文部科学省次世代 I T 基盤構築のための研究開発 「イノベーション基盤シミュレーションソフトウェアの研究開発」

CISS フリーソフトウエア

量子機能解析ソルバー・ナノデバイスシミュレーターの研究開発

ASCOT Version 4.10

ユーザー・マニュアル

 本ソフトウェアは文部科学省次世代IT基盤構築のための研究開発「イノペーション基盤シミュレーションソフトウェアの研究開発」プロジェクトによる成果物です。本ソフトウェアを無償でご使用になる場合「CISS フリーソフトウェア使用許諾条件」をご了承頂くことが前提となります。営利目的の場合には別途契約の締結が必要です。これらの契約で明示されていない事項に関して、或いは、これらの契約が存在しない状況においては、本ソフトウェアは著作権法など、関係法令により、保護されています。
 お問い合わせ先

 (契約窓口)
 (財)生産技術研究奨励会 〒153-8505 東京都目黒区駒場 4-6-1
 (ソフトウェア管理元)東京大学生産技術研究所 革新的シミュレーション研究センター 〒153-8505 東京都目黒区駒場 4-6-1 FAX: 03-5452-6662 E-mail: software@ciss.iis.u-tokyo.ac.jp

COPYRIGHT of the program codes

Copyright(C) 2002-2010 Hisashi Kondo, Naoki Watanabe

It is understood by the authors that the Institute of Industrial Science (IIS), the University of Tokyo, distributes this program as "CISS Free Software" with users' agreement with the terms and conditions written in the file, LICENSE.pdf or LICENSE_J.pdf (in Japanese).

HISTORY

This set of the computer programs "ASCOT" had been developed by Hisashi Kondo since 2002 as a part of the national project "Frontier Simulation Software for Industrial Science (FSIS)" that is supported by the IT program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. Since 2005, this program set has been developed further by Hisashi Kondo and Naoki Watanabe as a part of the national project "Revolutionary Simulation Software (RSS21)" that is supported by the next-generation IT program of MEXT of Japan. Since 2008, this program set has been developed further by Hisashi Kondo and Naoki Watanabe as a part of the national project "Revolutionary Simulation Software (RSS21)" that is supported by the next-generation IT program of MEXT of Japan. Since 2008, this program set has been developed further by Hisashi Kondo and Naoki Watanabe as a part of the national project "Research and Development of Innovative Simulation Software (RISS)" that is supported by the next-generation IT program of MEXT of Japan. The manual was written by Hisashi Kondo. The activity of "Quantum Function Analysis, Nano Device Simulator", RISS, is supervised by Takahisa Ohno.

CONTACT ADDRESS

Center for Research on Innovative Simulation Software (CISS) Institute of Industrial Science (IIS), University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan FAX +81-(0)3-5452-6662 E-mail software@ciss.iis.u-tokyo.ac.jp URL http://www.ciss.iis.u-tokyo.ac.jp

* When distributing CISS Software duplications, the user must attach the full text in this file.

License to Use CISS Free Software for noncommercial purposes Terms and Conditions of the CISS Free Software License

The Center for Research on Innovative Simulation Software (CISS) at the Institute of Industrial Science, the University of Tokyo gives explicit permission for anyone to use any or all of the free software that is maintained and made publicly available at the CISS site free of charge, subject to the terms and conditions detailed below.

1. Definition of CISS Free Software

CISS Free Software is any software explicitly marked "CISS Free Software" in CISS project source programs, object programs, specifications, design specifications, data, implementation results, and instruction manuals.

2. Extent of Free Use

Users may use CISS Free Software free of charge to run their own data, and use any results obtained for their own personal use. Users also have the rights to copy, to modify, and to redistribute the CISS Free Software.

