the maximum 

NEB force with the number of NEB iterations are shown. The maximum force at the beginning of the 

simulation is significantly larger, but as the simulation proceeds, it becomes smaller. At the 41st iteration, the 

maximum force met the convergence criterion, and the calculation terminated normally. 

 

 

Figure 5.15 History of the maximum NEB force. 
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Figure 5.16 Energy of each converged image. 

 

Figure 5.17 shows the atomic configuration of the transition state. As is clear from this figure, at the 

transition state, the H2 molecule is located right above the Si surface. 

 

Figure 5.17 Atomic configuration of the transition state. 

 

5.4.1.6 Notes 

 

 Replica parallelization 

The NEB method supports replica parallelization. To use this feature, an extra argument, nr=NR, must be 

supplied along with the usual parameters ne=NE and nk=NK. Here NR is the number of replica 

parallelizations, whose default value is 1. Note that the number of MPI processes must be equal to 

NE x NK x NR. Typically, PHASE is executed by the following command. 

% mpirun -n N phase ne=NE nk=NK nr=NR 

 

 Termination and restart of a calculation 
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The NEB method supports termination and restart of a calculation. Note that a slightly different 

termination procedure is adopted in comparison with ordinary calculations. 

 

 Termination of a calculation 

 

The calculation will terminate if the number of NEB iterations exceeds the value specified by the 

“multiple_replica_max_iteration” variable or the value specified in the “nfnebstop.data” file. The NEB 

calculation will also terminate if the termination conditions are met in each electronic-structure calculation 

of the images. In all cases, it is possible to restart the calculation from where it terminated. 

 

The difference between the usual PHASE and NEB calculations is that the calculation will terminate right 

after the SCF iteration in progress is completed in the former, while in the latter, the calculation will not 

terminate unless all images have been processed at least once. This is needed because data for all images are 

required on restart. 

 

 Restart calculation 

 

To restart a calculation, set the “condition” variable under the “control” block to “continuation,” similar to a 

usual PHASE calculation. 

 

Control{ 
    condition = continuation 
    ... 
    ... 
} 

 

Files necessary to restart a calculation are as follows: 

・Restart file for the NEB method: neb_continue.data  

・Restart files for the electronic-structure calculation: restart files associated to each replica; their file names 

are continue.data_r*, continue_bin.data_r*, zaj.data_r*, and nfchgt.data_r* where * stands 

for the ID of each replica. 
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5.4.2 Constrained dynamics and free-energy analysis by the Blue Moon approach 

 

5.4.2.1 Outline of the feature 

 

One way to analyze a chemical reaction is to introduce a “reaction coordinate” that characterizes the reaction 

(examples of reaction coordinates are bond length, bond angle, and dihedral angle), constrain the reaction 

coordinate to a certain value, and then perform constrained structural optimization or molecular dynamics 

(MD). Since the reaction coordinates are constrained, it is possible to simulate states that would otherwise be 

unstable. By sequentially changing the reaction coordinate along a supposed reaction path and repeating the 

constrained optimization or MD, it is possible to obtain insight into the reaction. When structural 

optimization is performed, it is possible to obtain the minimum energy path, as in the NEB method. When a 

constant-temperature MD is performed, it is possible to obtain the free-energy difference between the initial 

and final states. In this section, we describe the method for following constrained dynamics by PHASE. 

 

5.4.2.2 Input parameters 

 

Tags related to this feature are tabulated in Table 5.3. 

 

Table 5.3 List of tags related to constrained dynamics 

1st level block 2nd, 3rd level block identifiers  description 

control    

  driver  Select the type of dynamics by this variable. Set this 

variable to “constraints” to use the constrained-dynamics 

feature. 
structure    Block used to specify the atomic coordinates 

 constrainablexx   Block in which constraints are defined. 

xx is the identifier for the constraint and must be an 

integer beginning from 1. 

  type  Specify the “type” of constraint from one of the following:  

bond_length, bond_angle, dihedral_angle 

bond_length_diff, bond_angle_diff, distance_from_pos, 

plane, center_of_mass, or coordination_number 

  atomx  Specify the ID of the atom to which this constraint is 

associated. x is an integer that identifies the atom. For 

example, when type = bond_length, two atoms will be 

involved; thus, the ID of the atom is specified by the 

variable atom1 and atom2.  

  mobile  Specify whether this constraint is “mobile.” The default 

value is “off.” This variable is mainly for debugging 

purposes. 

  monitor  Specify whether to “monitor” this constraint. When set to 

“on,” the value of the reaction coordinate will be output to 

the log file after each update of the atomic coordinates. 

The default value is “off.” 

 reaction_coordinate   Block used to configure a reaction path. 

  sw_reaction_coordinate  If set to “on,” the constraint will be regarded as a reaction 

coordinate. 

  init_value  Initial value of the reaction path. 

  final_value  Final value of the reaction path. 

  increment  Increment for the change in the reaction coordinate. 

 plane   Block used to configure the “plane” when type=plane. 

  normx,normy,normz x,y,z component of the normal of the plane. 

 distance_from_pos  Block used to configure the “distance_from_pos” 

constraint. 

  posx,posy,posz x, y, z coordinate of the target position 

 coordination_number  Block used to configure the “coordination_number” 

constraint. 

  kappa_inv Specify the parameter     in units of length 
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  kappa  Specify the parameter   in units of 1/Bohr   

  rcut  Specify the parameter    in units of length 

 center_of_mass  Block used to configure the “center of mass” constraint.  

Direction in which the center of mass will change can be 

configured under this block. 

  directionx x-direction 

  directiony y-direction 

  directionz z-direction 

structure_evolution    Block used to configure the method used for the update of 

atomic coordinates. 
  method  Specify the method of the atomic coordinates update. For 

constrained dynamics, one of the following—quench, 

damp, velocity_verlet, or temperature_control—can be 

used. 

 

To activate the constrained-dynamics feature, the “driver” variable under the “control” block must be set to 

“constraints.” 

condtion{ 
  ... 
  driver=constraints 
  ... 
} 

 

Next, the “constrainablexx” block must be defined under the “structure” block. Here xx stands for an integer 

beginning from 1. 

structure{ 
    ... 
    ... 
    constrainable1{ 
       type=bond_length 
       atom1=1 
       atom2=2 
       mobile = off 
       monitor = off 
       reaction_coordinate{ 
          sw_reaction_coordinate=on 
          init_value = 2.4 angstrom 
          increment  = 0.1 angstrom 
          final_value = 8.0 angstrom 
       } 
       plane{ 
           normx=1 
           normy=0 
           normz=0 
       } 
       coordination_number{ 
           kappa = 5.0 
           rc     = 2.0 angstrom 
       } 
    } 
    ... 
    ... 
} 

 

There are no upper limits on the number of constraints that can be defined. Note that consecutive integers 

must be used for xx. For example, if three blocks “constrainable1,” “constrainable2,” and “constrainable4” are 

defined, only the first two will be interpreted. Also, note that if inconsistent constraints are defined, the 

program will abort.  
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Under the constrainablexx block, the following variables/blocks can be defined. 

“type” variable  Specify the “type” of the constraint. 

 bond_length Constrain the distance between two atoms. 

 bond_angl Constrain the angle among three atoms. 

 dihedral_angle Constrain the dihedral angle among four atoms. 

 bond_length_diff Constrain the difference between a pair of bond lengths 

 bond_angle_diff Constrain the difference between a pair of bond angles. 

 distance_from_pos Constrain the distance between an atom and a specified 

position. 

 plane Constrain the atom within a specified plane. 

 center_of_mass Constrain the center of mass of the specified atoms. 

 coordination_number Constrain the coordination number of a specified atom. 

Here the coordination number of atom 0 is defined by 
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     are parameters that should be defined so the 

function S becomes sufficiently small at the first 

coordination shell. 

“atomx” variable  Specify the atoms involved in the current constraint. x is 

an integer that identifies the atoms; for example, when 

the “type” is “bond_length,” specify the ID of the first 

atom by the “atom1” variable and that of the second atom 

by the “atom2” variable. If the “type” is 

“coordination_number,” then the central atom for which 

the coordination number is calculated is specified by the 

“atom1” variable. 

“mobile” variable  Specify whether the constraint is “mobile.” If “on” is 

specified, the constraint is considered to be “mobile,” and 

thus will not be constrained. The default value is “off.” 

“monitor” variable  Specify whether to “monitor” the constraint. When set to 

“on,” the value of the constraint will be calculated and 

written to the log file. The default value is “off.” 

“reaction_coordinate” 

block 

 Block used to specify that the constraint is a “reaction 

coordinate” (i.e., can be sequentially varied). 

 sw_reaction_coordinate When set to “on,” the constraint is regarded as a “reaction 

coordinate.” 

 init_value Specify the initial value of the reaction coordinate in the 

corresponding units. If unspecified, then the value 

calculated from the input atomic coordinates will be used 

as the initial value.  

If the value specified by the “init_value” variable and that 

calculated from the input atomic coordinates are 

different, then the input atomic coordinates are first 

adjusted to fulfill the input specification. Thus, the 

maximum force (which includes the force of constraint) 

for the first ionic iteration can become significantly large, 

but this is normal.  

 final_value Specify the final value for the reaction coordinates in the 

corresponding units. 

 increment Specify the increment for the change of the reaction 

coordinate. The number of reaction coordinates 

considered will approximately be 

(final_value − init_value)/increment 

  When the reaction coordinate is sequentially varied, the 
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situations below are special cases. These cases should be 

handled with caution. 

 case when type=plan In this case, the origin of the plane is varied. The origin of 

the plane will automatically be resolved from the normal 

vector and the atomic coordinates; the origin thus 

resolved will be varied along the direction of the normal 

vector when “sw_reaction_coordinate” is set to on. The 

“init_value” variable should be set to 0, and the 

“increment” and “final_value” variables should be chosen 

so that the desired shift of the origin is realized.  

 case when  

type=center_of_mass 

In this case, the center of mass will be shifted in the 

specified direction. The “init_value” variable should be set 

to 0, and the “increment” and “final_value” variables 

should be chosen so that the desired shift for the center of 

mass is realized. 

“plane” block   

 normx   coordinate for the normal of the plane. 

 normy   coordinate for the normal of the plane. 

 normz   coordinate for the normal of the plane. 

“distance_from_pos” 

block 

 Specify a point in real space. This block is used when 

type=distance_from_pos is specified. 

 posx Specify the   coordinate of the target point. 

 posy Specify the   coordinate of the target point. 

 posz Specify the   coordinate of the target point. 

“coordination_numbe

r” block 

 Block used to specify the parameters      in the formula 

for the calculation of the coordination number. The 

following variables can be defined. 

 kappa_inv Specify the value of     in units of length. 

 kappa Specify the value of   itself in 1/Bohr units. This variable 

will be preferred over kappa_inv. Note that the unit 

cannot be explicitly specified for this variable, since the 

unit 1/length is not registered in the PHASE unit list. 

 rcut Specify the value of    in units of length. 

“center_of_mass” 

block 

 When type=center_of_mass and 

sw_reaction_coordinate=on, configure the direction of the 

shift for the center of mass at this block. 

 directionx Specify the x coordinate of the abovementioned direction. 

 directiony Specify the y coordinate of the abovementioned direction. 

 directionz Specify the z coordinate of the above-mentioned direction. 

 

After specification of the constraints, the algorithm used for ion dynamics is specified. As in usual PHASE 

calculations, this is done under the “structure_evolution” block 

structure_evolution{ 
    method=quench 
    dt=40 
    ... 
} 

 

For the “method” variable, the following values are supported: quench, damp, velocity_verlet, and 

temperature_control. Note that the BFGS, GDIIS, and CG optimizers are not available when constraints are 

imposed. The value “damp” is used to perform optimization by the damped molecular dynamics method. In 

many cases, this method allows a larger time step than the “quench” method, leading to a faster 

convergence. 

 

Variation of a single reaction coordinate can be done by specifying the “init_value,” “final_value,” and the 
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“increment” variable under the “reaction_coordinate” block. In this case, the reaction coordinate will simply 

change from the “init_value” to “final_value” uniformly. However, the behavior is more complicated when 

multiple reaction coordinates are allowed to vary. 

 

 

 Method to vary multiple reaction coordinates 

 

Here we describe the behavior of the program when multiple reaction coordinates are defined. For example, 

consider the following input specification. 

 

structure{ 
    .... 
    .... 
    constrainable1{ 
      mobile = off 
      monitor = on 
      type = dihedral_angle 
      atom1 = 2 
      atom2 = 4 
      atom3 = 3 
      atom4 = 1 
      reaction_coordinate{ 
        sw_reaction_coordinate = on 
        init_value = -179 degree 
        final_value = -1 degree 
        increment = 5 degree 
      } 
    } 
    constrainable2{ 
      type=bond_length 
      monitor=on 
      atom1=3 
      atom2=4 
      reaction_coordinate{ 
        sw_reaction_coordinate=on 
        init_value = 1.2 angstrom 
        final_value = 1.6 angstrom 
        increment = 0.05 angstrom 
      } 
    } 
    .... 
    .... 
} 

 

Under the “constrainable1” block, the dihedral angle is specified to change from –179° to –1° in increments of 

5°. Under the “constrainable2” block, the bond length is configured to change from 1.2 Å to 1.6 Å in 

increments of 0.05 Å. In this case, the bond length will first be fixed at 1.2 Å, and the dihedral angle will be 

changed from –179° to –1°. After the optimization or MD is done at –1°, the bond length is increased to 1.25 

Å, and the dihedral angle is then changed from –1° to –179°. This variation scheme prevents radical changes 

between adjacent sets of reaction coordinates. 

 

When    reaction coordinates are constrained, where denotes the type of constraint, the number of 

reaction coordinates will be     . This may lead to a massive number of reaction coordinates that need to 

be considered. If a more flexible specification of the reaction coordinates is desired, it is possible to specify the 

manner in which the reaction coordinates change via an external file. This is described in the next section. 

  



 179 

 

 Method to vary the reaction coordinates through an external file 

 

The method of varying the reaction coordinate is basically defined under the “reaction_coordinate” block. By 

this method, only uniform variations in reaction coordinates can be specified. If a more flexible specification 

is desired, reaction coordinates can be read from an external file. To use this feature, first configure the 

constrainablexx block as usual. Under the “structure” block, set the following variable. 

structure{ 
  .... 
  reac_coord_generation = via_file 
  .... 
} 

 

Finally, create a “reac_coordinate.data” file under the working directory and edit its contents as follows. 

       1       -1.9373154697        2.2676711906 
       2       -1.7627825445        2.2676711906 
       3       -1.5882496193        2.2676711906 
       4       -1.4137166941        2.2676711906 
       5       -1.2391837689        2.2676711906 
       6       -1.0646508437        2.2676711906 
       7       -0.8901179185        2.2676711906 
       8       -0.7155849933        2.2676711906 
       9       -0.7155849933        2.3621574902 
      10       -0.8901179185        2.3621574902 
      11       -1.0646508437        2.3621574902 
      12       -1.2391837689        2.3621574902 
      13       -1.4137166941        2.3621574902 
      14       -1.5882496193        2.3621574902 
      15       -1.7627825445        2.3621574902 
      16       -1.9373154697        2.3621574902 
      17       -1.9373154697        2.4566437898 
      18       -1.7627825445        2.4566437898 
      19       -1.5882496193        2.4566437898 
      20       -1.4137166941        2.4566437898 
      21       -1.2391837689        2.4566437898 
      22       -1.0646508437        2.4566437898 
      23       -0.8901179185        2.4566437898 
      24       -0.7155849933        2.4566437898 
                ...... 
                ...... 
                ...... 

 

Each line corresponds to a “reaction coordinate set.” In the first column, specify the integer that identifies 

each reaction coordinate set. In the remaining columns, the reaction coordinate is specified in the same order 

as that used in the input parameter file. In this example, two types of reaction coordinates are considered. In 

the first reaction coordinate set, the first reaction coordinate will take the value “–1.9373154697,” while the 

second reaction coordinate will take the value “2.26711906.” These values must be in PHASE default units, 

i.e., Bohr for length, radian for angle. 

 

5.4.2.3 Execution 

 

When using the constrained-dynamics feature, PHASE should be executed by the following command. 

% mpirun -np NP phase ne=NE nk=NK nr=NR 

 

Here NP is the number of MPI processes, NE is the number of band parallelizations, NK is the number of   

point parallelizations, and NR is the number of reaction coordinates to be handled in parallel. The relation 
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NP = NE x NK x NR must hold. The default values are ne=NP, nk=1, and nr=1, but it is strongly 

recommended to explicitly specify each parameter. 

 

5.4.2.4 Output of the results 

 

When the reaction coordinates are not allowed to vary, the output data are the same as those obtained from 

the usual PHASE calculations. The history of the energy and force will be recorded in the file specified by the 

F_ENF file pointer in the “file_names.data” file, while the history of atomic coordinates will be recorded in 

the file specified by the F_DYNM file pointer in the “file_names.data” file. Note that the maximum force 

recorded includes the contribution from the force of constraint. 

However, when the reaction coordinates are allowed to vary, the following files will be output. (We assume 

here that the file name for the F_ENF file is “nfefn.data,” while that for the F_DYNM file is “nfdynm.data.”) 

 

nfefn.data.reacxx F_ENF file for the xxth reaction coordinate.  

nfefn.data.converged 

(structural optimization only) 

This file records the converged energy at each reaction 

coordinate. Each line of the file corresponds to a reaction 

coordinate. The value of the reaction coordinate itself, 

converged energy, and the maximum force acting on the atoms 

are written. By plotting the relation between the reaction 

coordinate and the converged energy, it is possible to analyze 

the relation between the reaction path and energy.  

nfdynm.data.reacxx F_DYNM file for the xxth reaction coordinate. 

nfdynm.data.converged 

(structural optimization only) 

This file records the converged atomic configuration at each 

reaction coordinate. 

nfbluemoon.data.reacxx 

(molecular dynamics only) 

The Lagrange multiplier, which is necessary for the 

calculation of the free energy, is recorded for the xxth reaction 

coordinate. 

 

In addition, the restart files, wave function files, and charge files are generated for each reaction coordinate. 

 

5.4.2.5 Free-energy calculation by the Blue Moon approac 

 

24. Outline of the feature 

 

By using data obtained from the constrained MD, it is possible to calculate the free-energy difference along 

the reaction path. [?]。The free-energy difference when the reaction coordinate changes from    to    can be 

calculated from 

               
  

  

 
  

  
  

The derivative of the free energy with respect to the reaction coordinate,  
  

  
 
 
, is called the mean force. It is 

related to the derivative of the Hamiltonian with respect to the reaction coordinate by 

  

  
  

  

  
 
 

    

  

Here         is the “conditional statistical average.” The conditional statistical average and the statistical 

average obtained from the constrained MD are not simply related. However, (21) can be obtained from the 

Lagrange multiplier   that is calculated during the constrained MD, 
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To be exact, (22) has a correction term, but in practice, the correction is not important.  

 

To calculate the free-energy difference from the results obtained from the constrained MD by PHASE, it is 

necessary to use the “bluemoon” program included in the PHASE package. Note that the bluemoon program 

can be applied only to the case of a single reaction coordinate. 