3. Rules for Modification and Distribution

If the user creates a modified version of CISS Free Software by modifying the software itself, by incorporating it into other software, or any other means; then copies and/or distributes the software, the user must retain the words "CISS free software" in the name of the modified version (e.g., if the CISS free software is named ProteinDF, the new software is named _____/ProteinDF.); however, this shall not apply if the user concludes separately a contract for the purpose of profit-making business. And also the user displays a copyright notice in the modified version.

The "copyright notice" in the internal code of the CISS Free Software may not be altered for any reason, except to update or add to modification records such as altering the name of the modifier or the date of modification.

4. Copyright Notice

Users must prominently and conspicuously display the copyright notice in every CISS Free Software copy at or near the beginning of the credits along with the name of the software, the version, and the copyright holder. When distributing copies of CISS Free Software, the user must attach the full text of these Terms and Conditions without any changes.

5. User Obligations

To publicly acknowledge that results have been achieved using CISS Free Software, users are obligated to clearly display the name, version, and copyright holder, and acknowledge that "these results were achieved by using Innovative Simulation Software for an Industrial Science Project."

If the user modifies the CISS Software and acknowledges that results were achieved using the software, the user must attach an explanation detailing how the software was modified.

We request that users report any bugs or problems they discover in using the CISS Software to the Center for Research on Innovative Simulation Software at the Institute of Industrial Science, the University of Tokyo. Users may not publicly announce or disclose bugs or problems they discover in CISS software without permission.

6. Commercial Use

If a user intends to use CISS Free Software for a commercial purpose such as described in examples (1)-(3) below, the user must enter into a separate commercial license agreement before using the CISS software.

- (1) A user copies and distributes CISS Free Software, then demands compensation from the recipient for the software itself as a copyrighted product or for copying and distributing the software.
- (2) A user (corporate or individual) uses CISS Free Software not for personal use but to provide services to other parties, regardless of whether the services are offered gratis or for a fee.
- (3) A user seeks to assume a right of pledge, a security interest, or some other form of commercial interest in CISS Free Software, including portions of the software that were modified by the user.

However, if a public entity seeks to provide services using CISS software for the purpose disseminating the software, we require an exchange of memorandums between the CISS and the entity (in lieu a conventional for-profit license agreement) detailing the nature of the service, regardless of whether the proposed service is offered gratis or for a fee.

The user acknowledges in advance that if he or she violates any of the provisions of this agreement, the copyright holder of any software shall prohibit the user from using the software. The user also acknowledges in advance that the copyright holder is entitled to be compensated by an amount equivalent to any profit gained by the user through the violation of the terms of this agreement.

7. No Warranty

The Institute of Industrial Science (IIS), the University of Tokyo, the Foundation for the Promotion of Industrial Science, and other concerned parties disclaim all warranties with respect to the quality, the performance, or the results of CISS Free Software, either express or implied. The user assumes sole responsibility for the use of CISS software including any damages or losses arising out of the use of the CISS software.

8. Violations of Terms and Conditions

If a user is found to be in violation of these Terms and Conditions, he or she agrees to immediately pursue any and all steps required by the Institute of Industrial Science, the University of Tokyo to get back into compliance.

- End of the terms and conditions-

CISS フリーソフトウェア使用許諾条件

東京大学生産技術研究所 革新的シミュレーション研究センター(以下 革新センター)は、次の条件や制限のもとで、革新 センターで管理・公開するプロジェクト等による成果物の全てまたは一部を無償で使用することを許諾します。

1. CISS フリーソフトウェアの定義

革新センター(CISS)で管理しているソースプログラム、オブジェクトプログラム、仕様書、設計書、データ、実行結果 および マニュアルなどの内、インターネット上に公開しているソフトウェアを CISS フリーソフトウェアと呼びます。

2.無償使用の範囲

利用者が CISS フリーソフトウェアを無償で使用できる行為には、自己のために CISS フリーソフトウェアを任意のデータ を用いて実行する行為、その結果を利用者の自己のために使用する行為、CISS フリーソフトウェアを複製し頒布する行為、お よび、CISS フリーソフトウェアを改変しそれを実行する行為等を含みます。