 

25. Compilation of the bluemoon program 

 

The source code for the bluemoon program is located under the “src_bm” directory under the PHASE 

installation directory. The bluemoon program requires a Fortran90 and a C compiler. To complile the 

bluemoon program, set the environment variable F90 to your Fortran90 compiler and the environment 

variable CC to your C compiler and then type “make.” The example below assumes that the shell in use is 

bash, the command for the Fortran90 compiler is f90, and the command for the C compiler is cc. 

% cd phase_v1000 
% cd src_bm 
% export F90=f90 
% export CC=cc 
% make 
% make install 

 

If the environment variables F90 and CC are not defined, “gfortran” and “gcc,” respectively, will be used by 

default. By issuing the command % make install, it is possible to move the created program to the “bin” 

directory. 

 

 

26. Input parameter file for the bluemoon program 

 

The input parameter file for the bluemoon program is the same as that for PHASE. The bluemoon program 

is configured under the thermodynamic_integration block. The following is a typical example. 

 

thermodynamic_integration{ 
  nsteps=2000 
  nequib=1000 
  istart_reac_coords=1 
  nreac_coords=14 
  nsample=10 
  smooth=off 
  basedir=. 
} 

 

Under the “thermodynamic_integration” block, it is possible to define the following variables. 

nsteps Total MD steps performed for each reaction coordinate. The default value is 2,000; set 

it according to the calculation performed. 

nequib Specify the number of steps to be ignored for equilibration.  

istart_reac_coords Specify the ID of the reaction coordinate that should be considered first. The default 

value is 1. 

nreac_coords Specify the ID of the reaction coordinate that should be considered last.  

nsample Specify the number of samples to be used for estimating statistical errors. 

smooth Specify whether the results should be smoothed by a cubic spline. The default value is 

“off.” 

basedir Specify the directory in which the results should be written. The default is the current 
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directory.  

 

27. Execution of the bluemoon program 

 

After the input parameter file is configured, run the bluemoon program as follows. 

% bluemoon inputfile 

 

The argument is the input parameter file. If no argument is given, the string “nfinp.data” will be adopted. 

 

28. Output of the results 

 

Calculations by the bluemoon program should finish within a few seconds. The following files will be created. 

 

 potential_of_mean_force.data 

The calculated free energy is written. The file format is as follows. 

#value, potetial of mean force in Hartree, eV, kcal/mol, kJ/mol 
2.4566437898 -0.0215821952 0.0003443042 -0.5872816633 0.0093689992 -13.5430301648 

0.2160541460 -56.6640534911 0.9039707906 
2.2676711910 -0.0224669448 0.0003796767 -0.6113569350 0.0103315334 -14.0982188431 

0.2382507016 -58.9869635475 0.9968412043 
2.0786985910 -0.0226882285 0.0004435350 -0.6173783747 0.0120692073 -14.2370764737 

0.2783223931 -59.5679440305 1.1645012069 
                                                ............ 
                                                ............ 
                                                ............ 

Each line corresponds to one reaction coordinate. The first column is the value of the reaction coordinate, the 

remaining correspond to the free energy and estimated statistical error. The second and third columns 

contain the free energy and the error in Hartree units, the fourth and fifth columns contain the free energy 

and error in eV units, the sixth and seventh columns contain the free energy and error in kcal/mol units, and 

the eighth and ninth columns contain the free energy and error in kJ/mol units, respectively.. 

 

 mean_force_raw.data 

This file contains the mean force for the considered reaction coordinates. The format of the file is as follows. 

        2.4566437898        0.0066082098        0.0188118786 
        2.2676711910        0.0034758686        0.0099291734 
        2.0786985910       -0.0009537509        0.0028573953 
        1.8897259920       -0.0074922663        0.0213420952 
        1.7007533930       -0.0098143395        0.0279585555 
        1.5117807940       -0.0157974842        0.0449758051 
        1.3228081950       -0.0161451965        0.0459534340 
                            ............ 
                            ............ 
                            ............ 

As in the “potential_of_mean_force.data” file, each line corresponds to one reaction coordinate. The first 

column is the value of the reaction coordinate, the second column is the mean force (the unit is Hartree/unit 

of the corresponding reaction coordinate), and the third column is the statistical error. 

 

 mean_force_smoothed.data 

If the data were smoothed by cubic splines, the mean force is first smoothed and then the integration is done. 

This file contains the results for the smoothed mean force. The format of the data is the same as that in the 

“mean_force_raw.data” file, but without the statistical error column. 

 

5.4.2.6 Example calculation: rotation barrier of H2O2 and H2S2 molecules 
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As an example of the constrained-dynamics feature, we present an analysis of the rotational barrier for H2O2 

and H2S2 molecules. H2O2 and H2S2 are simple molecules whose structures are shown in Figure 5.18. It is 

known that the rotational potential of the dihedral angle formed by HOOH (HSSH) atoms is a W-type 

potential. This originates from competition between the H–H interaction and H–O(S) interaction. By 

performing structural optimization with the constrained dihedral angle, we determine whether such 

behavior can be reproduced. 

 

 

Figure 5.18 Molecular structure of H2O2 and H2S2 molecules. 

 

The input data for this example are located under the subdirectories of the samples/constraints directory, 

H2O2 and H2S2. Under the “structure” block, the following settings can be found. 

structure{ 
    constrainable1{ 
      type = dihedral_angle 
      atom1 = 2 
      atom2 = 4 
      atom3 = 3 
      atom4 = 1 
      reaction_coordinate{ 
        sw_reaction_coordinate = on 
        init_value = 9 degree 
        final_value = 179 degree 
        increment = 10 degree 
      } 
    } 
    ... 
    ... 
} 

 

The “constrainable1” block is defined, and the constraint is configured. In this example, only a single 

constraint is defined; any number of constraints can be defined, provided that they are consistent with one 

another. In this example, the dihedral angle is constrained; thus, the “type” variable has the 

value ”dihedral_angle.” Also, the four atoms needed to calculate the dihedral angle are specified by the 

variables “atom1” through “atom4.” Further, the “reaction_coordinate” block is defined, and the variation of 

the constraint is defined. The “sw_reaction_coordinate” variable is set to “on,” and the “init_value” is set to 9°, 

the “final_value” is set to 179°, and the “increment” is set to 10°. 

 

Figure 5.19Figure 5.19 shows the changes in the computed energy with the dihedral angle. The figure also 

includes experimental results. From this figure, we see that the calculated results are in good agreement 

with experimental results (the difference is about 1 kcal/mol). There are two main differences between the 

results obtained for H2O2 and H2S2. The first is the value of the stable dihedral angle. For H2O2, the stable 

dihedral angle is around the tetrahedral angle of 109.5°, while for H2S2, the stable dihedral angle is close to 
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90°. The second difference is the height of the trans barrier (the barrier close to 180°). Compared with H2O2, 

the trans barrier for H2S2 is about six times higher. Both points are well reproduced, supporting the validity 

of this example calculation. 

 

Figure 5.19 Relation between the energy and dihedral angle for H2O2 and H2S2 molecules. 

 

5.4.2.7 Notes 

 

 Constrained dynamics can be used with any type of pseudopotential.  

 Restart calculations are supported. 

 When varying the reaction coordinate, the reaction coordinates can be handled in parallel by the 

following command, as in the case for the NEB method: 

% mpirun -n NP phase ne=NE nk=NK nr=NR 
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5.4.3 Metadynamics 

 

5.4.3.1 Outline of the feature 

 

Metadynamics is a method to efficiently analyze processes that have finite activation barriers, such as 

chemical reactions. [?,?] In the metadynamics method, “collective variables” (denoted by      ) are 

introduced. These “collective variables” are a set of reaction coordinates defined from the atomic 

configuration under interest. Each collective variable is assigned a fictitious “particle,” and metadynamics 

refers to the dynamics of this fictitious “particle.” By aptly designing the algorithm of metadynamics, it is 

possible to efficiently explore the free-energy surface spanned by the considered collective variables. In this 

section, we describe the use of the metadynamics method implemented in PHASE. 

 

In the metadynamics method, history-dependent bias potentials are added at intervals (usually a few ten to 

a few hundred MD steps). By this operation, points in the free-energy space once visited will be disfavored. If 

a sufficient number of bias potentials are added, the        will fill the free-energy space, and the reaction 

under consideration will freely occur. The negative of the accumulated        that realizes such a situation 

is regarded as the free energy itself. 

 

A schematic of the metadynamics simulation is shown in Figure 5.20. In this figure, the simulation starts 

from the valley numbered 1. After the bias potentials labeled 2 and 3 are added, the system escapes from the 

valley and evolves to a new local minimum (the left-most valley in the figure). Further, after the bias 

potentials 4, 5, and 6 are added, the system escapes from the second valley and evolves to the state with the 

lowest energy (the right-most valley in the figure). Finally, after the bias potentials 7 and 8 are added, the 

collective variables freely evolve in the space spanned by the collective variables. By changing the sign of the 

accumulated bias potential, the free-energy surface is obtained. 

 

 

Figure 5.20 Schematic illustration of a metadynamics simulation. 

 

The marked characteristic of metadynamics is that it follows the trajectories of the dynamic variables 

associated with the reaction coordinates. With this idea, it is expected that the dynamic variable itself will 

automatically search for a plausible reaction path. Further, it is much easier to consider multiple reaction 

coordinates, compared with other methods, such as the blue moon approach. Therefore, the method is 

suitable when the reaction path is not obvious or when multiple reaction coordinates must be considered. 

 

Depending on the addition of the bias potentials, it is possible either to perform an approximate exploration 
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of the free-energy surface or to obtain a detailed and accurate free-energy profile. A metadynamics 

simulation proceeds by adding the bias potentials at predetermined intervals. When a bias potential is added, 

the potential must be accumulated for every bias potential added at that point; thus, the construction of the 

accumulated bias potential requires an       operation (although in first-principle calculations, this should 

not be a problem). 

 

In metadynamics, the Hamiltonian is written as 

 

           
 

 
 

     
   

 

 
 

                      

         

    

       
             

 

    
 

 

  

Here   is a variable that distinguishes the collective variables,    and    are the mass and coordinate of 

the hypothetical particle, respectively,       is the value of  ,    is the spring constant for the spring that 

binds the coordinate of the hypothetical particle, and        is the bias potential. By recording the 

accumulated bias potential, it is possible to obtain the free-energy surface. The dynamics derived from the 

above Hamiltonian can be summarized as follows. 

 The system will be loosely tied to the coordinates of the fictitious particles via the collective variables. 

 The point in free space where the fictitious particles have already visited will be disfavored by the effect 

of the bias potential. 

 

If the time scale for the dynamics of the fictitious particles is sufficiently longer than that for the system, it is 

expected that the dynamics of the system will be decoupled from that of the fictitious particle. Therefore, over 

a shorter time scale, the system will follow the correct dynamics, while over a longer time scale, the system 

will slowly explore the free-energy space spanned by the collective variables. Therefore, the mass of the 

collective variables should be chosen such that the vibrational modes of the collective variables are slower 

than those of the system. 

 

Metadynamics simulations have also been performed in another manner, in which fictitious particles are not 

used. Instead, the bias potentials directly affect the system, not indirectly through fictitious particles [?]. In 

this approach, the mass and spring constant of the collective variables need not be defined, leading to a 

simpler execution of the method. 

 

5.4.3.2 Input parameters 

 

Table 5.4 identifies tags related to the metadynamics method.  

 

Table 5.4 List of tags related to the metadynamics method 

1st level block 2nd, 3rd level block    identifiers description 
control    

  driver  Select the type of dynamics by this 

variable. Set this variable to 

“meta_dynamics” to use the metadynamics 

feature. 
meta_dynamics    Block used to configure meta dynamics. 

  meta_dynamics_type  Select the “type” of metadynamics from one 

of the following: “bias_and_fictitious,” 

“bias_only,” or “bias_generation.” The 

default value is “bias_only.” 
  max_bias_update  Set the maximum number of bias potential 
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updates. If the number of bias potential 

updates exceeds this specification, the 

program will terminate. The default value 

is −1; note that when a negative value is 

specified for this variable, the program will 

not terminate by this condition. 

  extensive_output  Set this option to “on” to obtain debug 

output in the log file. “Off” (default value) is 

recommended. 
  output_per_rank  When set to “on,” the output per replica will 

be obtained when replica parallelization is 

enabled. “Off” (default value) is 

recommended. 
 collective_variable   Block to define collective variables. 

  type  Variable that specifies the “type” of the 

collective variable. The choices are the 

same as those for the constrained dynamic, 

namely: 

“bond_length,” “bond_angle,” 

“dihedral_angle” 

“bond_length_diff,” “bond_angle_diff,” 

“distance_from_pos,” 

“plane,” or “center_of_mass,” 

“coordination_number” 

  atomx  Specify the ID of the atom to which this 

constraint is associated. x is an integer. For 

example, when type = bond_length, two 

atoms will be involved; thus, the ID of the 

atom is specified by the variables atom1 

and atom2.  

  k  Variable to specify the spring constant. 

  delta_s  Variable to specify the “width” of the bias 

potential，  . 

  smin  Variable to specify the minimum value for 

the bias potential output.  

  smax  Variable to specify the maximum value for 

the bias potential output.  

  ds  Variable to specify the increment for the 

bias potential output.  

  control_velocity  When set to “on,” control_velocity will 

control the velocity of the collective 

variables. 

  mass_thermo  Mass of the thermostat when 

“control_velocity” is “on” 

  target_KE  Target kinetic energy of the collective 

variables. 

 plane   Block used to configure the “plane” when 

type=plane. 

  normx,normy,normz x,y,z component for the normal of the plane 

 distance_from_pos  Block used to configure the 

“distance_from_pos” constraint. 

  posx,posy,posz x, y, z coordinate of the target position 

 coordination_number  Block used to configure the 

“coordination_number” constraint. 

  kappa_inv Specify the parameter     in units of 

length   

  kappa  Specify the parameter   in units of 

1/Bohr   

  rcut  Specify the parameter    in units of 

length   

 bias_potential   Block used to configure the properties of 

the bias potential. 

  height Set the “height” of the bias potential in 

units of energy. 

  update_frequency Specify the interval of the bias potential 

update. For example, if this variable is set 

to 10, the bias potential will be added after 

every 10 MD steps. The default value is 20. 

  output_frequency When “meta_dynamics_type” is 

“bias_generation,” then this variable is 

used to specify the interval of the bias 
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potential output. The default value is 10. 

 continuation_strategy   Block to configure the method to perform 

restart calculations when replica 

parallelization is enabled. 

  randomize_velocity When set to “on,” the initial velocity for 

restart calculations will be calculated from 

the random normal distribution. 

  scale_velocity  When set to “on,” the initial velocities for 

restart calculations will be scaled according 

to the value of “velocity_scaling_factor” 

described below. 

  velocity_scaling_factor  Scaling factor for the velocity, as described 

above. The default value is 1.  

  configuration_from_input  When set to “on,” configuration_from_input 

will read the coordinates for restart 

calculations from the input parameter file, 

not from the restart files. The default value 

is “off.” 

 

We now describe in detail the configurations necessary to perform metadynamics simulations. The following 

configurations are required. 

 Enable the metadynamics method. 

 Configure the behavior of the method (the method to be used for the dynamics, format of the output, 

etc.). 

 Configure constant-temperature MD. 

 Configure the collective variables (definitions are needed for all reaction coordinates that are included in 

the collective variables). 

 Configure the bias potential (height and width of the bias potential and the update frequency must be 

configured). 

 If replica parallelization is to be enabled, configure replica parallelization-related variables. 

 

 Enable the metadynamics method 

To enable metadynamics, the “driver” variable under the “control” block is set to “meta_dynamics.” 

control{ 
    driver = meta_dynamics 
} 

By this specification, PHASE will call the main routine of the metadynamics method instead of the usual 

PHASE main routine. 

 

 Configure the overall behavior of metadynamics 

To configure the overall behavior of the metadynamics method, create a “meta_dynamics” block and define 

variables and blocks under it. Here is an example: 

meta_dynamics{ 
  meta_dynamics_type = bias_only 
  max_bias_update = -1 
  extensive_output=on 
  output_per_rank=on 
  output_cvar_every_step=off 
  continuation_strategy{ 
    randomize_velocity=on 
    scale_velocity=off 
    velocity_scaling_factor=0.7 
    configuration_from_input=off 
    ... 
    ... 
  } 

 

 Under the “meta_dynamics” block, the following blocks and variables can be defined. 

“meta_dynamics_type”  Select the dynamics type for meta dynamics. 
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variable The choices are “bias_and_fictitious,” 

“bias_only,” or “bias_generation.” When 

“bias_and_fictitious” is chosen, the dynamics of 

the system and fictitious particles are followed. 

When “bias_only” is chosen, metadynamics will 

be performed without fictitious particles. When 

“bias_generation” is chosen, metadynamics will 

not be performed; only the construction and 

output of the bias potential using files under the 

current directory will be performed. 

“max_bias_update” variable  This variable is used to specify the maximum 

number of bias potential updates. If the number 

of bias potential updates exceeds the value 

specified here, the simulation will terminate. If 

a negative value is specified, the program will 

not terminate by this condition. This is the 

default behavior. 

“output_per_rank” variable  By setting this variable to “on,” it is possible to 

obtain output data per MPI process rank when 

replica parallelization is enabled. The default 

value is “off.” 

“extensive_output” variable  By setting this variable to “on,” it is possible to 

output data that are usually not important, 

such as the velocity and force of the fictitious 

particles.  

“continuation_strategy” 

block 

 Block to configure how restart calculations 

should be performed when replica 

parallelization is enabled. If the number of 

replica parallelizations is changed from 

consecutive simulations, it is not possible to 

rigorously reproduce the situation of the last 

run. Under this block, we configure the method 

to resolve restart data in such situations. 

 “randomize_velocity” 

variable 

If set to “on,” the velocity will be created from a 

random normal distribution instead of being 

read from the restart file. The default value is 

“off.” 

 “scale_velocity” variable If set to “on,” the velocity will be scaled by the 

value of the “velocity_scaling_factor” variable 

explained below. The default value is “off.” 

 “velocity_scaling_factor” 

variable 

The scaling factor used to scale the velocity 

when the “scale_velocity” variable is set to “on.” 

The default value is 1. 

 “configuration_from_input” 

variable 

When set to “on,” the atomic coordinates will be 

read from the input parameter file instead of 

the restart file. The default value is “off.” 

 

 Define the collective variables 

 

Collective variables are, in short, a set of reaction coordinates. Specification of collective variables is done 

under the “meta_dynamics” block. A typical example follows. 

meta_dynamics{ 
  .... 
  .... 
  collective_variable{ 
    mass=1000 



 190 

    k=100 
    delta_s = 0.08 
    control_velocity=on 
    mass_thermo = 50 
    target_KE = 0.1 
  } 
  collective_variable1{ 
     type=bond_length 
     atom1=5 
     atom2=4 
     delta_s=0.05 angstrom 
     smin=1 angstrom 
     smax=5 angstrom 
     ds = 0.1 angstrom 
   } 
  .... 
  .... 
} 

 

First, we create a “collective_variable” block under the “meta_dynamics” block. Under the 

“collective_variable” block, we configure settings that are common to all collective variables. The preferred 

settings under the “collective_variablexx” block are described below. 