3.改変・頒布での遵守事項

CISS フリーソフトウェアを変更したり、他のソフトに組み込む等の行為により、改変した CISS フリーソフトウェアを複 製・頒布する場合は、そのソフトウェア名には CISS フリーソフトウェアの名称を残して(例えば、CISS フリーソフトウェア の名称を ProteinDF とした場合、 / ProteinDF のようにネーミング)下さい。ただし、別途営利目的の場合における 実施許諾契約を締結している場合はこの限りではありません。また、著作権表示を行うことを義務づけます。

目的の如何を問わず、CISS フリーソフトウェア内部コードの『著作権表示』記載部分を修正する行為は、改変者氏名や改 変日時などの改変記録を追加する場合を除き、禁止されています。

4.著作権の表示

利用者は、各々の CISS フリーソフトウェアの複製物に、ソフトウェア名・バージョン・著作者氏名などの著作権表示を表示の先頭部等の箇所に適切かつ目立つように掲載するとともに、頒布する場合は、複製物に本許諾条件の全文をそのまま添付しなければなりません。

5.利用者義務

CISS フリーソフトウェアを利用した結果を公表する場合には、関連プロジェクト等の成果を利用した(例:『革新的シミュレーションソフトウェアの研究開発プロジェクトの成果を利用した』)旨を、使用した CISS ソフトウェアの名前、バージョン、著作者氏名などの記載とともに、明示して下さい。

利用者が CISS ソフトウェアを改変し、その実行結果を公表する場合は、改変内容や改変履歴が特定できる説明を添付して 公表しなければなりません。

利用者が CISS ソフトウェアのバグや不具合を発見した場合、革新センターに報告して下さい。発見したバグや不具合を許可なく公表したり、第三者に知らせることを禁止します。

6.営利目的に使用する場合

利用者は、CISS フリーソフトウェアを下記 (1)~(3) に例示するような営利目的に使用する場合には、事前に別途営利目的の場合における実施許諾契約を締結する必要があります。

- (1) 利用者が CISS フリーソフトウェアを複製・頒布する場合、著作物としての対価のみならず、複製ないし頒布に必要な 経費など経済的価値を、頒布を受ける者に対して提示ないし要求すること。
- (2) 法人を含み利用者は、自己の目的に限り CISS フリーソフトウェア実行が許諾されているものであり、有償無償を問わず第三者へのサービスのために CISS ソフトウェアを実行する行為をすること。
- (3) 利用者は、自己が改変した部分も含み、CISS フリーソフトウェアを質権や担保など、いかなる商取引の対象に加える こと。

ただし、公的機関が当該ソフトウェアの普及促進を目的としてそれを利用したサービスを提供する場合は、そのサービスの 有償無償を問わず、別途その内容に関して革新センターとの間で覚書等を交わすことをもって営利目的用実施許諾契約締結の 代用とすることができるものとします。

利用者が本項に反する行為を行った場合には、各ソフトウェア等の著作権者によりその利用を差し止められることを利用者 は予め了解します。かつ、利用者は、それにより得た利益相当額の賠償をもとめられることも予め了解します。

7.無保証

CISS フリーソフトウェアは、その品質や性能あるいは実行結果について、利用者に対してはいかなる保証もされていません。利用者は自己の責任において使用することに同意することとし、もし使用することにより損害が生じた場合には、第三者への損害や被害の修復も含み、その結果責任は全て利用者に帰することとします。

8.利用者が本使用許諾条件に違反した場合

利用者が本使用許諾条件に違反した場合には、利用者は、革新センターがその状態を是正するために必要と認めて行う措置に無条件に従うものとします。

目 次

目	次	
1	はじめに	1
2	使用条件	1
3	動作環境	2
4	非平衡グリーン関数法	2
5	計算手順	4
6	擬原子軌道および擬ポテンシャルについて	6
7	タイトバインディングパラメータについて	6
8	ディレクトリー構成	8
9	入力ファイル 9.1 平衡系の電子状態計算	9 9 11 13
10	計算例	24
	10.1 ベンゼンジチオール分子架橋系	24
	10.1.1 Procedure 1-2	24
	10.1.2 Procedure 1-1	27
	10.1.3 Procedure 2 & 3	28
	10.2 Au(111) 表面に挟まれたベンゼンジチオール分子	30
	10.2.1 Procedure 1-2	30

10.3 C₆₀内包カーボンナノチューブ 36

v

6

表の目次

1	擬原子軌道・擬ポテンシャルデータファイル	8
2	平衡系の電子状態計算のための入力ファイルで使用されるパラメータの説明・その1	15
3	平衡系の電子状態計算のための入力ファイルで使用されるパラメータの説明・その2......	16
4	平衡系の電子状態計算のための入力ファイルで使用されるパラメータの説明・その3	17
5	平衡系の電子状態計算のための入力ファイルで使用されるパラメータの説明・その4	18
6	メイン入力ファイルで使用されるパラメータの説明・その1................	19
7	メイン入力ファイルで使用されるパラメータの説明・その2	20
8	メイン入力ファイル内で指定されたファイル""file $\{scf_file\}$ "で使用されるパラメータの説明・その1	21
9	メイン入力ファイル内で指定されたファイル""file $\{scf_file\}$ "で使用されるパラメータの説明・その 2	22
10	メイン入力ファイル内で指定されたファイル"file{tb_cordinate}"で使用されるパラメータの説明 .	23
11	10.1 節の計算で用いられた擬原子軌道	25

図の目次

1	対象となる架橋系の例	3
2	密度行列 $ ho_{\mathrm{S},ij}$ を計算する際の積分経路....................................	4
3	バイアス下における密度行列 $ ho_{\mathrm{S},ij}$ を計算する際の積分経路	4
4	反復計算の概略....................................	5
5	計算手順	6
6	Al 原子の擬原子軌道	7
7	Al 原子の擬ポテンシャル	7
8	ベンゼンジチオール分子架橋系の結晶構造....................................	24
9	ベンゼンジチオール分子架橋系のトランスミッション	30
10	Au(111) 表面に挟まれたベンゼンジチオール分子の結晶構造	30
11	Au(111) 表面に挟まれたベンゼンジチオール分子架橋系のトランスミッション	35
12	C_{60} 内包カーボンナノチューブの結晶構造	36
13	C_{60} 内包カーボンナノチューブのバンド図 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	38
14	C_{60} 内包カーボンナノチューブのトランスミッション \ldots \ldots \ldots \ldots \ldots	39
15	C_{60} 内包カーボンナノチューブの状態密度	39

1. はじめに

1 はじめに

伝導特性計算プログラム ASCOT (<u>A</u>b initio <u>Simulation</u> <u>CO</u>de for quantum <u>Transport</u>)は、密度汎関数法 (DFT) および非平衡グリーン関数法 (NEGF) を用いたナノ構造の量子伝導特性の解析を効率的に精度良く行うことがで きるプログラムである。またタイトバインディング法およびグリーン関数法を用い、炭素系の伝導特性を求める ことも可能である。

一般的な電子状態計算では境界条件として周期系や孤立系を考え、その平衡状態での諸性質を調べる。これに対して、伝導現象はそのような平衡状態計算では扱えない。本プログラムでは、解析すべきナノ構造体の両側に半無限の電極を考え、そこから入射した電子の散乱状態および伝導特性を求めることができる。実際の計算に際しては半無限電極の効果を表面グリーン関数を用いた自己エネルギーとして記述し、ナノ構造部分のグリーン関数へ繰り込むことによって電子状態の計算を行う。このとき両電極については境界条件(開放系の境界条件)となっていて、電子状態は中央部分でのみ計算される。このため、散乱が起こると思われる範囲までの電極部分も中央のナノ構造体に組み込んだ拡張されたナノ構造部分(拡張分子)として扱う必要がある。求まったナノ構造部分の電子状態から、電極表面や結合状態も反映した伝導特性を求めることができる。