 

Next, we define the “collective_variablexx” block to the extent needed. Here xx is the ID for the collective 

variable. Any number of collective variables can be defined, but consecutive integers beginning from 1 must 

be specified for xx. For example, if three blocks “collective_variable1,” “collective_variable2,” and 

“collective_variable4” are defined, only “collective_variable1” and “collective_variable2” will be interpreted.  

 

The following variables can be defined under the “collective_variable” and “collective_variablexx” blocks, as 

in the case of constraints. 

 

“type” variable  “Type” of the collective variable is specified. 

 bond_length Distance between two atoms will be used as the 

collective variable. 

 bond_angle Angle among three atoms will be used as the collective 

variable. 

 dihedral_angle Dihedral angle among four atoms will be used as the 

collective variable. 

 bond_length_diff Difference between two bond lengths will be used as 

the collective variable. 

 plane Position of an atom in some plane will be used as the 

collective variable. 

 center_of_mass Center of mass for a group of atoms will be used as the 

collective variable. 

 coordination_number Coordination number of the specified atom will be 

used as the collective variable. 

 distance_from_pos Distance between a specified atom and a specified 

position in space will be used as the collective variable. 

“atomx” variable  Specify the atom(s) associated to the collective variable 

under consideration. x is a number that identifies the 

atoms. For example, if the distance between two atoms 

is the collective variable, the ID of the first atom is 

specified by “atom1,” while that of the second atom is 

specified by “atom2.” When “coordination_number” is 

specified for the “type” variable, the atom whose 

coordination number is to be calculated is specified by 
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the “atom1 variable. 

“plane” block  Block used to specify the normal vector of the plane 

when type=plane. The following values can be defined. 

 normx x-coordinate of the normal vector. 

 normy y-coordinate of the normal vector. 

 normz z-coordinate of the normal vector. 

“coordination_number” 

block 

 In case of coordination number constraints, the 

coordination number of atom i, ni is defined as 

    
 

                         . This block is used to 

specify the value of      used in the definition above. 

 kappa_inv Specify the value of  
 

 
 in units of length. 

 kappa Specify the value of   in 1/bohr units. This will be 

preferred over kappa_inv. 

 rcut Specify the value of     in units of length. 

“mass” variable  Specify the mass of the fictitious particle. It will be 

interpreted only when the value of 

“meta_dynamics_type” is “bias_and_fictitious.” 

“k” variable  Specify the spring constant that determines the 

coupling between the collective variable and the 

coordinate of the fictitious particle. It will be 

interpreted only when the value of 

“meta_dynamics_type” is “bias_and_fictitious.” 

“delta_s” variable  Specify the value of     in eq. (23) 

“smin” variable  Specify the minimum value for the bias potential 

output. 

“smax” variable  Specify the maximum value for the bias potential 

output. 

“ds” variable  Specify the interval for the bias potential update. 

“control_velocity” 

variable 

 When set to “on,” the velocity of the fictitious particle 

will be controlled by a thermostat. It will be 

interpreted only when the value of 

“meta_dynamics_type” is “bias_and_fictitious.” 

“mass_thermo” 

variable 

 Specify the “mass” of the thermostat when the 

“control_velocity” is set to “on.” 

“target_KE” variable  Specify the target “temperature” of the fictitious 

particle when the “control_velocity” is set to “on.” 

 

 

 Configure the bias potential 

 

The bias potential can be configured by the “bias_potential” block, definable under the “meta_dynamics” 

block. A typical example is as follows. 

  bias_potential{ 
    height = 0.02 eV 
    update_frequency=20 
    output_frequency=100 
  } 

 

 Variables definable under the “bias_potential” block include the following. 

“height” variable Specify the “height” of the bias potential, update in units of energy, to be added at each 

bias potential. Note that the “width” of the bias potential is a quantity specific to each 

collective variable; therefore, it is to be specified under the “collective_variablexx” block 

described above. 

“output_frequency” Specify the frequency of the bias potential output. For example, if 100 is specified, the 
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variable bias potential will be written to file once every 100 bias potential updates. This 

variable will be interpreted only when “meta_dynamics_type” is “bias_generation.” 

“update_frequency” 

variable 

Specify the frequency of bias potential updates. For example, if 20 is specified for this 

variable, the bias potential will be updated once every 20 MD steps. The default value 

is 20.  

 

 Configure replica–parallelization-related variables 

 

 Resolution of the initial atomic coordinates and velocities when replica parallelization is enabled 

When replica parallelization is enabled, the initial coordinates are all the same, and only the initial velocities 

differ among the replicas if no special configurations are performed. Since each replica starts from a different 

point in a phase space, each replica will follow a distinct trajectory, despite the fact that their atomic 

coordinates were all the same at the beginning of the simulation. Note that at early stages of the simulation, 

atomic coordinates of each replica are obviously very similar. 

 

 Method to change the initial atomic coordinates per rank 

It is possible to specify the atomic coordinates per replica in the input parameter file. This can be done by 

defining the atomsxx block (where xx is the MPI rank) and specifying the coordinates under that block. For 

example, to specify different initial atomic coordinates for rank0 replica and rank1 replica, insert the 

following in the input parameter file. 

 

structure{ 
    atom_list{ 
        .... 
        atoms0{ 
            #units angstrom 
            #default weight = 1, element = Si, mobile = 1 
            #tag element rx ry rz mobile weight 
            C 5.0157363043        5.6563796505        5.8043454319 1 1 
            C 4.7499007526        4.2727134018        5.7364572058 1 1 
            ... 
            ... 
        } 
        atoms1{ 
            #units angstrom 
            #default weight = 1, element = Si, mobile = 1 
            #tag element rx ry rz mobile weight 
            C       4.5897384578    5.5998560107    5.7723226564 1 1 
            C       5.1658344359    4.3217914066    5.6857269157 1 1 
            ... 
            ... 
        } 
    } 
} 
} 

 

 

5.4.3.3 Execution 

 

To perform metadynamics simulations, the following command is issued as in standard PHASE calculations. 

mpirun -n NP phase ne=NE nk=NK nr=NR   

 

Here NP is the number of MPI processes, NE is the number of band parallelizations, NK is the number of   

point parallelizations, and NR is the number of replicas to be handled in parallel. The relation 

NP = NE x NK x NR must hold. The default values are ne=NP, nk=1, and nr=1, but it is strongly 
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recommended to explicitly specify each parameter.  

 

Usually, only the most recent bias potential will be output when metadynamics is performed. It is possible to 

rebuild the bias potential and output it to a file. To use this feature, specify “bias_generation” for the 

“meta_dynamics_type” variable defined under the “meta_dynamics” block. In this case, the 

“bias_output_frequency” variable definable under the “bias_potential” block is used to specify the frequency 

of output. For example, if 10 is specified for “bias_output_frequency” and the total number of bias updates is 

100, then the bias potential at the 10th, 20th, 30th, … , 100th updates will be obtained, with each written to a 

separate file. The file name will be “bias_potential_dataxx,” where xx is the number of bias potential updates. 

After the above configuration is done, run PHASE under the directory where the metadynamics simulation 

was performed. This operation only reads the collective variable from the file and builds the bias potential; 

thus, it is not necessary to run PHASE in parallel. 

 

 

5.4.3.4 Output of the results 

 

When a metadynamics simulation is performed, extra files will be obtained in comparison with standard 

PHASE calculations. We now describe the files specific to a metadynamics simulation. 

 

 ‘curr_bias_potential.data’ file 

This file records the current bias potential. The format of the file is as follows. 

        1.2000000000       -3.1400000000        0.0000000000 
        1.3000000000       -3.1400000000        0.0000000000 
        1.4000000000       -3.1400000000        0.0000000000 
        1.5000000000       -3.1400000000        0.0000000000 
        1.6000000000       -3.1400000000        0.0000000000 
        1.7000000000       -3.1400000000        0.0000000000 
                             .... 
                             .... 
       
        1.2000000000       -3.0400000000        0.0000000000 
        1.3000000000       -3.0400000000        0.0000000000 
        1.4000000000       -3.0400000000        0.0000000000 
        1.5000000000       -3.0400000000        0.0000000000 
        1.6000000000       -3.0400000000        0.0000000000 
        1.7000000000       -3.0400000000        0.0000000000 
                             .... 
                             .... 

Each line corresponds to a “collective variable set.” First, all collective variables defined are recorded and 

then the value of the corresponding bias potential is recorded. 

 

 “bias_potential.dataxx” file 

This file records the bias potential at bias potential update number xx. This file is obtained when 

“meta_dynamics_type” is set to “bias_only.” The file format is exactly the same as that for the 

“curr_bias_potential.data” file. 

 

 ‘nfdynm.data_at_bias’ file 

This file records the atomic coordinates at bias potential updates. The file format is the same as that for the 

F_DYNM file, the standard coordinate data file format of PHASE. 

 

 ‘nfefn.data_at_bias’ file 

This file records the total energy at bias potential updates. The file format is the same as that for the F_ENF 

file, the standard energy data file format of PHASE. 
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 ‘collective_variables.data’ file 

This file records the value of the collective variable at bias potential updates. The file format is as follows. 

 

       2        1.6399047278        0.0906233310 
       3        1.6933783940        0.2327954221 
       4        1.6487636847        0.0655806009 
       5        1.7510381463       -0.1403803460 
       6        1.7880912692       -0.2122517967 
       7        1.7558411086       -0.2557274737 
       8        1.7939362867       -0.0296094373 
       9        1.7595919709        0.1959354384 
      10        1.7773637731        0.3761827029 
      11        1.7657919080        0.3998392061 
      12        1.7604309483       -0.0107912799 
      13        1.6218441177       -0.3366407543 
                         .... 
                         .... 

Each line corresponds to a bias potential update. The first column gives the number of bias potential updates, 

and the second column and others contain values of the collective variables that are recorded in the order 

defined in the input parameter file. 

 

 ‘bias_potential_parameters.data’ file 

This file records the bias potential parameters. This file is needed when bias potential parameters are 

changed on restart calculations, since there is no way of resolving the parameters in the previous run 

without the information recorded in this file. The file format is as follows. 

       2        0.0200000000        0.1000000000        0.1000000000 
       3        0.0200000000        0.1000000000        0.1000000000 
       4        0.0200000000        0.1000000000        0.1000000000 
       5        0.0200000000        0.1000000000        0.1000000000 
                         .... 
                         .... 

Each line corresponds to a bias potential update. The first column gives the number of the bias potential 

update, the second column contains the value of   in eq. (23), and the third column and others correspond 

to the value of     for each collective variable. 

 

5.4.3.5 Example calculation: energy surface of hydrocarbon molecules 

 

29. Outline 

 

To illustrate use of the metadynamics method, we explore the energy surface for the hydrocarbon molecule 

C4H6. The C4H6 molecule has three stable molecular structures—trans-1,3-butadiene, cis-1,3-butadiene, and 

cyclobutene. Cyclobutene is a cyclic molecule. trans-1,3-butadiene is planar, while cis-1,3-butadiene is not; 

the stable structure for cis-1,3-butadiene is a structure in which the dihedral angle is twisted by about 30° 

(the so-called gauche conformation). The molecular structures for these molecules are depicted in Figure 5.21. 

Cyclobutene has the highest energy, followed by cis-1,3-butadiene, and trans-1,3-butadiene has the lowest 

energy. Possible reactions of the molecule are the “electric cyclic” reaction, in which the closing (opening) of 

the ring for 1-3 butadiene (cyclobutene) leads to cyclobutene (1-3 butadiene) or a cis–trans transformation 

between the two 1-3 butadienes. Since the electrocyclic reaction leads to the breaking a chemical bond, the 

activation barrier is expected to be high, on the order of 1 eV. However, the cis–trans transformation should 

have a lower activation barrier, on the order of 100 meV. Note that this problem is difficult to analyze by 

classical force fields because the electronic structures of the two 1,3-butadienes and cyclobutene are 

completely different (for example, the number of double bonds differ). We confirm that PHASE can correctly 
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describe the properties of this molecule. 

 

 

Figure 5.21 Molecular structure of the C4H6 molecule. 

 

 

Figure 5.22 Molecular structure of the cyclobutene molecule 
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30. Input parameter file 

 

First, the metadynamics method is enabled. This is done by specifying “meta_dynamics” for the “driver” 

variable under the “condition” block. 

condition{ 
    driver = meta_dynamics 
    .... 
} 

 

Next, the collective variables are defined. In this example, the following collective variables are adopted. 

1. The distance between atoms 1 and 2 shown in Figure 5.22. Values for the variables “ds” and “delta_s_s” 

are 1 Å and 0.05 Å, respectively. 

2. The dihedral angle formed by atoms 1, 4, 3, and 2 shown in Figure 5.22.  Values for the variables “ds” 

and “delta_s” are 10°and 5°, respectively. 

The above configuration can be realized by the following. 

 

meta_dynamics{ 
.... 
.... 
  collective_variable1{ 
     type=bond_length 
     atom1=5 
     atom2=4 
     delta_s=0.05 angstrom 
!for bpot output 
     smin=1 angstrom 
     smax=5 angstrom 
     ds = 0.1 angstrom 
   } 
   collective_variable2{ 
     type=dihedral_angle 
     atom1=5 
     atom2=3 
     atom3=2 
     atom4=4 
     delta_s = 5 degree 
!for bpot output 
     smin = -180 degree 
     smax = +180 degree 
     ds = 10 degree 
   } 
} 

 

For the bias potential, the height is set to 0.02 eV (0.46 kcal/mol), and it is set to be updated once every 20 

MD steps. This configuration is done by the variables “height” and “update_frequency” under the 

“bias_potential” block under the “meta_dynamics” block. 

 

meta_dynamics{ 
    .... 
    .... 
    bias_potential{ 
        update_frequency = 20 
        height=0.02 eV 
    } 
} 
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The number of bias potential updates is arbitrary, but to obtain a reliable free-energy surface, we need an 

ample number of updates. 

 

31. Results 

 

We present the results obtained from this simulation. Figure 5.23 shows the contour plot of the energy 

surface obtained after 18,140 bias potential updates. 

 

 

Figure 5.23 Free-energy surface of the C4H6 molecule at 300 K. 

 

From this figure, four stable points are found in the energy contour: the point at which (i) the atomic distance 

is about 1.5 Å and the dihedral angle is 0 radian, (ii) the atomic distance is about 3.3 Å and the dihedral angle 

is around 0 radian, and (iii, iv) the atomic distance is about 3.7 Å and the dihedral angle is around  3 

radians. These stable points correspond to cyclobutene, cis-1,3-butadiene, and trans-1,3-butadine, 

respectively. In a calculation at absolute zero, the gauche conformation instead of the cis conformation is 

stable, but in the metadynamics simulation at 300 K, the two conformations were not clearly resolved. The 

difference in energy between cyclobutene and trans-1,3-butadiene is about 16 kcal/mol, while the diffference 

in energy between cyclobutene and cis butadiene is about 12 kcal/mol. These values are larger than those 

obtained from calculations at absolute zero. 

 

Figure 5.23 and Figure 5.24 show the variation of collective variables-dihedral angle and carbon-carbon 

distance-against the number of bias potential updates, respectively. The simulation starts from cyclobutene 

(carbon–carbon distance of about 1.5 Å, and dihedral angle of about 0 radian). After about 700 bias potential 

updates, the system overcomes the saddle point, and the molecule transforms to butadiene. Then, from this 

point to about 18,000 bias potential updates, a wide exploration of the energy surface occurs. From Figure 

5.23, it is understood that besides cyclobutene, the range of the dihedral angle is significantly broad. Thus, 

many bias potential updates are required to fill the potential valley. Finally, after about 18,000 bias potential 

updates, the system returned to cyclobutene; thus, we terminated the simulation at that point. 
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Figure 5.24 Variations in the dihedral angle with the number of bias potential updates. 

 

 

Figure 5.25 Variations in the carbon–carbon distance with the number of bias potential updates. 

 

In Figure 5.26 (a)–(d), snapshots of atomic configurations obtained during the metadynamics simulation are 

shown. From these figures, we see that, because of the effect of the bias potential, various molecular 

structures are obtained during the metadynamics simulation. 
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Figure 5.26 Snapshots of atomic configurations obtained from the metadynamics simulation. Molecular 

structure obtained after (a) 2 bias potential updates, (b) 690 bias potential updates, (c) 1,500 bias potential 

updates, (d) 18,070 bias potential updates. 

 

5.4.3.6 Notes 

 

The metadynamics method can be used in conjunction with all pseudopotentials. It is possible to perform 

calculations in parallel, including replica parallelization. To obtain meaningful results, a large calculation 

burden is required. When restart calculations are performed with replica parallelization enabled, it is 

possible that the corresponding restart files do not exist for a certain replica. In this case, the restart file for 

the neighboring replica is read, and the initial replica is built according to the specifications defined under 

the “continuation_strategy” block. 
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5.5 Time-dependent density functional theory (TDDFT) calculations 

 

5.5.1 Optical spectrum calculations of molecules by real-time TDDFT (RT-TDDFT) 

 

5.5.1.1 Calculation methods 

 

Based on RT-TDDFT, electron dynamics simulations are performed by solving time-dependent 

one-electron equations for given initial one-electron wave functions,

 

Here nk is the one-electron wave function for wave vector k and band index n, and H is the one-electron 

Hamiltonian. Time evolutions of one-electron wave functions are formally written as 

 

An efficient numerical computation requires approximations for the time integral and for the exponential 

parts. Many approximations are possible, but this code uses the simplest one. If the time step t is 

sufficiently small, the time integral can be approximated by

 

The exponential can be approximated by a Taylor expansion,

 

Input parameters, which need to be set carefully to balance accuracy against computation time, are the time 

step t and the number of terms in the Taylor expansion Nmax. 

Because one-electron wave functions at time t = 0− are prepared by ground-state wave functions, we need to 

perform DFT ground-state calculations before starting RT-TDDFT calculations. The initial wave function at 

t = 0+ is generated by 

 

This is equivalent to applying an impulsive electric field for a molecule at t = 0. During RT-TDDFT 

calculations, dipole moments or current densities [d(t) or J(t)] are calculated at each time step, and after 

RT-TDDFT simulations, optical spectra can be obtained by Fourier transformation of d(t) or J(t). 

 

5.5.1.2 Input parameters 

 

An input example is shown below. RT-TDDFT simulations will start only if the DFT ground-state 

calculation has converged. 

postprocessing{ 

  rttddft{ 

    sw_rttddft = on 

    time_step_delta = 0.1 

    time_step_max = 1000 

    ext_pulse_epsilon = 0.01, ext_pulse_kx = 1.0, ext_pulse_ky = 0.0, ext_pulse_kz = 

0.0 

  } 

} 
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Input parameter Default value Description 

sw_rttddft OFF ON or OFF 

time_step_delta 0.1 (in atomic unit) Time interval 

(Total simulation time equals to 

time_step_delta*time_step_max.) 

time_step_max 100 Number of time step 

 

For generating initial states by applying an impulsive electric field             , the input parameters 

are as follows: 

 

Input parameter Default value Description 

ext_pulse_epsilon 0.0d0 Field magnitude    

ext_pulse_kx 0.0d0 Field x-direction   

ext_pulse_ky 0.0d0 Field y-direction   

ext_pulse_kz 0.0d0 Field z-direction   

 

 

5.5.1.3 Notes 

 

 Use only norm-conserving pseudopotentials for RT-TDDFT calculations. We cannot use ultra-soft-type 

pseudopotentials. 