更新情報

○ ver. 4.1 における更新点 (2010 年 6 月)

力の計算の基本機能、および平衡系の電子状態計算の解析機能(バンド分散、状態密度、分子軌道の計算機能)を追加・整備。

○ ver. 4.0 における更新点 (2009 年 6 月)

- 複数の波数 k を用いた伝導特性計算の機能を追加。(これに伴いデータファイルなどの仕様を変更。)
- 密度行列の更新に対して加速法を導入。
- 平衡系の電子状態計算の並列化。

○ ver. 3.0 における更新点 (2007 年 12 月)

- 密度汎関数理論および非平衡グリーン関数法を用いたプログラムの基本機能を追加。
- ver. 1.0 のリリース (2005 年 6 月)
 - タイトバインディングパラメータを用いたグリーン関数法による伝導特性の解析機能を公開。

2 使用条件

本プログラム ASCOT は文部科学省次世代IT基盤構築のための研究開発「イノベーション基盤シミュレーショ ンソフトウェアの研究開発」プロジェクトによる成果物である。本ソフトウェアを無償で使用する場合「CISSフ リーソフトウェア使用許諾条件」への同意が前提となる。本マニュアルまたはパッケージ内のLICENSE_J.pdf な どを確認していただきたい。

文献1および文献2にASCOTによる結果を紹介している。実行結果を公表する場合は、タイトバインディング版を使用の際は文献1、密度汎関数法版を使用の際は文献2を、ソフトウエア名などとともに記載していただきたい。また、ASCOTを用いた成果は文献1および文献2の他、文献3-10に紹介されている。

3. 動作環境

3 動作環境

ASCOT は UNIX マシン、Linux マシンにおいてコンパイルおよび実行されることを想定している。その際、 <u>mpich ライブラリー</u>、<u>lapack ライブラリー</u> および <u>fftw ライブラリー</u> にあたるライブラリーが必要である。動作 **確認は、**SGI Altix ICE8200EX および Altix 4700 (fortran: intel compiler ver. 11 + library: SGI MPT (intel MPI), intel MKL, fftw3) において行った。

4 非平衡グリーン関数法

ASCOT では、原子軌道による線形結合 (LCAO) 法に基づく密度汎関数理論 (DFT) および非平衡グリーン関数 (NEGF) 法 [2,3,11] を適用することで伝導特性を求めることができる。ここでは、NEGF 法の理論をまとめてお く。ただし、簡略化して、スピン遍極の無い場合を示す。

図1に示される構造が対象となる架橋系である。このような系を次の3つの部分、すなわち(a) 左側半無限電極(レフト領域:図1の左側の濃色で示された原子)(b)分子などの散乱体と左右電極の数層を含む散乱領域(ナノ構造部分)、および(c)右側半無限電極(ライト領域:図1の右側の濃色で示された原子)に分割して考える。このとき、レフト領域とライト領域の間の相互作用はないものと仮定する。するとそれぞれのスピンに対してハミルトニアン *H* および重なり積分 *S* は

$$\mathcal{H} = \begin{pmatrix} H_{\rm L} & H_{\rm LS} & 0\\ H_{\rm SL} & H_{\rm S} & H_{\rm SR}\\ 0 & H_{\rm RS} & H_{\rm R} \end{pmatrix}, \tag{1}$$

$$\mathcal{S} = \begin{pmatrix} S_{\rm L} & S_{\rm LS} & 0\\ S_{\rm SL} & S_{\rm S} & S_{\rm SR}\\ 0 & S_{\rm RS} & S_{\rm R} \end{pmatrix}, \qquad (2)$$

と書くことができる。ここで、レフト領域とライト領域は結晶の電子状態と一致するものと仮定する。すなわち ハミルトニアンの成分 $H_{L/R}$ 、 $H_{SL/SR}$ および $H_{LS/RS}$ は周期境界条件のもとで計算される。 H_S は、下に示す電極の状態によって決められる境界条件の下で反復計算を実行した上で求まる。

散乱領域の遅延グリーン関数は

$$G_{\rm S}^r(\varepsilon) = \left[\varepsilon^+ S_{\rm S} - H_{\rm S} - \Sigma_{\rm L}^r(\varepsilon) - \Sigma_{\rm R}^r(\varepsilon)\right]^{-1}, \qquad (3)$$

$$\Sigma_{\rm L}^r(\varepsilon) = \left(\varepsilon^+ S_{\rm SL} - H_{\rm SL}\right) G_{\rm L}^r(\varepsilon) \left(\varepsilon^+ S_{\rm LS} - H_{\rm LS}\right),\tag{4}$$

$$\Sigma_{\rm R}^r(\varepsilon) = \left(\varepsilon^+ S_{\rm SR} - H_{\rm SR}\right) G_{\rm R}^r(\varepsilon) \left(\varepsilon^+ S_{\rm RS} - H_{\rm RS}\right),\tag{5}$$

と求められる。ただし、 $G_{L/R}(z) = (zS_{L/R} - H_{L/R})^{-1}$ はレフト・ライト領域の表面グリーン関数である [zは任意の複素変数]。 $G_{S}^{r}(\varepsilon)$ を求めるのに必要な散乱領域に隣接した原子に対する表面グリーン関数は、漸化式を解くことによって求めることができる [12,13]。

散乱領域の密度行列 $ho_{{
m S},ij}$ は、 $G^<_{{
m S},ij}(arepsilon)$ を散乱領域のレッサーグリーン関数とすると、

$$\rho_{\mathrm{S},ij} = \frac{1}{2\pi\mathrm{i}} \int_{-\infty}^{\infty} d\varepsilon \, G_{\mathrm{S},ij}^{<}\left(\varepsilon\right),\tag{6}$$

と求められる。平衡系では、 $\mu = \varepsilon_{\rm F}$ をケミカルポテンシャル、そして $f(\varepsilon - \mu)$ をフェルミ分布関数とすると、 $G_{{
m S},ij}^<(\varepsilon) \propto f(\varepsilon - \mu)$ であり、 $\varepsilon < \mu$ では $G_{{
m S},ij}^<(\varepsilon)/2\pi {
m i} = -\Im G_{{
m S},ij}^r(\varepsilon)/\pi$ であるので、密度行列 $ho_{{
m S},ij}$ は

$$\rho_{\mathrm{S},ij} = -\frac{1}{\pi} \Im \left[\int_{-\infty}^{\mu} d\varepsilon G_{\mathrm{S},ij}^{r}(\varepsilon) \right], \qquad (7)$$

図 1: 対象となる架橋系の例(Al 原子細線架橋系の構造)。薄色の原子は散乱領域として扱われる原子、濃色の原子がレフト領域、ライト領域として扱われる原子を表す。

によって計算することができる。式 (7) の ε に関する積分は複素平面の上半面の適切な積分経路を使って求められる。その積分経路のひとつを図 2 ($E_{\min} \rightarrow E_{\min} + i\delta \rightarrow \mu + i\delta \rightarrow \mu$)に示す。ただし、 E_{\min} は価電子の取り得る最小のエネルギーよりも小さな値であるとし、 δ は適当な正の値であるとする。非平衡系の場合、密度行列 $\rho_{S,ii}$ は