 Set molecular positions to the middle of unit cells. Do not set molecule positions across unit-cell 

boundaries. 

 Set “base_reduction_for_GAMMA = off” and “base_symmetrization_for_GAMMA = off” in the 

“ksampling{ }” tag. 

 Set “method = manual” and “sw_inversion = off” in the “symmetry{ }” tag. 

 This code does not support bulk-system simulations. 

 The current version of our code is limited to systems having fixed-ion positions. 
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5.6 Structure optimization 

 

5.6.1 Optimizing a unit cell by using the stress tensor 

 

5.6.1.1 Input parameters 

 

First, prepare an input parameter file as usual. If parameters for structure optimization are specified as 

usual, atomic positions are also optimized at every step after optimizing the unit cell. Add the lattice block 

shown below to optimize the unit cell. 

structure_evolution{ 

  lattice{ 

    sw_optimize_lattice = on 

  } 

} 

 

Optimization of the unit cell is enabled by setting the variable sw_optimize_lattice to “on.” The following 

variables can be defined in the lattice block. 

 

sw_optimize_lattice If on, the unit cell of the system will be optimized. Defaults to off.  

Note that if this switch is on, sw_stress is also automatically set to on. 

sw_uniform If on, the three axes of the unit cell are uniformly varied. In that case, the 

volume of the unit cell is changed by the average value of the diagonal 

elements of the stress tensor.  

Defaults to off. 

method Specify a method of optimization. Options are bfgs, quench, and sd. 

Defaults to bfgs. 

delta_stress When the method is quench or sd, this variable sets the step size for 

updating. Defaults to 1. 

max_stress Specify the convergence criterion for the maximum stress. Defaults to 1.e−6 

Hartree/Bohr3. If sw_uniform is set to on, this criterion applies to the 

average value of the diagonal elements of the stress tensor.  

sw_optimize_coordinates_once If on, optimization of atomic position is performed at the first step only. 

 

As described below, the stress tensor will not converge when the cutoff energy is not sufficiently large (i.e., a 

small cutoff energy does not give accurate results). If minima in the stress and total energy are inconsistent, 

the cutoff energy may not be sufficiently large. 

 

 

5.6.1.2 Calculation results 

 

Calculation results are dumped into output000, nfefn.data, and nfdynm.data. The stress tensor is printed 

into output000. The values can be extracted by the following command. 

% grep –A3 ‘STRESS TENSOR$’ output000 

 

  STRESS TENSOR 

        0.0002326236        0.0000000000        0.0000000000 

        0.0000000000        0.0002326236        0.0000000000 

        0.0000000000        0.0000000000        0.0002142790 

-- 

  STRESS TENSOR 

        0.0002272841        0.0000000000        0.0000000000 

        0.0000000000        0.0002272841        0.0000000000 

        0.0000000000        0.0000000000        0.0002077216 



 203 

-- 

       …….. 

       …….. 

 

 

Although the stress tensor is normally printed only once, optimization of the unit cell outputs the history of 

the stress tensor calculation.  

 

 Maximum value of stress tensor (or averaged value of diagonal elements if sw_uniform=on) for each step is 

also printed into nfefn.data file in addition to total energy and maximum atomic force etc. The example is 

shown below: 
iter_unitcell, iter_ion, iter_total, etotal, forcmx, stressmx 

     1    1      18     -181.4043211413        0.0020128619 

     1    2      27     -181.4043355689        0.0015666906 

     1    3      36     -181.4043464493        0.0011267018 

     1    4      44     -181.4043509953        0.0008837770 

     1    5      53     -181.4043582176        0.0000137026        0.0002326236 

     2    1      73     -181.4044226903        0.0000645338        0.0002272841 

  ……….. 

  ……….. 

 

The nfdynm.data file is almost the same as usual, but the header, which is normally printed only once, is 

printed at every step when the cell vectors are changed. 

 
# 

#   a_vector =         8.6795114819        0.0000000000        0.0000000000 

#   b_vector =         0.0000000000        8.6795114819        0.0000000000 

#   c_vector =         0.0000000000        0.0000000000        5.5916992108 

#   ntyp =        2 natm =        6 

# (natm->type)     2    2    1    1    1    1 

# (speciesname)     1 :   O    

# (speciesname)     2 :   Ti   

# 

 cps and forc at (iter_ion, iter_total =     1      18 ) 

    1    0.000000000    0.000000000    0.000000000    0.000000    0.000000    0.000000 

    2    4.339755741    4.339755741    2.795849605    0.000000    0.000000    0.000000 

    3    2.643779197    2.643779197    0.000000000   -0.001423   -0.001423    0.000000 

    4    6.983534938    1.695976544    2.795849605   -0.001423    0.001423    0.000000 

                              …… 

     …… 

# 

#   a_vector =         8.7672856463        0.0000000000        0.0000000000 

#   b_vector =         0.0000000000        8.7672856463        0.0000000000 

#   c_vector =         0.0000000000        0.0000000000        5.6429940606 

#   ntyp =        2 natm =        6 

# (natm->type)     2    2    1    1    1    1 

# (speciesname)     1 :   O    

# (speciesname)     2 :   Ti   

# 

 cps and forc at (iter_ion, iter_total =     1     111 ) 

    1    0.000000000    0.000000000    0.000000000    0.000000    0.000000    0.000000 

    2    4.383642823    4.383642823    2.821497030    0.000000    0.000000    0.000000 

    3    2.663907294    2.663907294    0.000000000    0.001773    0.001773    0.000000 

    4    7.047550117    1.719735530    2.821497030    0.001773   -0.001773    0.000000 

    5    1.719735530    7.047550117    2.821497030   -0.001773    0.001773    0.000000 

    6   -2.663907294   -2.663907294    0.000000000   -0.001773   -0.001773    0.000000 

                              …… 

     …… 

 

5.6.1.3 Examples: rutile type TiO2 

 

In the input parameter file 

 The cutoff energy was set to 80 Rydberg. 
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 The pseudopotential files Ti_ggapbe_us_02.pp and O_ggapbe_us_02.pp, which can be downloaded from 

the website of CISS, were used. 

 In optimizing atomic positions, the BFGS method was employed. Convergence criterion for the 

maximum force was set to 2e−4. 

 Initial atomic positions and lattice parameters for rutile-type TiO2 were downloaded from the Inorganic 

Material Database AtomWork (http://crystdb.nims.go.jp/).  

 Default settings were used for the wavefunction solver and the charge-density mixer. 

 

The adopted cutoff energy, 80 Rydberg, is relatively large, but TiO2 requires such a large cutoff energy, as 

discussed latter. 

 

The following shows the content of the nfefn.data file. 
  iter_unitcell, iter_ion, iter_total, etotal, forcmx, stressmx 

     1    1      18     -181.4043211413        0.0020128619 

     1    2      27     -181.4043355689        0.0015666906 

     1    3      36     -181.4043464493        0.0011267018 

     1    4      44     -181.4043509953        0.0008837770 

     1    5      53     -181.4043582176        0.0000137026        0.0002326236 

     2    1      73     -181.4044226903        0.0000645338        0.0002272841 

     3    1      92     -181.4044839579        0.0001241955        0.0002222588 

     4    1     111     -181.4056948858        0.0025074070        0.0002222588 

     4    2     120     -181.4057176163        0.0020195652        0.0002222588 

     4    3     130     -181.4057600852        0.0000156213        0.0000444895 

                              …… 

     …… 

    9    1     248     -181.4058191217        0.0001647915        0.0000332105 

    10    1     268     -181.4058328662        0.0000709369        0.0000119789 

    11    1     287     -181.4058349707        0.0000268520        0.0000015502 

    12    1     306     -181.4058351835        0.0000244918        0.0000006790 

 

In the above example, atomic positions were optimized five times. Meanwhile, the stress tensor was not 

calculated, and hence, the sixth column of these steps is empty. In the fifth step, the maximum atomic force 

become smaller than the threshold, and then the stress tensor was calculated, and cell vectors were changed. 

At that time, the number in the first column, which represents the number of steps for optimizing the unit 

cell, increased to 2, and the maximum value of the stress tensor was printed in the sixth column. Although 

optimization of atomic positions was not performed in the second and third steps because the calculated 

atomic force was smaller than the threshold, optimization was carried out in the fourth step. In this manner, 

optimizations of atomic positions and the unit cell were alternately performed, until finally the maximum 

value of the stress tensor converged in the 12th iteration. The following figure shows the convergence 

progress for optimizing the unit cell.   
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Figure 5.27 Convergence progress for optimizing a unit cell. Total energy (red)  

and maximum value of stress tensor (green) are displayed. 

 

Optimized lattice constants can be obtained from the cell vectors in the final step printed in the nfdynm.data 

file. In this example, a = 8.7934 Bohr and c = 5.6164 Bohr are the optimized lattice constants. 

 

Stress tensor and cutoff energy 

 

Compared to the total energy or atomic force, the stress tensor does not converge well when a small cutoff is 

used for the energy. The following figure shows the relationship between stress tensor and cutoff energy for 

rutile-type TiO2. Here lattice parameters are taken from experimental data. 

 



 206 

 

Figure 5.28 Relationship between stress tensor and cutoff energy for rutile-type TiO2 

As shown in this figure, a negative value was obtained for the stress tensor when the cutoff energy was 

around 50 Rydberg. The figure shows that the cutoff energy should be larger than 80 Rydberg to obtain an 

adequate value for the stress tensor of TiO2. 
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6. Calculation by the PAW method 
 

6.1 Overview 

 

The projector-augmented wave (PAW) method is strongly related to the ultrasoft pseudopotential (USPP) 

method. However, compared with the USPP method, the PAW method is superior in terms of accuracy, 

particularly when spin polarization is considered, or when a large charge transfer is expected to occur. Here 

we describe how to perform calculations using the PAW method in PHASE. 

 

6.2 How to use the PAW method 

 

To perform calculations based on the PAW method, we use the corresponding PAW potential files. The PAW 

potential files reside in the pseudopotential directory by the following name. 

elementname_ggapbe_paw_xxx.pp 

The potential files are specified by the F_POT identifier in the “file_names.data” file, in the same way as 

USPP and norm-conserving pseudopotential files.. 

 

PAW potentials can be used for both PAW and non-PAW calculations. To perform non-PAW calculations using 

PAW potentials, specify the following in the input parameter file. 

accuracy{ 
    paw = off 
} 

If the above specification is not present (or if “paw” is set to “on”), calculations with the PAW method will be 

performed. 

 

When using the PAW method, it is possible to improve convergence by changing the way the deficit charge is 

handled. In many cases, convergence can be improved by including the following in the input parameter file. 

charge_mixing{ 
    ... 
    sw_mix_charge_hardpart = on 
} 

 

When performing fixed-charge calculations using the “ekcal” program, it is necessary to specify a data file 

specific to the PAW method. This is done by the F_CNTN_BIN_PAW identifier in the “file_names.data” file. 

For example, if the directory in which the corresponding SCF calculation was performed is the parent 

directory, the following line must be added in the “file_names.data” file. 

&fnames 
... 
... 
F_CNTN_BIN_PAW='../continue_bin_paw.data' 
/ 

 

 

6.3 Example 

 

To illustrate the PAW method, we calculate the lattice constant and bulk modulus for bcc chromium. When 

the USPP method is employed for this problem, the lattice constant is overestimated, while the bulk 

modulus is underestimated. 

The input data for this example can be found under samples/Cr. Under this directory, the following 

files/directories exist. 
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Cr_ggapbe_paw_002.gncpp2 

Cr_ggapbe_us_02.pp 

paw/ 

us/ 

 

The PAW potential file is “Cr_ggapbe_paw_002.gncpp2,” while the USPP file is “Cr_ggapbe_us_02.pp.” Input 

files for PAW calculations are under the directory “paw,” while those for USPP calculations are under the 

directory “us.” Under both “paw” and “us” directories, the following file/subdirectories exist. 

 

catenergy.sh 

vol20/ 

vol21/ 

...... 

 

The simple shell script “catenergy.sh” concatenates the energy data files after all calculations are done. 

Under directories “vol20,” “vol21,” …, input files corresponding to unit-cell volumes of 20Å3, 21Å3, …, 

respectively, exist. After calculations for all directories are completed, you can run the “catenergy.sh” script 

and get the “energy.data” file in which energies are recorded for all volumes that were considered in the 

calculation. 

 

The following lines can be found in the “file_names.data” file under each subdirectory of the “paw” directory. 

 F_POT(1) = '../../Cr_ggapbe_paw_002.gncpp2' 
 F_POT(2) = '../../Cr_ggapbe_paw_002.gncpp2' 

Because of these specifications, the PAW potential file is used for the calculations. The “file_names.data” file 

under the “us” directory points to the “Cr_ggapbe_us_02.pp file” in the same manner. 

 

The EV curves obtained for bcc chromium are depicted inFigure 6.1. Obviously, the results from the PAW 

and USPP methods differ completely. In Table 6.1, we tabulate the lattice constants and bulk moduli 

obtained from the two EV curves. Clearly, there is a better agreement with experiment for the PAW method. 

 

 

Figure 6.1 EV curves for bcc chromium. Red curve: PAW method, green curve: USPP method. 
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Table 6.1 Lattice constants, bulk moduli, and cohesive energies for bcc chromium. 

 US  PAW  experiments  

a (Å) 2.994  2.886  2.88   

B (GPa) 89.2  150.5  190.1   

Ecoh (eV/atom) 4.01  3.065  4.10   

 

 

 

6.4 Supported features 

 

Features that can be used with PAW include the following.  

 total energy 

 symmetry 

 spin polarization 

 structural optimization 

 output of charge densities 

 calculation of various densities of states 

 band structure 

 stress tensor 

 work function 

 phonon 

 molecular dynamics 

 DFT+U 

 ESM method 

 constrained dynamics 

 meta dynamics 

 NEB 

 unit cell optimization  

 non-collinear magnetization 

 spin-orbit coupling 

 features provided by UVSOR-Epsilon 

 features provided by UVSOR-Berry-Phonon 
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7. Appendix 
 

7.1 Calculation accuracy 

 

7.1.1 Cutoff energy 

 

In DFT calculations using a plane-wave basis set, a larger cutoff energy always leads to a more exact total 

energy. As an example, Figure 7.1 shows the relationship between cutoff energy and total energy for a 

face-centered cubic aluminum crystal. 

 

 

Figure 7.1 Relationship between cutoff energy and total energy for a face-centered cubic aluminum crystal 

This figure clearly shows that a larger cutoff energy gives a lower total energy, and the total energy 

converges to certain value. This behavior depends on the pseudopotentials that are used. In this example, 

the total energy converges in the range of about 1 meV when the cutoff energy is 36 Rydberg. Although the 

required accuracy depends on the purpose of the calculation, normally it is sufficient if the total energy 

converges in the range of about 10 meV. Moreover, if you focus on the relative energy rather than absolute 

energy, a much smaller cutoff energy may be sufficient. 

 

 

7.1.2 k-point sampling 

 

Since PHASE employs plane-wave functions, it can only treat periodic systems. Therefore, physical 

quantities need to be integrated over the first Brillouin Zone (BZ). The k-point sampling determines the 

resolution of the integration in k-space taken over the entire volume of the first BZ. Figure 7.2 shows the 

relationship between total energy and the number of k-points in the irreducible BZ for an aluminum crystal. 
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Figure 7.2 Relationship between total energy and the number of k-points  

for a face-centered cubic aluminum crystal 

 

Note that the total energy does not monotonically decrease because the variational principle is not satisfied 

on increasing the number of k-points. In the above example, the total energy converges after passing through 

a minimum. As in the case of the cutoff energy, if you focus on relative energy rather than absolute energy, a 

much smaller number of k-points may be sufficient. 

 

7.1.3 Convergence criterion 

 

Strict convergence criteria for SCF calculations enable us to calculate atomic forces more accurately. In 

normal structure optimizations,      Hartree is usually sufficient for the SCF convergence threshold. 

However, MD simulations require a smaller convergence threshold to conserve total energy or temperature. 

Figure 7.3 shows the relationship between the convergence criterion and the maximum atomic force for a 

SiO2 crystal. This figure indicates that a strict convergence criterion, less than       Hartree, is required 

for the atomic force to satisfactorily converge. 
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Figure 7.3 Relationship between convergence criterion and maximum atomic force for SiO2 
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7.1.4 Benchmark calculation (comparison of wavefunction solver) 

 

7.1.4.1 FCC-Cu 

Here we examine how well each wavefunction solver performs for FCC-Cu. The sample input data 

introduced here are in the directory samples/sol_cmix_test/Cu. 