$$\rho_{\mathrm{S},ij} = -\Im \left[\frac{1}{\pi} \int_{-\infty}^{E} d\varepsilon G_{\mathrm{S},ij}^{r}(\varepsilon) + \frac{1}{2\pi \mathrm{i}} \int_{E}^{\infty} d\varepsilon G_{\mathrm{S},ij}^{<}(\varepsilon) \right], \qquad (8)$$
$$G_{\mathrm{S}}^{<}(\varepsilon) = G_{\mathrm{S}}^{r}(\varepsilon) \Sigma_{\mathrm{S}}^{<}(\varepsilon) G_{\mathrm{S}}^{a}(\varepsilon)$$

$$\approx -G_{\rm S}^{r}(\varepsilon) \left[\left\{ \Sigma_{\rm L}^{r}(\varepsilon) - \Sigma_{\rm L}^{a}(\varepsilon) \right\} f(\varepsilon - \mu_{\rm L}) - \left\{ \Sigma_{\rm R}^{r}(\varepsilon) - \Sigma_{\rm R}^{a}(\varepsilon) \right\} f(\varepsilon - \mu_{\rm R}) \right] G_{\rm S}^{a}(\varepsilon), \tag{9}$$

により求まる。ただし、 $G^{a}(\varepsilon) = G(\varepsilon^{-})$ は先進グリーン関数、 $\Sigma^{a}_{L/R}(\varepsilon)$ は先進自己エネルギーを表し、 $E < \min(\mu_{L},\mu_{R})$ ($\mu_{L/R}$ は左/右の電極のケミカルポテンシャルを表す)である。式 (8)の第一項目は式 (7)と同様に計算される。式 (8)の計算で用いられる積分経路を図 3 に示す。

電荷密度は、密度行列 $\rho_{S,ij}$ より、

$$\rho(\mathbf{r}) = 2\sum_{ij} \phi_i(\mathbf{r}) \rho_{\mathrm{S},ij} \phi_j^*(\mathbf{r}), \qquad (10)$$

と計算される。ここで、 $\phi_i(\mathbf{r})$ は*i*番目の原子の原子軌道を表し、係数2はスピン自由度による。散乱領域のハートリーポテンシャル $V_{\rm H}(\mathbf{r})$ はポアソン方程式: $\nabla^2 V_{\rm H}(\mathbf{r}) = -4\pi\rho(\mathbf{r})$ を解くことによって与えられる。その際、レフト・ライト領域のハートリーポテンシャル $V_{\rm H,L/R}(\mathbf{r})$ が境界条件となる。そして、運動エネルギー項、擬ポテンシャルの非局所項および $V_{\rm hxcl}(\mathbf{r}) = V_{\rm H}(\mathbf{r}) + V_{\rm xc}(\mathbf{r}) + V_{\rm loc}(\mathbf{r})$ は交換相関ポテンシャル、 $V_{\rm loc}(\mathbf{r})$ は擬ポテンシャルの局所項を表す)からハミルトニアン $H_{\rm S}$ が求まる。以上の手順による反復計算は密度行列 $\rho_{\rm S}$ が自己無撞着に決定されるまで繰り返す。

5. 計算手順

図 2: 密度行列 $\rho_{S,ij}$ を計算する際の積分経路。

図 3: バイアス下における密度行列 $\rho_{S,ij}$ を計算する際の積分経路。

レフト領域から流れ込む電流値 I は

$$I = 2\frac{e}{h} \int_{-\infty}^{\infty} d\varepsilon T(\varepsilon) \left[f(\varepsilon - \mu_{\rm R}) - f(\varepsilon - \mu_{\rm L}) \right], \qquad (11)$$

と求まる。ただし、

$$T(\varepsilon) = \operatorname{Tr}\left[\Gamma_{\mathrm{L}}(\varepsilon) G_{\mathrm{S}}^{r}(\varepsilon) \Gamma_{\mathrm{R}}(\varepsilon) G_{\mathrm{S}}^{a}(\varepsilon)\right], \qquad (12)$$

$$\Gamma_{\rm L}(\varepsilon) = {\rm i}\left[\Sigma_{\rm L}^r(\varepsilon) - \Sigma_{\rm L}^a(\varepsilon)\right],\tag{13}$$

$$\Gamma_{\rm R}\left(\varepsilon\right) = {\rm i}\left[\Sigma_{\rm R}^{r}\left(\varepsilon\right) - \Sigma_{\rm R}^{a}\left(\varepsilon\right)\right],\tag{14}$$