 

32. Input data 

Input data, excluding the wavefunction_solver block, are shown below. 
Control{ 
    condition = initial 
    cpumax = 1 day 
} 
accuracy{ 
    cutoff_wf =  25.0 rydberg 
    cutoff_cd = 225.0 rydberg 
    num_bands = 10 
    ksampling{ 
        mesh{ 
            nx = 10 
            ny = 10 
            nz = 10 
        } 
    } 
    scf_convergence{ 
        delta_total_energy = 1.e-10 hartree 
        succession   = 3 
    } 
    initial_wavefunctions  = atomic_orbitals 
    initial_charge_density = atomic_charge_density 
} 
structure{ 
    unit_cell_type = primitive 
    unit_cell{ 
        !#units bohr 
        a_vector =  0.0000000  3.4704637  3.4704637 
        b_vector =  3.4704637  0.0000000  3.4704637 
        c_vector =  3.4704637  3.4704637  0.0000000 
    } 
    symmetry{ 
         method = automatic 
         tspace{ 
            lattice_system = fcc 
         } 
         sw_inversion = on 
    } 
    atom_list{ 
         atoms{ 
            !#tag  rx       ry       rz       weight   element    mobile 
                  0.000    0.000     0.000       1        Cu        0 
        } 
    } 
    element_list{ 
     #tag element  atomicnumber 
               Cu          29 
    } 
} 
wavefunction_solver{ 
        See later section 
} 
charge_mixing{ 
    mixing_methods{ 
        !#tag  method   rmxs    rmxe    itr   var   prec istr  nbmix  update 
              broyden2  0.60    0.60    *     *     on     3    15     RENEW 
    } 
} 
printlevel{ 
    base = 1 
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} 

 

Examples of the wavefunction_solver block are shown below: 

 

 matrix diagonalization 
wavefunction_solver{ 
    solvers{ 
          !#tag   id sol    till_n  dts  dte   itr   var  prec cmix submat 
                1  matrixdiagon   -1    *      *    *      *   on 1 off 
    } 
} 

 

 lm+msd, partial space diagonalization is performed after updating wavefunctions 
wavefunction_solver{ 
    solvers{ 
          !#tag   id sol    till_n  dts  dte   itr   var  prec cmix submat 
                1  lm+msd   1    *      *    *      *   on 1 on 
    } 
    submat{ 
      before_renewal=off 
    } 
} 

 

 lm+msd, partial space diagonalization is performed before updating wavefunctions 
wavefunction_solver{ 
    solvers{ 
          !#tag   id sol    till_n  dts  dte   itr   var  prec cmix submat 
                1  lm+msd   1    *      *    *      *   on 1 on 
    } 
    submat{ 
      before_renewal=on 
    } 
} 

 

 lm+msd → rmm3, partial space diagonalization is performed after updating wavefunctions 
wavefunction_solver{ 
    solvers{ 
          !#tag   id sol    till_n  dts  dte   itr   var  prec cmix submat 
                1  lm+msd   1    *      *    *      *   on 1 on 
                2  rmm3      -1    *      *    *      *    on   1    on 
    } 
    rmm{ 
      edelta_change_to_rmm = 5.0e-3 
    } 
    submat{ 
      before_renewal=off 
    } 
} 

 

 lm+msd → rmm3, partial space diagonalization is performed before updating wavefunctions 
wavefunction_solver{ 
    solvers{ 
          !#tag   id sol    till_n  dts  dte   itr   var  prec cmix submat 
                1  lm+msd   1    *      *    *      *   on 1 on 
                2  rmm3      -1    *      *    *      *    on   1    on 
    } 
    rmm{ 
      edelta_change_to_rmm = 5.0e-3 
    } 
    submat{ 
      before_renewal=on 
    } 
} 
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 Davidson → rmm3, partial space diagonalization is performed after updating wavefunctions 
wavefunction_solver{ 
    solvers{ 
          !#tag   id sol    till_n  dts  dte   itr   var  prec cmix submat 
                1  davidson   1    *      *    *      *   off 1 off 
                2  rmm3      -1    *      *    *      *    on   1    on 
    } 
    rmm{ 
      edelta_change_to_rmm = 5.0e-3 
    } 
    submat{ 
      before_renewal=off 
    } 
} 

 

 Davidson → rmm3, partial space diagonalization is performed before updating wavefunctions 
wavefunction_solver{ 
    solvers{ 
          !#tag   id sol    till_n  dts  dte   itr   var  prec cmix submat 
                1  davidson   1    *      *    *      *   off 1 off 
                2  rmm3      -1    *      *    *      *    on   1    on 
    } 
    rmm{ 
      edelta_change_to_rmm = 5.0e-3 
    } 
    submat{ 
      before_renewal=on 
    } 
} 

 

 Davidson 
wavefunction_solver{ 
    solvers{ 
          !#tag   id sol    till_n  dts  dte   itr   var  prec cmix submat 
                1  davidson   -1    *      *    *      *   off 1 off 
    } 
} 

 

33. Results 

Figure 7.4 shows the results from the benchmark calculations, and Table 7.1 lists the calculation times. In 

these benchmark tests, the PHASE program was compiled using the Intel Fortran Compiler 11.1 on Linux, 

and a computer cluster equipped with a 2.4GHz Opteron280 processor was used. The degree of parallelism 

for k-points was set to 4. 
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Figure 7.4 Convergence progress for each wavefunction solver 

 

エラー! 参照元が見つかりません。 contains the calculation time for each wavefunction solver. Here the 

number of iterations indicates the number of charge mixings performed before convergence occurs. Note that 

the calculation times, obtained on the computer cluster equipped with an Opteron 280 2.4GHz processor, are 

tabulated here just for reference. 

 

Table 7.1 Calculation times for each wavefunction solver 

method 

(when partial space diagonalization is performed) 

number of 

iteration 

calculation time (sec) 

matrix diagonalization  13  19.2   

lm+msd, (after updating wavefunctions)  67  22.2   

lm+msd, (before updating wavefunctions) 105  32.4   

lm+msd   rmm3, (after updating wavefunctions) 34  12.4   

lm+msd   rmm3, (before updating wavefunctions)  16  8.4   

Davidson   rmm3, (after updating wavefunctions)  23  11.2   

Davidson   rmm3, (before updating wavefunctions)  15  9.5   

Davidson  17  11.8   

 

In Figure 7.4, the horizontal axis contains the number of iterations, and the vertical axis gives the energy 

relative to the converged energy. Since the variational principle holds in the SCF calculation, the lower 

energy is more accurate.  

 

Here matrix diagonalization seems to converge faster, but the amount of calculation for one step is generally 

large, and it cannot be applied to large systems. In these results, the methods that switch to rmm3 converge 

faster. In particular, the RMM3 method, in which partial space diagonalization is performed before 

wavefunctions are updated, converges much faster. Depending on the systems being studied, speed and 

stability of convergence change accordingly. It is recommended to select the best optimization method in each 

case. In most cases, LM+MSD→RMM3, Davidson’s, and Davidson→RMM3 are stable and converge faster. If 

the RMM3 method is employed, partial space diagonalization should be applied before updating 

wavefunctions. If Davidson’s method is employed, post-processing (precon) should be set to “off.” 



 217 

 

 

 

7.1.4.2 Fe(100) surface 

A sample calculation for an Fe(100) surface is introduced here to illustrate spin-considered calculations. In 

this example, the same wavefunction solver was used, and several charge-mixing methods were tested. The 

input data introduced here are in the directory samples/sol_cmix_test/Fe100. 

 

34. Input data 

Input data, excluding the charge_mixing block, are shown below. 
control{ 
  condition = initial 
  max_iteration = 200 
} 
accuracy{ 
  num_bands = 52 
  ksampling{ 
    method=monk 
    mesh{ 
      nx = 6 
      ny = 6 
      nz = 1 
    } 
  } 
  cutoff_wf = 30 rydberg 
  cutoff_cd = 300 rydberg 
  initial_wavefunctions = atomic_orbitals 
  initial_charge_density = atomic_charge_density 
  scf_convergence{ 
    delta_total_energy = 1e-9 
    succession = 3 
  } 
  force_convergence{ 
    max_force = 0.0005 hartree/bohr 
  } 
} 
structure{ 
  atom_list{ 
    atoms{ 
      #tag    element    rx    ry    rz    mobile    weight 
            Fe    0.5    0.5    0    off    1 
            Fe    0    0    0.0948333333333    off    2 
            Fe    0    0    0.2845    off    2 
            Fe    0.5    0.5    0.189666666667    off    2 
    } 
  } 
  ferromagnetic_state{ 
    sw_fix_total_spin=off 
    total_spin=14 
    spin_fix_period=5 
  } 
  unit_cell{ 
    a_vector = 5.3762704477 0.0 0.0 
    b_vector = 0.0 5.3762704477 0.0 
    c_vector = 0.0 0.0 28.3458898822 
  } 
  element_list{ 
    #tag    element    atomicnumber    mass    zeta    deviation 
          Fe    26    101802.230406    0.375    1.83 
  } 
  symmetry{ 
    method = automatic 
    sw_inversion = on 
  } 
  magnetic_state=ferro 
} 
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structure_evolution{ 
  method = gdiis 
  gdiis{ 
    initial_method = cg 
    c_forc2gdiis = 0.005 hartree/bohr 
  } 
} 
wavefunction_solver{ 
  solvers{ 
    #tag    sol    till_n    prec    cmix    submat 
          davidson    1    off    1    off 
          rmm3       -1     on    1    on 
  } 
  rmm{ 
    edelta_change_to_rmm = 5e-3 hartree 
  } 
  submat{ 
    before_renewal = on 
  } 
} 
charge_mixing{ 
        See later section 
} 
printoutlevel{ 
  base = 1 
} 

 

Examples of the charge_mixing block are shown below. 

 

Case 0: Different mixing ratios are adopted for the sum and difference of the charge density. The Broyden2 

method is employed for the charge-mixing algorithm. 
charge_mixing{ 
  spin_density_mixfactor=4 
  mixing_methods{ 
    #tag    no    method    rmxs    rmxe    itr    var    prec    istr    nbmix    update 
          1    broyden2    0.1    0.1   40    linear    on    3    5    renew 
  } 
} 

 

Case 1: Different mixing ratios are adopted for the sum and difference of the charge density. The Pulay 

method is employed for the charge-mixing algorithm. 
charge_mixing{ 
  spin_density_mixfactor=4 
  mixing_methods{ 
    #tag    no    method    rmxs    rmxe    itr    var    prec    istr    nbmix    update 
          1    pulay    0.1    0.1   40    linear    on    3    15    renew 
  } 
} 

 

Case 2: The same mixing ratios are adopted for the sum and difference of the charge density. The Broyden2 

method is employed for the charge-mixing algorithm. 
charge_mixing{ 
  spin_density_mixfactor=1 
  mixing_methods{ 
    #tag    no    method    rmxs    rmxe    itr    var    prec    istr    nbmix    update 
          1    broyden2    0.1    0.1   40    linear    on    3    15    renew 
  } 
} 

 

Case 3: The same mixing ratios are adopted for the sum and difference of the charge density. The Pulay 

method is employed for the charge-mixing algorithm. 
charge_mixing{ 
  spin_density_mixfactor=1 
  mixing_methods{ 
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    #tag    no    method    rmxs    rmxe    itr    var    prec    istr    nbmix    update 
          1    pulay    0.1    0.1   40    linear    on    3    15    renew 
  } 
} 

 

35. Results 

The results of the benchmark tests are listed in Table 7.2. The total energies for these methods are also 

shown to ensure that these results converge to the same electronic state. In this example, case3 (different 

mixing ratios and the Pulay method) converges in the least number of iterations. Although case3 usually 

gives the best convergence, the Broyden2 method should be employed in some cases, or larger mixing ratios 

for the difference in charge density may be better in some problems. Moreover, if spin is considered, 

convergence is affected by whether initial spin polarization is fixed. When the calculation does not converge, 

find an optimal charge-mixing method by referring to these benchmark tests. 

 

Table 7.2 Number of SCF iterations required for convergence  

and the resulting total energy for an Fe (100) surface 

 number of SCF iterations total energy (ha.)   

case0  36  -153.877775988322   

case1  32  -153.877775991437   

case2  34  -153.877775825592   

case3  29  -153.877775990755   
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7.2 Structure optimization 

 

7.2.1 Optimization methods 

 

7.2.1.1 Calculation examples 

 

To examine the behavior of the optimization algorithms implemented in PHASE, we applied each algorithm 

to the following systems. 

• case1: cis-dichlorohexane 

• case2: rutile-type TiO2 

• case3: SiO2 

• case4: Si(001) surface 

Input files for these examples are in the directory samples/strevl_test. 

 

In all cases, the convergence criterion for the maximum atomic force was set to      Hartree/Bohr (This 

threshold is relatively strict.), and the convergence criterion for SCF calculations was set to       Hartree 

(succession=1). Updating atomic positions was carried out up to 200 times. The optimization calculations 

that exceed this limit were regarded as not converging. Each optimization algorithm was specified as follows: 

 

36. quenched MD method 

structure_evolution{ 
  method = quench 
} 

 

37. CG method 

structure_evolution{ 
  method = cg 
} 

 

38. GDIIS method 

structure_evolution{ 
  method = gdiis 
  gdiis{ 
    initial_method = cg 
    c_forc2gdiis = 0.01 hartree/bohr 
  } 
} 

 

By the above input, the optimization is first processed by the CG method, and then the algorithm switches to 

the GDIIS method when the maximum atomic force became smaller than the threshold given by the 

c_forc2gdiis variable. Note that the first three steps are processed by the CG method even if the maximum 

force is smaller than the threshold. 

 

39. BFGS method 

structure_evolution{ 
  method = bfgs 
  gdiis{ 
    initial_method = cg 
    c_forc2gdiis = 0.01 hartree/bohr 
  } 
} 
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For the BFGS method, the optimization is first processed by the CG method, and the algorithm switches to 

the BFGS method when the maximum atomic force became smaller than the threshold given by the 

c_forc2gdiis variable. Note that the first three steps are processed by the CG method even if the maximum 

force is smaller than the threshold. 

 

 

7.2.1.2  Results 

 

エラー! 参照元が見つかりません。 lists the results of these benchmark tests. These results indicate that the 

quenched MD method converges slowly or not at all. In these tests, the time step was set to 100 au (default 

value). Convergence might improve by changing this value. Although the GDIIS method converges faster for 

SiO2, it does not work well in the other cases. The behavior of the GDIIS method may be improved by 

changing c_forc2gdiis to a smaller value or by giving a more precise SCF convergence threshold. The CG 

method was relatively stable. The BFGS method converged in all cases, and it required fewer iterations, on 

average. 

 

Table 7.3 Comparisons of the numbers of iteration required for convergence of the optimization algorithms. 

The label “unconverged” means the optimization did not converge to less than 10−4 within 200 cycles. Case1 

is dichlorohexane, case 2 is rutile-type TiO2, case 3 is SiO2, and case 4 is the Si(001) surface. 

 case 1 case 2 case 3 case 4 

quenched MD  unconverged 115  166  unconverged 

cg  195  62  28  124   

GDIIS  unconverged  71  13  176   

BFGS  87  38  16  67   
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7.3 Units in PHASE 

 

The units used in PHASE are basically Hartree atomic units. The following table lists conversion factors 

from atomic units to other units. 

 

energy 1 Hartree = 2 Rydberg = 27.21139615 eV = 4.359745836        J 

length 1 Bohr = 0.5291772480 Å = 0.5291772480       m 

mass 1 au mass = 1822.877333 amu = 9.1093897       kg 

volume 1 au volume = 0.1481847426 Å   = 1.48184726        m   

velocity 1 au velocity = 2.187691417       Å /s = 2.187691417      m/s 

force 1 Hartree/Bohr = 51.42208259 eV/Å = 8.238725025       N 

time 1 au time = 2.418884327       fs = 2.418884327        s 

stress 1 au stress = 2.903628623      atm = 2.942101703       Pa 

density 1 au density = 1.23013834      amu/Å   = 9.1093897      g/cm   = 9.1093897 

      kg/m   

 

 

7.4 FAQ 

 

Questions and answers are summarized below. 

 

Q: Band dispersion calculated by ekcal program seems wrong. What is a possible cause of the problem? 

A: Check if the calculated wavefunctions converged sufficiently. See the log file output000. 

 

Q: An error, which warns charge density is negative, occurs during a SCF calculation. How can I solve the 

error? (e.g., ** WARN CHG.DEN   0.0 AT 1 - 0.8220751D-1) 

A: Please check if the accuracy of the charge mesh is sufficient, and use a larger cutoff energy for the 

cutoff_cd variable. (Note: if the above warning appears only during the initial steps of an SCF calculation, 

it can be ignored.)  

 

Q: How should I determine values for cutoff_wf and cutoff_cd?  

A: An appropriate value for cutoff_wf mainly depends on the pseudopotentials used in the calculation. 

Normally, one should calculate a target crystal using several cutoff energies and then adopt cutoff 

energies that can reproduce experimental values of equilibrium lattice parameters or the bulk modulus. 

For normal TM potentials, cutoff_cd is determined by cutoff_cd＝4   cutoff_wf. However, cutoff_cd needs 

to be larger than this if pseudopotentials using PCC or ultra-soft potentials are employed in the 

calculation. 

 

Q: mpirun command does not work. What is a possible cause of the problem? 

A: Please check if the hostnames and user IDs are correctly written in .rhost. 

 

Q: Optimization of electronic states (i.e., an SCF calculation) does not work well (i.e., charge density does not 

get converged). How can I solve the problem? 

A: Try different options for the optimization algorithm by referring to Section 10. 

 

Q: I specified xctype in the input parameter file. Is it necessary to use pseudopotentials generated by the 

same xctype functional? 

A: Yes. It is basically necessary for consistency. If xctype is not specified in the input file, xctype defined in the 

pseudopotential files is employed. If xctype variables written in pseudopotential files employed are not 

consistent, the job will not execute. 
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Q: I plotted the band structure for a metal system using band.pl, but the Fermi level in this figure slipped 

out of the correct position. How can I fix this? 

A: Change the Fermi energy written in nfenergy.data to that obtained by the SCF calculation. 

 

Q: band.pl (or dos.pl) does not work. What is a possible cause of the problem? 

A: Please check if the Perl scripts are executable. Try again after executing “chmod +x dos.pl.” See chapter 9 

for use of these scripts. 

 

Q: SCF calculation was terminated, but it seems like the SCF convergence criterion was not satisfied. Why 

did the calculation terminate? 

A: An SCF calculation terminates if the energy per an atom becomes lower than the threshold. However, the 

energy printed to standard output output000 is the total energy, not the energy per an atom. Therefore, it 

is necessary to divide the total energy by the number of atoms to check whether the convergence criterion 

is satisfied. 

 

Q: How can I ensure that the calculation converged? 

A: If an SCF calculation converges, you can find the results in nfefn.data or nfdynm.data. If structure 

optimization converges, you can find the following description at the end of the file continue.data. 

convergence 
         2 

 

Q: How can I visualize the unit cell that is shown by the blue line in Figure 3 of the tutorial. 

A: After making the mol2 file shown below, read it with the PHASE Viewer. 

@<TRIPOS>MOLECULE 
Si8 frame 
    8   12    0 
    0    0    0    0 

 
grid file 
@<TRIPOS>ATOM 
     1 N     0.000000  0.000000  0.000000    N.4    1  GLY        0.0000 
     2 N     5.430000  0.000000  0.000000    N.4    1  GLY        0.0000 
     3 N     0.000000  5.430000  0.000000    N.4    1  GLY        0.0000 
     4 N     0.000000  0.000000  5.430000    N.4    1  GLY        0.0000 
     5 N     0.000000  5.430000  5.430000    N.4    1  GLY        0.0000 
     6 N     5.430000  0.000000  5.430000    N.4    1  GLY        0.0000 
     7 N     5.430000  5.430000  0.000000    N.4    1  GLY        0.0000 
     8 N     5.430000  5.430000  5.430000    N.4    1  GLY        0.0000 
@<TRIPOS>BOND 
     1    1  2        1 
     2    1  4        1 
     3    1  3        1 
     4    2  6        1 
     5    2  7        1 
     6    3  5        1 
     7    3  7        1 
     8    4  5        1 
     9    4  6        1 
    10    5  8        1 
    11    6  8        1 
    12    7  8        1 
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8. Installation of PHASE 
 

8.1 Operating environment  

 

PHASE works at various computer environments from PCs to advanced supercomputers. The PHASE 

program is written in Fortran90 and C; thus, compilers of these languages are required. The MPI library is 

also necessary if parallel processing is required.  

 

The required and optional software and libraries are as follows: 

 Fortran90 compiler and C compiler (required) 

 MPI library (required for parallel calculations) 

 Libraries for matrix operations: LAPACK, BLAS (optional) 

 FFT library: FFTW (optional) 

 Perl (optional, but required for PHASE tools) 

 Gnuplot (optional, but required for PHASE tools) 

 

The computer platforms that support PHASE are tabulated below. 

 

Computer platforms that support PHASE 

platform compilers  available libraries 

Linux  GNU Compiler 

Intel Compiler 

PGI Compiler  

LAPACK, BLAS, ScaLAPACK 

MKL, ACML 

FFTW3   

Windows XP  GNU Compiler 

Intel Compiler 

PGI Compiler  

MKL, ACML 

FFTW3   

Intel ver. Mac OS X  GNU Compiler 

Intel Compiler 

MKL, ACML 

FFTW3   

Oracle Solaris  GNU Compiler 

SUN Compiler  

Sun Perf.(LAPACK) 

ACML 

FFTW3   

SGI Altix  Intel Compiler SCSL, MKL 

FFTW3   

IBM AIX  IBM XL  ESSL(LAPACK) 

FFTW3   

Hitachi SR11000  HITACHI 

IBM XL  

MATRIX/MPP(FFT) 

HITACHI LAPACK 

ESSL(LAPACK)   

NEC SX Series  Fortran90/SX  Mathkeisan(LAPACK) 

ASL(FFT)   

Fujitsuu FX10 Fujitsu Compiler  

 

 MPICH1, MPICH2, and OpenMPI are available for the MPI library. 

 The newest AMD Core Math Library for various platforms is available at http://developer.amd.com/.  

 The GNU compiler (gfortran, gcc) must be newer than ver. 4.1. The newest GNU Compiler (Windows 

ver., MacOS ver., Linux ver.) can be downloaded from http://gcc.gnu.org/.  

 The PGI compiler must be newer than ver. 6.2. 

 The Intel compiler must be newer than ver. 9.1. 

 

  

http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www-unix.mcs.anl.gov/mpi/mpich2/index.htm
http://www.open-mpi.org/
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8.2 Installation 

 

This section introduces installation of PHASE in a Linux environment. In this example, the Intel Fortran 

compiler is employed for installation. If another compiler is used for the installation, choose that compiler 

when the installer asks you which compiler is used. In this example, OpenMPI is employed for the MPI 

library. If “Serial” is chosen in the interactive installation process, you can compile the PHASE program 

without the MPI library. 

 

First, decompress the PHASE package file phase_v1200.tar.gz at the directory in which PHASE is installed. 

$ tar zxf phase_v1200.tar.gz 

  

Go into the directory phase_v1100 and run the installer. 

$ cd phase_v1000 
$ ./install.sh 

 

 

 === PHASE installer === 
 Do you want to install PHASE? (yes/no) [yes] 

The installer asks you whether to install PHASE. Press the Enter key to start the installation. 

Supported platforms 

 0) GNU Linux (IA32) 

 1) GNU Linux (EM64T/AMD64) 

 2) NEC SX Series 

 x) Exit 

Enter number of your platform. [0] 

Supported platforms are displayed. Input “0,” which corresponds to GNU Linux (AI32), and press the Enter 

key. 

Supported compilers 

 0) GNU compiler collection (gfortran) 

 1) Intel Fortran compiler 

 x) Exit 

Enter number of a desired compiler. [0] 

Supported compilers are displayed. Input “2,” which corresponds to the Intel Fortran compiler 9.x, and press 

the Enter key. 

Supported programming-models 
 0) Serial 
 1) MPI parallel 
 x) Exit 
Enter number of a desired programming-model. [0] 

Supported programming models are displayed. Input “1,” which corresponds to MPI parallel, and press the 

Enter key. 

Supported MPI libraries 

 0) MPICH1/MPICH2/Open MPI 

 1) Intel(R) MPI 

 x) Exit 

Enter number of a desired MPI library. [0] 

Supported MPI libraries are displayed. Input “0” which corresponds to OpenMPI, and press the Enter key.   

Supported BLAS/LAPACK 

 0) Netlib BLAS/LAPACK 

 1) Intel Math Kernel Library (MKL) 

 x) Exit 

Enter number of a desired library. [0] 

Supported BLAS/LAPACK libraries are displayed. Input “0,” which corresponds to Netlib BLAS/LAPACK, 

and press the Enter key. 
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Supported FFT libraries 

 0) Built-in FFT subroutnes 

 1) FFTW3 library 

 x) Exit 

Enter number of a desired library. [0] 

Supported FFT libraries are displayed. Input “0,” which corresponds to built-in FFT subroutines, and press 

the Enter key 

Do you want to edit the makefile that has been generated? (yes/no/exit) [no] 

The installer asks you whether to edit the generated Makefile. Press the Enter key if you do not need to edit 

the Makefile. 

 Do you want to make PHASE now? (yes/no) [yes] 

Press the Enter key to start the installation of PHASE. 

PHASE was successfully installed. 
Do you want to check the installed programs? (yes/no) [no] 

After the message “PHASE was successfully installed,” the installer asks you whether to execute a test 

calculation. Input “yes” and press the Enter key if you want to run the test calculations. If the installed 

PHASE program works correctly, the following results will be obtained. 

Do you want to check the installed programs? (yes/no) [no] 
yes 
Checking total-energy calculation. 
 Total energy : -7.897015156331 Hartree/cell 
 Reference    : -7.897015156332 Hartree/cell 
Checking band-energy calculation. 
 Valence band maximum : 0.233846 Hartree 
 Reference            : 0.233846 Hartree 

 

PHASE is executed using the mpirun or mpiexec command in the MPI library. 

 

 

If you add the directory $HOME/phase_v1200/bin to the environmental variable PATH, you can execute 

PHASE programs without entering the path to these programs.  

 

For the Bourne shell, add the following line to $HOME/.bashrc. 

export PATH=$HOME/phase_v1200/bin:$PATH 

In the C shell, add the following line to $HOME/.cshrc. 

setenv PATH $HOME/phase_v1200/bin:$PATH 

 

Also, add the bin directory of the MPI library to the PATH. 

For the Bourne shell, add the following line to $HOME/.bashrc. 

export PATH=$HOME/openmpi/bin:$PATH 

In the C shell, add the following line to $HOME/.cshrc. 

setenv PATH $HOME/openmpi/bin:$PATH 

 

Now, mpirun and phase can be executed simply as follows: 

$ mpirun -np 2 phase ne=1 nk=2 
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8.3 Notice for each platform 

 

8.3.1 Linux 

 

Make the FFTW3 interface of the Intel Math Kernel Library by using the Intel C++ compiler as follows. 

cd /opt/intel/mkl/9.1/interfaces/fftw3xf 
make lib32 

 

In the EM64T environment, use libem64t instead of lib32 above. The library file libfftw3xf_intel.a will be 

generated in  

/opt/intel/mkl/9.1/lib/32    (IA32 environment) 

or in 

/opt/intel/mkl/9.1/lib/em64t (EM64T environment) 

Note: if the MKL library was installed into a directory other than /opt/intel, the library file is also installed in 

that directory.  

 

8.3.2 Windows XP 

 

On a Windows platform, a Linux-compatible environment is required. Please install MSYS/MinGW or 

Cygwin. In case of Cygwin, the make command also needs to be installed.  

If the MPI parallel version is necessary, install the MPI library for Windows DeinoMPI in advance.  

Make the FFTW3 interface of the Intel Math Kernel Library using the nmake command with ’F=ms’ 

and ’MKL_SUBVERS=serial’ options (Use Microsoft C++ compiler). 

The makefile is in 

C:¥Program Files¥Intel¥MKL¥9.1¥interfaces¥fftw3xf 

To correctly make the serial version of the library, remove the ‘/MT’ option in the second-to-last line of this 

makefile. After modifying the makefile, open an MS-DOS command prompt and make the library as below: 

C:¥Program Files¥Intel¥MKL¥9.1¥interfaces¥fftw3xf 
nmake lib32 F=ms MKL_SUBVERS=serial 

In the EM64T environment, use libem64t instead of lib32 above. The library file fftw3xf_ms.lib will be 

generated in  

C:¥Program Files¥Intel¥MKL¥9.1¥lib¥_serial¥ia32¥lib (IA32 environment) 

or in  

C:¥Program Files¥Intel¥MKL¥9.1¥lib¥_serial¥em64t¥lib (EM64T environment) 

 

 

8.3.3 Mac OS X (Intel ver.) 

 

Use the Intel Fortran compiler ver. 10. 

Make the FFTW3 interface of the Intel Math Kernel Library using the Intel C++ compiler as follows: 

cd /Library/Frameworks/Intel_MKL.framework/Version/9.1/interfaces/fftw3xf 
make lib32 MKL_SUBVERS=serial 

In the EM64T environment, use libem64t instead of lib32 above. The library file libfftw3xf_intel.a will be 

generated in  

/Library/Frameworks/Intel_MKL.framework/Version/9.1/lib_serial/32    (IA32） 

or in 

/Library/Frameworks/Intel_MKL.framework/Version/9.1/lib_serial/em64t (EM64T) 

 

To make the MPI-parallelized version, install OpenMPI in advance. 

  

http://www.mingw.org/download.shtml
http://sourceforge.net/project/showfiles.php?group_id=2435
http://cygwin.com/
http://mpi.deino.net/index.htm
http://www.open-mpi.org/
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9. Usage of programs and tools 
 

9.1 Program phase 

 

9.1.1 Executing phase 

 

One can use PHASE to perform SCF calculations or MD simulations. Density of states (DOS) or band 

structures can also be calculated from charge-density distributions.  

 

Prepare an input parameter file and pseudopotential files and put them into an execution directory. Put 

file_names.data into the execution directory as well, if it is needed.  

When you run serial calculations using a single processor (1 core), execute the phase program as below. 

Here “../../phase_v1200/bin/” indicates the directory in which PHASE was installed. 

 

% ../../phase_v1200/bin/phase 

 

When you run PHASE in parallel, use the execution command in the MPI library. Usually, the mpirun or 

mpiexec command is used. For more details, see the manuals for your platform. 

 

% mpirun -np NP ../../phase_v1200/bin/phase ne=NE nk=NK 

 

Here NP is the number of MPI processes, while NE and NK are the degrees of parallelism for bands and 

k-points, respectively. 

 

9.1.2 Options for parallel calculations 

 

9.1.2.1 Parallelization over bands and parallelization over k-points 

 

In parallel calculations, you need to specify the degree of parallelism for bands NE and for k-points NK. 

Note that NE × NK must equal NP. If ne and nk are omitted, NE = NP and NK = 1 are employed. 

 

% mpirun -np NP ../../phase_v1200/bin/phase ne=NE nk=NK 

 

Normally, parallelization over k-points is more effective than parallelization over bands. Therefore, it is 

usually better to maximize the number of k-points for parallelization. However, the number of k-points is 

normally reduced for large systems, and the actual number of k-points may not be divisible by the number of 

available processors. An error occurs if NK is larger than the number of actual k-points. Sufficient efficiency 

is not achieved if the number of k-points is not divisible by NK. Use band parallelization at the same time 

when needed. 

 

9.1.2.2 Parallelization of replica method 

 

“Parallelization of replica method” is available for some methods such as NEB, constrained dynamics, and 

metadynamics. To use replica parallelization, execute PHASE as below: 

 

% mpirun -np NP ../../phase_v1200/bin/phase nr=NR ne=NE nk=NK 

 

Here NR indicates the degree of parallelism for replicas. The relationship NP = NR × NE × NK must hold. 

Although parallelization of replicas is more effective than that of k-points, the most slowly converging replica 

can be a hindrance to the whole calculation. 
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9.1.3 Parallelization over G points (beta version) 

 

PHASE supports not only band parallelization and k-point parallelization but also parallelization over G 

points for plane-wave functions. However, this function is still under testing, and the following restrictions 

are applied for the parallelization. 

 G-point parallelization is not available with k-point parallelization 

 Post-processing is not available with parallelization 

 

The source codes supporting G-point parallelization are in the directory src_phase_3d. Go into the directory 

and execute the following command to generate the Makefile. 

% sh configure 

 

To generate the Makefile, the installer asks you questions similar to those described in the installation 

section. After generating the Makefile, modify the Makefile if needed and execute the make command as 

below: 

% make 

 

Before executing the calculation, prepare a file named nml.lst in the execution directory. The following is an 

example of this file. 

&decomp3d 

ng=NG 

ne=NE 

nk=1 

/ 

 

Here NG gives the degree of parallelization over G points, and NE gives the degree of parallelization for 

bands. NG × NE must be equal to the number of MPI processes. 

 

 

% mpirun -np NP ../../phase_v1200/bin/phase 
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9.2 Program ekcal 

 

9.2.1 Executing ekcal 

 

The program ekcal is used to calculate DOS or band structures from charge-density distributions obtained 

from SCF calculations done by PHASE.  

 

First, copy the charge-density file nfchgt.data into an execution directory or specify this file by the keyword 

F_CHG in file_names.data.  

 

For band-structure calculations, prepare the file for setting k-point sampling kpoint.data. 

 

Execute the program ekcal as below. Here “phase_v1100/bin/” indicates the directory in which PHASE was 

installed. 

 

% ../../phase_v1100/bin/ekcal 

 

9.2.2 Options for ekcal 
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9.3 Program uvsol 
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9.4 dos.pl: a tool for plotting DOS 

 

PHASE generates data for the DOS in file dos.data. See another section of this manual or the tutorial for 

more details. The Perl script dos.pl can visualize the dos.data. The way to plot the DOS is described below. 

First, copy the dos.data in the example directory into the work directory. 

$ cd PHASE_INST_DIR/samples/tools/work 

$ cp ../example/dos.data . 

Make sure that the dos.data file is copied in this directory by using the ls command.  

$ ls dos.* 

dos.data 

To visualize the dos.data, execute the Perl script by the following command: 

$ dos.pl dos.data -erange=-13,5 -color 

This generates an EPS file density_of_states.eps. In UNIX, you can see this file by using ghostview or gv etc. 

as follows: 

$ ghostview density_of_states.eps 

or  

$ gv density_of_states.eps 

 

 

Figure 9.1 DOS of bulk Si 

 

Here the –erange option gives the energy range to be plotted, and the –color option indicates that the figure 

is output in color. 

 

9.4.1 Options for dos.pl 

 

Usage of the dos.pl script is printed if it is executed without any arguments. 

$ dos.pl 

 

Version: 3.00 
Usage: dos.pl DosData -erange=Emin,Emax -einc=dE -dosrange=DOSmin,DOSmax -dosinc=dDOS  
-title=STRING -with_fermi -width=SIZE -font=SIZE -color -mode={total|layer|atom|projected}  
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-epsf={yes|no} -data={yes|no} 

 

The DOS data file, normally dos.data, is given to the first argument DosData. The options for the dos.pl are 

listed below: 
-erange=Emin,Emax Specify the energy range to be plotted in units of eV. 

For example, -erange = -10,5 indicates that DOS is plotted 

from -10.0 eV to 5.0 eV. 

If the option is not given, the energy range is automatically 

determined by the minimum and maximum of the data given. 
-einc=dE Specify the scale resolution for the horizontal axis. 

For example, -einc=2 indicates that the scale interval is 

2.0 eV. 
-dosrange=DOSmin,DOSmax Specify the range of DOS to be plotted. 

For example, -dosrange=0,12 indicates that the DOS is 

plotted from 0 states/eV to 12 states/eV. 

-dosinc=dDOS Specify the scale resolution for the vertical axis (DOS). 

For example, -dosinc=2 indicates that the scale interval is 

2 states/eV. 
-title=STRING Give a title to the graph. 

For example, -title="Total DOS"  
-with_fermi If this option is given, a dotted line is drawn at the Fermi 

level for metals or at the level of the highest valence band 

for insulators and semiconductors. 

-width=SIZE Give the width of this figure. Defaults to 1.0. 

For example, -width=0.8 

-font=SIZE Specify the font size. Defaults to 14. 

For example, -font=28 
-color If this option is given, the graph is dumped in color. 
-mode={total|layer|atom} Options are as follows: 

total: plot total DOS (default) 

layer: plot layer-divided PDOS 
atom: plot atom-divided PDOS 

projected: plot atomic-orbital-divided PDOS 

-epsf={yes|no} If no, a postscript file is not generated. Defaults to yes. 

-data={yes|no} If yes, instead of generating an eps file, the PDOS data for 

each layer or atom are separately dumped into files.  
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9.5 band_kpoint.pl: a tool for generating k-points 

 

To plot the band structure, many k-points along symmetrical lines are required. The program ekcal 

calculates eigenvalues at these k-points. The Perl script band_kpoint.pl generates these k-points, and the 

generated k-points data are dumped into kpoint.data, and then this file is given to ekcal. The format of the 

input file of this script is shown below. 

 

dkv 
b1x b2x b3x 
b1y b2y b3y 
b1z b2z b3z 
n1 n2 n3 nd # Symbol 
... 

 

The variable dkv gives the interval between k-points; b1x, b1y, b1z indicate the x, y, z components of the 

reciprocal vector   , and similarly for the reciprocal vectors   ,   . The fifth line defines a special k-point 

and its symbol. Although the specification of the symbol is not required, it is used as a label when the band 

structure is plotted. The vectors of these k-points   are specified by integer numbers             as 

  
  

  
   

  

  
   

  

  
   

The symbols are written after the #. An example for a face-centered cubic lattice is shown below. 

0.02                        <---- interval of k-points 
-1.0  1.0  1.0 
1.0 -1.0  1.0               <---- reciprocal lattice vector 
1.0  1.0 -1.0 
0 1 1 2 # X                 <---- n1 n2 n3 nd # Symbol 
0 0 0 1 # {/Symbol G} 
1 1 1 2 # L 
5 2 5 8 # U 
1 0 1 2 # X 

 

The above input is in the example directory. Copy this file and execute band_kpoint.pl as below: 

$ cd PHASE_INST_DIR/samples/tools/work 

$ cp ../example/bandkpt_fcc_xglux.in . 

$ band_kpoint.pl bandkpt_fcc_xglux.in > output 

This generates kpoint.data, which contains k-points used for band structure calculation. Program ekcal 

calculates eigenenergies at these k-points by reading this file. 
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9.6 band.pl: a tool for plotting band structure 

 

9.6.1 Executing band.pl 

 

The script band.pl is a script that plot band structure. The output file from ekcal “nfenergy.data” and the 

input file for band_kpoint.pl are given to band.pl as input. The example directory contains the file 

nfenergy.data, which is obtained from the eigenenergy calculation of ekcal using the file kpoint.data 

generated in the previous section. To plot the band structure, copy the files nfenergy.data and 

bandkpt_fcc_xglux.in in the example directory to the work directory and execute band.pl as below: 

$ cd PHASE_INST_DIR/samples/tools/work 

$ cp ../example/nfenergy.data . 

$ cp ../example/bandkpt_fcc_xglux.in . 

$ band.pl nfenergy.data bandkpt_fcc_xglux.in -erange=-13,5 -color 

This generates the EPS file band_structure.eps. This file can be displayed by ghostview or gv.  

$ ghostview band_structure.eps 

or 

$ gv band_structure.eps 

 

 

Figure 9.2 Band structure of bulk Si 

 

Here the –erange option gives the energy range to be plotted, and the –color option indicates that the figure 

is dumped in color. 

 

 

9.6.2 Options for band.pl 

 

Usage of band.pl is printed if this script is executed without any arguments. 

$ band.pl 

Usage: band.pl EnergyDataFile KpointFile -erange=Emin,Emax 
-einc=dE -ptype={solid_circles|lines} -with_fermi 



 236 

-width=SIZE –color 

 

 

The eigenenergy and k-point data files are given to the first and second arguments, EnergyDataFile, and 

KpointFile. The options for band.pl are listed below: 

 

-erange=Emin,Emax Specify the energy range to be plotted in units of eV. 

For example, -erange=-10,5 indicates that the DOS is plotted from 

-10.0 eV to 5.0 eV. 

-einc=dE Specify the scale resolution for the vertical axis. 

For example, -einc=2 indicates that the scale interval is 2.0 eV. 

-ptype=TYPE Specify plot type. Options are  
-ptype=solid_circles: display with black closed circles 
-ptype=lines: display with lines (default) 

-with_fermi If this option is given, a dotted line is drawn at the Fermi level 

for metals or at the level of the highest valence band for insulators 

and semiconductors. 

-width=SIZE Give the width of this figure. Defaults to 0.5. 

For example, -width=0.3 

-color If this option is given, the graph is dumped in color. 
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9.7 dynm2tr2.pl: a tool for converting to extended trajectory format  

 

The Perl script dynm2tr2.pl converts “nfdym.dat,” which contains atomic position data obtained by structure 

optimization or MD simulation, to the extended trajectory format. 

 

The dynm2tr2.pl can be executed as below: 

$ dynm2tr2.pl nfdynm.data 

This command generates files dynm.tr2, which contains atomic positions, and grid.mol2, which defines cell 

vectors, etc. Here we convert the results from geometry optimization for two Si atoms in FCC primitive to 

the extended trajectory format and visualize below. 

 

Figure 9.3 Visualized structure optimization progress for bulk Si 

 

The arrows in エラー! 参照元が見つかりません。 represent forces acting on atoms. These arrows indicate 

that after the force was maximized, the force decreased and optimization converged. Although the primitive 

cell is displayed in エラー! 参照元が見つかりません。, changing the origin or cell vectors can be specified by 

making control.inp exemplified below. 

origin  1.2825 1.2825 1.2825 
vector1 10.26  0     0 
vector2  0    10.26  0 
vector3  0     0    10.26 

 

If the above control.inp is used as below, the origin is set to (1.2825,1.2825,1.2825) Bohr, and cell vectors are 
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set to (10.26,0,0)，(0,10.26,0)，(0,0,10.26) Bohr. 

$ dynm2tr2.pl nfdynm.data control.inp 

 

エラー! 参照元が見つかりません。 shows step 10 of the optimization progress displayed with the Bravais cell 

given by control.inp. 

 

 

Figure 9.4 Step 10 of the optimization progress for Si atoms displayed with the Bravais cell 
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9.8 freq.pl: a tool for plotting frequency level diagrams 

 

Frequencies and eigenvectors of the normal vibrational modes are obtained by vibrational analysis in 

PHASE. The results from a vibrational analysis are dumped into the file mode.data. The Perl script freq.pl 

extracts these results from mode.data and plots a frequency-level diagram. After executing freq.pl, an EPS 

file named freq.eps is generated. 

 

$ freq.pl [options] mode.data 

 

エラー! 参照元が見つかりません。 shows the frequency-level diagram for bulk Si. 

 

 

Figure 9.5 Frequency-level diagram for bulk Si 

 

The horizontal lines that represent frequency levels are classified according to irreducible representations 

such as T2g. The irreducible representations and symbols representing their activity (IR, R, IR&R, and 

NON) are displayed by horizontal lines. Here IR represents infrared activity, R represents Raman activity, 

IR&R represents both infrared and Raman activity, and NON represents the silent mode. The number to the 

right of this line is the frequency in cm−1 units. The horizontal lines are numbered in order of frequency, and 

those numbers are displayed to the left of the line. 

 

9.8.1 Options for freq.pl 

 

Usage of freq.pl is printed if this script is executed without any arguments.  

$ freq.pl 

 

*** A visualization program for vibrational freqencies *** 
Usage: freq.pl [-width=W] [-height=H] [-nrep=N] {-solid|-mol|-ignored_modes=LIST} 

mode.data 

 

The options for freq.pl are listed below: 

-width=W Give the width of this figure. Defaults to 1.0. 

For example, -width=0.3 

-height=H Give the height of this figure. Defaults to 1.0. 

For example, -height=2.5 

-nrep=N Specify the number of irreducible representations displayed in 

one diagram. If the number of irreducible representations 

obtained is larger than the value given by this option, multiple 
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EPS files will be generated. 

-solid If this option is given (default), translational modes are not 

displayed. 

-mol If this option is given, translational and rotational modes are 

not displayed. 

-ignored_modes=LIST The modes specified by this option are not displayed. 

For example,  

-ignored_modes=1,2,3 
hides the modes 1, 2, and 3. 
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9.9 animate.pl: a tool for converting normal modes to the extended trajectory format 

 

The Perl script animate.pl reads eigenvectors of vibrational modes from mode.data and dumps the trajectory 

of normal vibrations to an extended trajectory formatted file. 

 

The origin and cell vectors can be specified by the file control.inp exemplified below: 

origin  1.27189 1.27189 1.27189 
vector1 10.17512 0 0 
vector2 0 10.17512 0 
vector3 0 0 10.17512 

 

In the above example, to display with the Bravais cell, the origin is set to (1.27189, 1.27189, 1.27189) Bohr, 

and cell vectors are specified as (10.17512, 0, 0), (0, 10.17512, 0), (0, 0, 10.17512) Bohr. 

 

The animate.pl can be executed as follows: 

$ animate.pl mode.data control.inp 

 

Vibrational modes are dumped into the extended trajectory files mode_1.tr2，mode_2.tr2，…，mode_6.tr2, and 

cell vectors are dumped into the file grid.mol2. An extended trajectory file is generated for each vibrational 

mode. 

 

エラー! 参照元が見つかりません。 shows mode_6.tr2, the sixth eigenvectors for the normal vibrations of bulk 

Si. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.6 Eigenvectors of normal vibration for bulk Si 
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10. Input and output files 
 

10.1 Input files 

 

10.1.1 Input parameter file: nfinp.data 

 

 

 

 

 

10.1.2 Pseudopotential files 

 

Here we describe the format of the pseudopotential file. 

The following shows a pseudopotential file for the Si atom. 

   14   4   3   0   2  : zatom, ival, iloc, itpcc  
ldapw91  : name  
     2.160000    0.860000    1.605400   -0.605400  :   alp,cc 
   1501   96.000000   60.000000  :   nmesh,  xh, rmax 
VALL 
 -0.14250064037552332E+07 -0.14102392478975291E+07 -0.13956251181755565E+07 
 -0.13811624288404209E+07 -0.13668496105922471E+07 -0.13526851103651347E+07 
 -0.13386673911985729E+07 -0.13247949320589846E+07 -0.13110662276746516E+07 
 -0.12974797883723934E+07 -0.12840341399159116E+07 -0.12707278233458301E+07 
 -0.12575593948213934E+07 -0.12445274254637859E+07 -0.12316305012010917E+07 
 -0.12188672226148657E+07 -0.12062362047882713E+07 -0.11937360771558125E+07 
 -0.11813654833546225E+07 -0.11691230810772763E+07 -0.11570075419261454E+07 
 -0.11450175512692606E+07 -0.11331518080976552E+07 -0.11214090248841981E+07 
 -0.11097879274438950E+07 -0.10982872547956155E+07 -0.10869057590252746E+07 
 -0.10756422051504281E+07 -0.10644953709862572E+07 -0.10534640470129563E+07 
 -0.10425470362444966E+07 -0.10317431540987322E+07 -0.10210512282688706E+07 
 -0.10104700985962711E+07 -0.99999861694454885E+06 -0.98963564707499891E+06 
  ........................................................................ 
  ........................................................................ 
  ........................................................................ 

 

You can insert comment lines beginning with # into the first lines. If the comment lines are inserted in the 

pseudopotential file, PHASE prints these comments to the standard output (oputput000). In the above 

example, the first four lines define the following parameters.  

 

First line: natomn, ival, iloc, itpcc, igncpp 

These variables represent the atomic number  , the number of valence electrons   ，a number obtained by 

plus 1 to azimuthal quantum number of the localized orbital     , a flag for core charge correction (1 or 0), 

and the format of the pseudopotential data (GNCPP1(=1)，GNCPP2(=2)), respectively. 

 

Second line: xctype 

This line indicates the type of exchange-correlation energy. Options are LDAPW91 and GGAPBE. 

 

Third line: alp1, alp2, cc1, cc2 

These parameters             are used in the following equation to calculate the pseudopotential of the 

core part: 
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where        represents the Gaussian error function, and        .  

 

Fourth line: nmesh, xh, rmax 

These parameters               are used in the following equation to generate the mesh in the radial 

direction: 

                                        

where       represents the number of meshes in the radial direction. 

 

In the above example, these four lines indicate that the pseudopotential file is for the Si atom of LDAPW91. 

The “VALL” in the fifth line is a symbol used to check the file in the PHASE program. The lines after the fifth 

contain actual pseudopotential data. The first block of this data represents screened all-electron potential, 

    
      and its data format is as follows: 

 do ir = 1, nmesh 

      
        

 end do 

 

The second block of this data contains the screened local potential,          

        and its data format is as 

follows: 

 do ir = 1, nmesh 

           

             

 end do 

 

The third block of this data contains      , which is the product of the valence charge density       and 

the surface area of a sphere      (               ). The data format for this block is as follows: 

 do ir = 1, nmesh 

         
 end do 

 

After these three blocks, data for pseudo wave functions and pseudopotentials are dumped. The data format 

is completely different between norm-conserving and ultra-soft pseudopotentials. See the user manual of 

CIAO for more details. 
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10.2 Input/Output setting file: file_name.data 

 

 

 

10.3 Input files (ekcal) 

 

 

 

10.3.1 k-point data file: kpoint.data （F_KPOINT） 

 

This file is mainly used for band calculations via ekcal. The k-points to be calculated are written to this file. 

Then, these k-points are read from this file when “file” is specified for the k-sampling method. This file is 

usually generated by the Perl script band_kpoint.pl. The following shows an example. 

 

141 141         (a) 
0 50 50 100 1   (b) 
0 49 49 100 1    
0 48 48 100 1    
0 47 47 100 1 
0 46 46 100 1 
0 45 45 100 1 
0 44 44 100 1 
0 43 43 100 1 
   ...... 
   ...... 
   ...... 

 

Each line represents the following: 

(a) Number of k-points. This example has 141 k-points. 

 

(b) These five integer numbers are the               in 

       
  

  
  
     

  

  
  
      

  

  
  
       

where   
       

        
      are reciprocal lattice vectors. 
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10.4 Output file 

 

10.4.1 DOS file: dos.data (F_DOS) 

 

Calculated DOS is dumped into a file designated by the F_DOS keyword. The default name of this file is 

dos.data. 

 

If spin is not considered in the calculation, then the total DOS is dumped as follows: 
  No.   E(hr.)        dos(hr.)         E(eV)          dos(eV)              sum 
    6  -0.20528      0.0000000000    -11.949000      0.0000000000        0.0000000000 
   16  -0.20491      0.0000000000    -11.939000      0.0000000000        0.0000000000 
   26  -0.20455      0.0000000000    -11.929000      0.0000000000        0.0000000000 
............... 
............... 
............... 
END 

 

Here No. (in the first column) represents the number assigned to each state, E(hr.) represents the energy in 

units of Hartree, dos(hr.) represents the DOS in units of states/Hartree, E(eV) represents the energy in units 

of eV, dos(eV) represents the DOS in units of states/eV, and sum represents the integrated DOS. 

 

However, if spin is considered in the calculation, total DOS is dumped as follows: 
No.  E(hr.)    dos_up(hr.)       dos_down(hr.)      E(eV)         dos_up(eV)        dos_down(eV)

      sum_up   sum_down sum_total 
  1  -1.5451      0.0000000000      0.0000000000       -45.4403      0.0000000000      0.0000000

000    0.0000    0.0000    0.0000 
 11  -1.5441      0.0000000000      0.0000000000       -45.4131      0.0000000000      0.0000000

000    0.0000    0.0000    0.0000 
 21  -1.5431      0.0000000000      0.0000000000       -45.3859      0.0000000000      0.0000000

000    0.0000    0.0000    0.0000 
 31  -1.5421      0.0000000000      0.0000000000       -45.3587      0.0000000000      0.0000000

000    0.0000    0.0000    0.0000 
 41  -1.5411      0.0000000000      0.0000000000       -45.3315      0.0000000000      0.0000000

000    0.0000    0.0000    0.0000 
 51  -1.5401      0.0000000000      0.0000000000       -45.3043      0.0000000000      0.0000000

000    0.0000    0.0000    0.0000 

 

The dos_up and dos_down represents DOS for up-spin and down-spin; the sum_up and sum_down 

represents the integrated DOS for up-spin and down-spin; the sum_total is sum of sum_up and sum_down.If 

a layer-projected or an atom-projected DOS is calculated, its descriptor and data are also dumped after the 

data for total DOS. 

 

 Atom-projected DOS 

 

The following output is obtained for atom PDOS. 

ALDOS     num_atom =       1 
  No.   E(hr.)        dos(hr.)         E(eV)          dos(eV)              sum 
    6  -0.84950      0.0000000000    -26.189850      0.0000000000        0.0000000

000 
   16  -0.84850      0.0000000002    -26.162639      0.0000000000        0.0000000

000 
                             ......................... 
                             ......................... 
                             ......................... 
END 
ALDOS     num_atom =       2 
                             ......................... 
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                             ......................... 
                             ......................... 

Atom PDOS is dumped between the descriptor ALDOS and END line. The num_atoms = 2 indicates the 

serial number of atoms. 

 

 LDOS for layers 

LDOS for layers are dumped as follows: 

LAYERDOS   num_layer =       1 
  No.   E(hr.)        dos(hr.)         E(eV)          dos(eV)              sum 
    6  -0.84950      0.0000000000    -26.189850      0.0000000000        0.0000000

000 
   16  -0.84850      0.0000000002    -26.162639      0.0000000000        0.0000000

000 
                             ......................... 
                             ......................... 
                             ......................... 
END 
LAYERDOS     num_layer =       2 
                             ......................... 
                             ......................... 
                             ......................... 

 

The data are dumped in same format as the atomic LDOS. The descriptor for layered LDOS is LAYERDOS, 

and num_layer indicates the number of layers defined in an input file. 
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10.4.2 Energy history file: nfefn.data (F_ENF) 

 

Changing total energy in structure relaxation calculations or values of potential and kinetic energies in MD 

simulations are dumped into a file designated by the F_ENF keyword. 

 

 Structure relaxation 

The following shows a typical example of the F_ENF file for structure relaxation. 

 iter_ion, iter_total, etotal, forcmx 
     1      24     -108.4397629733        0.0086160410 
     2      40     -108.4401764388        0.0076051917 
     3      56     -108.4405310817        0.0068758156 
     4      73     -108.4410640011        0.0065717365 
     5      94     -108.4414256084        0.0099533097 
     6     113     -108.4414317178        0.0094159378 
                  ........ 
                  ........ 
                  ........ 

 

Each column represents 

iter_ion the number of iteration for updating ion positions 

iter_total the total number of SCF iterations 

etotal total energy in units of Hartree 

forcmx maximum value of the atomic force (Hartree/Bohr3) 

Structure relaxation calculations continue until this value becomes lower than the 

given convergence criterion. 

 

 

 MD simulations 

The following shows a typical example of the E_ENF file for MD simulations. 
      iter_ion, iter_total, etotal, ekina, econst, forcmx 
     1      18    -7.8953179624     0.0000000000    -7.8953179624     0.0186964345 
     2      30    -7.8953851218     0.0000665502    -7.8953185716     0.0183575425 
     3      43    -7.8955768901     0.0002565396    -7.8953203505     0.0173392067 
                          ........ 
                          ........ 
                          ........ 

 

In addition to columns like those in structure relaxation, the following columns are also printed. 

ekina kinetic energy for the system 

econst conserved quantity of the system (i.e., the total energy for a constant-energy MD 

simulation or the sum of the total energy and thermostat energy for a constant- 

temperature MD simulation) 
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10.4.3 Trajectory file: nfdynm.data（F_DYNM） 

 

When structure relaxation calculations or MD simulations are performed, atomic coordinates and atomic 

forces are dumped into a file designated by the F_DYNM keyword. The following shows a typical example of 

the F_DYNM file. In this file, all values are printed in atomic units. 

 
# 
#   a_vector =         9.2863024980        0.0000000000        0.0000000000 
#   b_vector =        -4.6431512490        8.0421738710        0.0000000000                (a) 
#   c_vector =         0.0000000000        0.0000000000       10.2158587136 
#   ntyp =        2 natm =        9                                                        (b) 
# (natm->type)     1    1    1    1    1    1    2    2    2                               (c) 
# (speciesname)     1 :   O                                                                (d) 
# (speciesname)     2 :   Si   
# 
 cps and forc at (iter_ion, iter_total =     1      24 )                                   (e) 
    1    3.161057370    1.169332082    1.214972077   -0.004058   -0.005565   -0.004966     (f) 
    2    6.693102525    2.152889944    4.620258315    0.006945   -0.001028   -0.004994 
    3    4.075293851    4.719951845    8.025544553   -0.002872    0.006394   -0.004796 
    4   -1.482093879    6.872841789    5.595600399   -0.004362    0.005502    0.004993 
    5   -0.567857398    3.322222026    9.000886637   -0.002792   -0.006296    0.004965 
    6    2.049951276    5.889283925    2.190314161    0.006974    0.000708    0.004795 
    7    4.921740324    0.000000000    3.405282833    0.001436    0.000122    0.000068 
    8   -2.460870162    4.262352150    6.810569070   -0.000612    0.001305   -0.000066 
    9    2.182281087    3.779821719   10.215855308   -0.000660   -0.001143    0.000001 
 cps and forc at (iter_ion, iter_total =     2      40 ) 
    1    3.156999743    1.163767576    1.210005993   -0.002904   -0.005755   -0.003892 
    2    6.700048015    2.151861938    4.615264365    0.006567    0.000186   -0.003832 
    3    4.072421499    4.726345880    8.020748072   -0.003503    0.005487   -0.003829 
    4   -1.486455954    6.878343743    5.600593135   -0.003122    0.005780    0.003831 
    5   -0.570648922    3.315925959    9.005851266   -0.003532   -0.005392    0.003892 
    6    2.056925355    5.889992076    2.195109289    0.006503   -0.000290    0.003828 
    7    4.923176344    0.000121757    3.405351146    0.000397   -0.000013    0.000018 
    8   -2.461482612    4.263656762    6.810503226   -0.000210    0.000337   -0.000017 
    9    2.181621403    3.778679157   10.215856638   -0.000197   -0.000341    0.000000 

 
                                        ........ 
                                        ........ 
                                        ........ 
                                        ........ 
                                        ........ 

 

 

(a) Cell vectors: a_vector, b_vector, and c_vector represent the vectors of the a-axis, b-axis, and 

c-axis, respectively. 

(b) ntyp indicates the number of atomic species used in the simulation; natm indicates the 

number of atoms in the simulation. 

(c) natom→type defines atomics species for atoms. In this example, atoms from No. 1 to No. 6 

correspond to atomic species 1, atoms from No. 7 to No. 9 correspond to atomic species 2.  

(d) speciesname defines atomic species and their identification numbers. In this example, 1 

and 2 are assigned to oxygen and silicon atoms, respectively. 

(e) Number of iterations for updating ions and the total number of SCF iterations 

(f) Atomic positions and atomic forces. The first column gives the ID of atoms, the second to 

fourth columns contain the xyz coordinates of atoms, the fifth to seventh are the xyz 

components of atomic forces. If the print level for velocity is set to 2, velocities of atoms are 

printed in the seventh to ninth columns in atomic units.  
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10.4.4 Charge density file: nfchr.cube（F_CHR） 

 

Charge density is dumped into a file designated by the F_CHR keyword. This file can be obtained in 

Gaussian cube format by assigning “cube” to the file_type variable. The Gaussian cube format is 

recommended because it can be visualized. The following shows an example of the Gaussian cube file. 

 
 This is a title line for the bulk Si                                               (a) 
 SCF Total Density                                                                   
     8    0.0000    0.0000    0.0000                                                (b) 
    20  0.513000  0.000000  0.000000                                                (c) 
    20  0.000000  0.513000  0.000000                                                 
    20  0.000000  0.000000  0.513000                                                 
    14  4.000000  1.282500  1.282500  1.282500                                      (d) 
    14  4.000000  8.977500  8.977500  8.977500 
    14  4.000000  1.282500  6.412500  6.412500 
    14  4.000000  8.977500  3.847500  3.847500 
    14  4.000000  6.412500  1.282500  6.412500 
    14  4.000000  3.847500  8.977500  3.847500 
    14  4.000000  6.412500  6.412500  1.282500 
    14  4.000000  3.847500  3.847500  8.977500 
  0.87897E-01  0.80457E-01  0.63811E-01  0.47743E-01  0.35993E-01  0.26628E-01      (e) 
  0.18342E-01  0.12084E-01  0.83725E-02  0.65941E-02  0.60774E-02  0.65941E-02 
  0.83725E-02  0.12084E-01  0.18342E-01  0.26628E-01  0.35993E-01  0.47743E-01 
  0.63811E-01  0.80457E-01  0.80457E-01  0.76575E-01  0.63379E-01  0.51118E-01 
  0.43367E-01  0.35993E-01  0.26413E-01  0.17302E-01  0.11265E-01  0.80672E-02 
  0.65941E-02  0.62411E-02  0.68963E-02  0.88010E-02  0.12493E-01  0.18342E-01 
  0.26413E-01  0.37600E-01  0.53180E-01  0.70418E-01  0.63811E-01  0.63379E-01 
                                   ........ 
                                   ........ 
                                   ........ 
                                   ........ 
                                   ........ 

 

(a) Title and comment line 

(b) Eight is the number of atoms. “0.0000 0.0000 0.0000” represents the origin. The origin is always 

(0,0,0) in PHASE. 

(c) Grid box and number of meshes are defined here. For example, “20 0.513000 0.000000 0.000000” 

indicates that the number of mesh divisions for the first axis is 20, and the length of each mesh is 

0.513,0.00,0.00. Unit of length is Bohr. 

(d) First number indicates the atomic number. In this example, 14 identifies a silicon atom. The 

second number 4.00000 indicates the number of valence electrons. The third to fifth numbers 

correspond to xyz coordinates of the atom. Unit is Bohr.  

(e) Charge density for each grid point is printed in the following order. 
(1,1,1)  (1,1,2)  ......  (1,1,20)  (1,2,1)  (1,2,2) 
......  (1,20,20)  (2,1,1)  ...... 
(20,20,19)  (20,20,20) 
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10.4.5 Restart file: continue.data （F_CNTN） 

 

This file contains data used to restart calculations. You can edit this file to change parameters for the 

continued calculation; for example, you can change the convergence criterion of an SCF calculation. The 

following shows an example of this file. 
 iteration, iteration_ionic, iteration_electronic 
        19         1        19                                                      (a) 
 Ionic System 
  (natm) 
         2                                                                          (b) 
  (pos) 
  0.1249999999999999D+00  0.1250000000000001D+00  0.1250000000000001D+00            (c) 
  0.8749999999999994D+00  0.8749999999999994D+00  0.8749999999999994D+00 
  (cps) 
  0.1282864712563094D+01  0.1282864712563093D+01  0.1282864712563093D+01            (d) 
  0.8980052987941646D+01  0.8980052987941646D+01  0.8980052987941646D+01 
  (cpd) 
  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 
  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 
  (cpo(  1)) 
  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 
  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 
  (cpo(  2)) 
  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 
  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 
  (cpo(  3)) 
  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 
  0.0000000000000000D+00  0.0000000000000000D+00  0.0000000000000000D+00 
 Total Energy 
 -0.7851066208137508D+01 -0.7851066208137508D+01                                    (e) 
 isolver 
        17  
convergence 
         2                                                                          (f) 
edelta_ontheway 
  0.1000000000000000D-07                                                            (g) 

 

(a) Total number of iterations, the number of iterations for updating ion positions, the number of SCF 

iterations 

(b) Number of atoms 

(c) Atomic positions, referred to cell vectors 

(d) Cartesian coordinates of atoms in units of Bohr 

(e) Total energies for the previous step and the current step 

(f) Convergence progress. Options are 

0: not converged,  

1: SCF converged, but structure relaxation is not converged,  

2: converged 

If the value is 2 and the calculation is restarted, post-processing starts immediately. If you want to 

change the convergence criterion and restart the calculation from an SCF calculation, set this 

value to 0. 

(g) Convergence criterion for SCF. If you want to change the convergence criterion of SCF in the 

middle of a calculation, change this value also. 
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10.4.6 Eigenvalue data file: nfenergy.data（F_ENERG） 

 

Eigenvalues calculated by ekcal are dumped into this file. The following shows a typical example of this file. 
 num_kpoints =    117                                                         (a) 
 num_bands   =      8                                                         (b) 
 nspin       =      1                                                         (c) 
 Valence band max   =   0.233846                                              (d) 

 
 nk_converged =      117                                                      (e) 
 ik =    1 (  0.500000  0.500000  0.000000 ) 
 ik =    2 (  0.487805  0.487805  0.000000 ) 
 ik =    3 (  0.475610  0.475610  0.000000 ) 
 ik =    4 (  0.463415  0.463415  0.000000 ) 
 ik =    5 (  0.451220  0.451220  0.000000 ) 
 ik =    6 (  0.439024  0.439024  0.000000 ) 
... 
... 
... 

 
=== energy_eigen_values === 
 ik =    1 (  0.000000  0.500000  0.500000 )                                  (f) 
     -0.0484324576     -0.0484324576      0.1258094928      0.1258094928      (g) 
      0.2619554301      0.2619554301      0.6015285208      0.6015285208 
=== energy_eigen_values === 
 ik =    2 (  0.000000  0.490000  0.490000 ) 
     -0.0540717201     -0.0427149632      0.1258687739      0.1258687739 
      0.2607026807      0.2633829927      0.6006243932      0.6006243932 
                           ...... 
                           ...... 
                           ...... 

 

(a) Number of k-points. This example has 117 k-points. 

 

(b) Number of bands. This example has eight bands.  

 

(c) Spin degree of freedom: 1 or 2. In this example, the value 1 means that spin polarization is not 

considered in the calculation. 

 

(d) Fermi energy. For semiconductor/insulator, the energy of the valence band edge is printed. The unit 

is Hartree. 

 

(e) Calculated k-points. 

 

(f) Eigenvalues are printed from here. This first line represents the k-point to which this eigenvalue 

corresponds. In this example, the first k-point corresponds to (0,0.5,0.5) of the reciprocal lattice 

vector. 

 

(g) Eigenvalues for all bands are printed. The unit is Hartree. 

 

 

If spin polarization is considered, the output of eigenenergies is almost same, but “UP” or “DOWN” is added 

to item (f). Eigenvalues corresponding to the major and minor spins are printed. 
                           ...... 
                           ...... 
                           ...... 
=== energy_eigen_values === 
 ik =    1 (  0.000000  0.000000  0.000000)    UP  
     -0.1998699758      0.0267639589      0.0267639589      0.0267639589 
      0.0725171077      0.0725171077      1.0289118953      1.0289118953 
      1.0289118953      1.1650173104      1.1650173104      1.1650173104 
      1.2129026022      1.2129026022      1.2994754011      1.2994754011 
      1.2994754011      1.6365336765      2.2629596795      2.2629596795 
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=== energy_eigen_values === 
 ik =    2 (  0.000000  0.000000  0.000000)  DOWN  
     -0.1960420390      0.1062941746      0.1062941746      0.1062941746 
      0.1799862148      0.1799862148      1.0183970612      1.0183970612 
      1.0183970612      1.2174266166      1.2174266166      1.2192701193 
      1.2192701193      1.2192701193      1.3289165100      1.3289165100 
      1.3289165100      1.6910264603      2.2876818717      2.2876818717 
                           ...... 
                           ...... 
                           ...... 
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11. Dielectric function calculation program UVSOR 
 

11.1 Linear-response time-dependent density functional theory（LR-TDDFT） 

 

11.1.1 General features 

 

11.1.1.1 introduction 

 

In the independent particle approximation, excitation spectra of materials are obtained by calculating 

transitions between the ground-state eigenenergy levels of the Kohn–Sham equation. However, in 

experimentally observed excitation spectra, the transition energy and peak amplitudes differ from the 

spectra obtained with this approximation, indicating that interparticle interactions are not negligible. In the 

following, we explain one theoretical method by which interparticle interactions can be considered, at least in 

the linear response regime. This method is called linear-response time-dependent density functional theory 

(LR-TDDFT). 

 

11.1.1.2 Application to solids 

 

In the independent particle approximation, the response function   
 
of the system on changing the external 

field is written as 
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The response function   of the interacting system is given by the Dyson equation, 

                

where   is the Coulomb interaction and     is exchange-correlation interaction. The former is given by 

   𝒒  
  

 𝒒     
 

but the latter is not well defined. We adopt the following two models for    : 

 

 Random-phase approximation (RPA) 

      

 Long-range correction (LRC) 

     
 

 𝒒     
 

The spectrum that is calculated by PHASE is the macroscopic dielectric function, 

              ′  
    

Here   is a response function similar to  ; their difference is caused by removing the G = 0 component of 

the Coulomb kernel. 
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11.1.1.3 Application to isolated systems 

 

For isolated systems such as molecules, we adopt an alternative approach that is based on the 

Bethe–Salpeter equation. In this method, the electron-hole Green’s function    of the noninteracting system 

is defined by 

   
𝒒  
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In a similar manner, the electron-hole Green’s function   of the interacting system is defined by 
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These two Green’s functions are related by the Bethe–Salpeter equation, 
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Here  
 
is the system volume and    is the number of k-points sampled. In addition, we adopt the 

following model for    : 

 

 

 Adiabatic local density approximation (ALDA) 

       ′       ′ 
          

  
 

The spectrum that is calculated by PHASE is the photoadsorption cross-section (PACS), 

     
 

 
           

 

 

11.1.2 Input parameters 

 

11.1.2.1 Control block 

 

To use the LR-TDDFT method, the following steps are essential. First, in the “control” block, declare 

“condition = fixed_charge.” This indicates that LR-TDDFT uses the charge density previously obtained from 

an SCF ground-state calculation. In addition, if you use the TM-type pseudopotential, in which the local 

potential is a specific orbital potential, set “use_additional_projector = on.” 

control{ 
   condition = fixed_charge 
   cpumax = 1 day 
   max_iteration = 600 
   use_additional_projector=on 
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} 

 

11.1.2.2 Accuracy block 

 

In the “accuracy” block, specify parameters for the eigenvalues calculations. 

accuracy{ 
… 
    ek_convergence{ 
      num_extra_bands = 0 
      num_max_iteration = 2000 
      sw_eval_eig_diff = on 
      delta_eigenvalue = 1.e-6 rydberg 
      succession   = 3 
    } 
… 
} 

 

 

11.1.2.3 Structure block 

 

In the “symmetry” block, indicate that all symmetry operations are neglected except the “E” symmetry. 

structure{ 
… 
  symmetry{ 
    method = manual 
    tspace{ 
      lattice_system = primitive 
      generators{ 
       !#tag rotation tx  ty  tz 
                E     0   0   0 
      } 
    } 
  } 
… 
} 

 

 

11.1.2.4 Spectrum block 

 

The “spectrum” block contains parameters concerning the calculations of excitation spectra. The parameters 

available and their meanings are explained below. 

 

spectrum{ 
    type = optics 
    momentum_transfer{ 
      deltaq = 1.0E-3 
      nx = 1.1, ny = 1.2, nz = 0.9 
      LongWaveApprox = ON 
    } 
    tddft{ 
      sw_tddft = ON 
      solver{ 
        equation = DYSON 
      } 
      XC_Kernel{ 
        kernel_type = LRC 
        LRC_alpha = 0.2 
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      } 
      Coulomb_Kernel{ 
        sw_NLF = OFF 
      } 
      Expansion{ 
        NumGVec = 80 
      } 
    } 
    energy{ 
      low = 0.0 eV 
      high = 10.0 eV 
      step = 0.05 eV 
    } 
    BZ_integration{ 
      width =  0.15 eV 
    } 
    band_gap_correction{ 
      scissor_operator = 0.6d0 eV 
    } 
} 

 

type [OPTICS] OPTICS and PACS are available. The former is for calculating the dielectric 

function of solids. The latter is for calculating the photoadsorption cross-section of 

isolated systems, such as molecules. 
  

momentum_transfer Name of a block in which the momentum transfer vector is specified. 
deltaq [1.0E-3] Length of the momentum transfer vector q is specified in units of Å    . 

nx, ny, nz [0.0, 0.0, 1.0] Direction of the momentum transfer vector q. 

L LongWaveApprox [ON] ON and OFF are available. The former is specified when you adopt the long-wave 

limit approximation ( q 0 ). 

  
tddft Name of a block in which parameters concerning TDDFT are specified. 
sw_tddft [OFF] ON and OFF are available. The former is specified when you use LR-TDDFT. 

  
solver Name of a block in which you specify the solver. 
equation [DYSON] DYSON and BS are available. The former is specified when you use the DYSON 

equation. The latter is specified when you use the Bethe–Salpeter equation. Note 

that the BS equation is used for isolated systems such as molecules. 

  
XC_Kernel Name of a block in which parameters concerning the exchange-correlation kernel 

are specified. 
kernel_type [RPA] RPA, LRC, and ALDA-R are available. RPA is specified when you neglect the 

exchange-correlation kernel. LRC is specified when you consider the long-range 

interaction correction, which is meaningful in periodic systems such as solids. 

ALDA-R is used for isolated systems, such as molecules. 
LRC_alpha [1.0] Variable that is specified when you set “LRC” as “kernel_type.” 

  
Coulomb_Kernel Name of a block in which the parameter concerning the Coulomb kernel is specified. 
sw_NLF [OFF] ON and OFF are available. The former is specified when you use an approximation 

in which the local field (       ) is neglected. 

  
Expansion Name of a block in which the parameter concerning the G-vectors used in the 

plane-wave expansion is set. 
NumGVec [100] Number of G vectors is specified. 

  
energy Name of a block in which variables concerning the energy range used in the 

calculation of spectra are set. 
low, high, step Low (high): minimum (maximum) of the energy range. 

Step: interval of the quantized energy range. 
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BZ_Integration Name of a block in which the parameter concerning the Brillouin zone integration is 

set. 
width  [1.0E-4 hartree] Width of Lorentzian broadening. 

  
band_gap_correction Name of a block in which the parameter concerning the bandgap correction is set. 
scissor_operator  [0.0] Band gap is artificially increased by this quantity. 

 

 

11.1.3 Execution 

 

Before executing LR-TDDFT, use the following command to perform the SCF calculation. Here NP indicates 

the number of MPI processes and BINDIR identifies the location of the executable program. 

mpirun -np NP phase 

 

Subsequently, execute the LR-TDDFT calculation by this command: 

mpirun -np NP tdlrmain 

 

 

11.1.4 output 

 

The resulting spectrum data are printed to the file “spectrum.data,” whose file format is explained below. 

 

A. Case when “type” is set to “OPTICS” 

 

#                 Optical spectrum 
#                            NonInteracting               Interacting 
#      Energy[eV]        Real        Imaginary         Real        Imaginary 
     0.000000       8.626260       0.252860       9.678273       0.327540 
     0.050000       8.627214       0.252961       9.679507       0.327682 
     .................................................................... 

 

The first column contains the energy of the excitation spectra. The second and third columns contain the real 

and imaginary parts of the dielectric function in the independent particle approximation, respectively. The 

fourth and fifth columns contain the dielectric function when the Coulomb and exchange-correlation kernels 

are considered, respectively. 

 

B. Case when “type” is set to “PACS” 

 

#                 Photo Absorption Cross Section 
#      Energy[eV]   NonInteracting   Interacting 
       0.000000       0.000000       0.000000 
       0.050000       0.000034       0.000012 
    …………………………………………………… 

The first column contains the energy of the excitation spectra. The second and third columns contain the 

photoadsorption cross-section in the independent particle approximation and in the interacting system, 

respectively. 
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11.1.5 Samples 

 

11.1.5.1 Dielectric function of the Si crystal 

 

The folder “sample/lr-tddft/ SiBulk” contains input files for calculating the dielectric function of bulk Si. First, 

enter the folder “scf” and perform an electronic-structure calculation to obtain the charge density of the 

ground state. Then, enter the folder “LRC” and perform a calculation of the excitation spectrum in which the 

“LRC” model is adopted as fxc. 

 

 

Figure 11.1 Excitation spectra of bulk Si in the LRC model. The blue curve is the result using the 

independent particle approximation. 

 

The blue and red curves in Fig. 5 show the excitation spectra of bulk Si in the independent particle 

approximation and in the LRC model, respectively. These values will be found as the imaginary parts of the 

dielectric functions in the file “spectrum.data.” The figure indicates that the long-range correction enhances 

the first peak. Note that the peak positions do not significantly change in TDDFT, indicating weak Coulomb 

interactions between the delocalized electrons in the crystal. 

 

11.1.5.2 Photoadsorption cross-section of C6H6 

 

The folder “sample/lr-tddft/C6H6” contains input files for calculating the photoadsorption spectra of an 

isolated C6H6 molecule. First, enter the folder “scf” and perform an electronic-structure calculation to obtain 

the charge density of the ground state. Then, enter the folder “ALDA” and perform a calculation of the 

excitation spectrum in which the “ALDA” model is adopted as fxc. 
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Figure 11.2 Photoadsorption cross-sections of an isolated C6H6 molecule. The blue curve is the result using 

the independent particle approximation. 

 

The blue and red curves in Fig. 6 show the excitation spectra of the C6H6 molecule in the independent 

particle approximation and in the ALDA model, respectively. These values will be found in the file 

“spectrum.data.” The figure indicates that the first peak position shifts to a higher energy value, suggesting 

that the gap is increased in TDDFT. 

 

11.1.6 Notes 

 

 Reduction of k-points using symmetry operations is not supported. Therefore, choose the symmetry 

operation “E” in the structure block. 

 When “equation=BS,” only nonmagnetic systems can be treated. 
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