である。T(arepsilon)が対象とした架橋系のトランスミッションである。

上記の非平衡グリーン関数を用いた反復計算の概略を、一般の周期系に対する計算と対比させて図4に示す。

5 計算手順

ここでは ASCOT の計算手順を簡単に紹介する。図5 にその計算手順を示す。第4章に NEGF 法の理論を紹介 したが、散乱領域の電子状態および系の伝導特性を求めるためにはレフト・ライト領域の電子状態を求める必要

がある (図 5 の Procedure 1-1)。つまり、まず $H_{L/R}$ 、 $H_{SL/SR}$ 、 $H_{LS/RS}$ およびポアソン方程式を解く際の境界条 件となるレフト・ライト領域のハートリーポテンシャル $V_{H,L/R}(\mathbf{r})$ を決定する。同時に、散乱領域を周期的に取り 扱い、その電子状態を求める (図 5 の Procedure 1-2)。ここで求めた密度行列または電荷密度を反復計算の初期値 $\rho_{S}^{i}[\rho(\mathbf{r})]$ とする。これらの計算では一般の周期系に対する電子状態計算 (通常のバンド計算) が行われる。以上の 結果を基に散乱領域の電子状態を求める (図 5 の Procedure 2)。ここでは開放系の境界条件のもとで反復計算が 実行され、対象となっている半無限の電極を持つ系の散乱領域の電子状態 [H_{S} および ρ_{S} など] が求まる。以上の 手順はタイトバインディング法を用いた炭素系の伝導特性解析を行う際は省略できる。求められた H_{S} などから、 式 (12) に従ってトランスミッションが、そしてバイアス下では式 (11) に従って電流値が求められる。

密度汎関数理論に基づいた計算の実行には、計算実行体と入力ファイルの他、各元素の擬原子軌道 (PAO) 基底 関数データファイルと擬ポテンシャルデータファイルが必要となる。PAO 基底関数データファイルと擬ポテンシャ ルデータファイルに関しては第6章を参照のこと。入力ファイルの作成法は第9章および第10章を、実行方法は 第10章を参照のこと。

図 5: 計算手順。

6 擬原子軌道および擬ポテンシャルについて

ASCOT の計算には、CIAO [15] を用いて計算された擬原子軌道 $\phi_i(\mathbf{r})$ が必要である (CIAO Ver. 2.16 では非対応)。この擬原子軌道 $\phi_i(\mathbf{r})$ は文献 14 において提案された方法に基づいて計算される。Al 原子の例を図 6(a) に示す。図 6(b) に示すように指定されたカットオフ半径 r_c のところに非常に高いポテンシャルを設定し (このため孤立原子の電子状態があるカットオフ半径 r_c の外にはしみ出さない)、電子の状態を解いて、その固有状態に対する 波動関数を擬原子軌道としている [14]。

また、擬ポテンシャル [16,17] も CIAO [15] を用いて求められる (図 7)。

7 タイトバインディングパラメータについて

ASCOT は、炭素系のパラメータとして文献 18,19 で提案されたタイトバインディングパラメータと文献 20 で 提案されたものにも対応している。

文献 18 で提案されたパラメータは DFT に基づいて求められたダイアモンドおよびグラファイトのバンド構造 を再現するように決定されている。さらに、文献 19 においてフラーレン内包カーボンナノチューブのバンド構造 を再現するよう拡張されている。フラーレン内包カーボンナノチューブを計算する際、便宜的に、ナノチューブ を形成する炭素原子を C と表記し、内包された炭素原子を C1 と表記することにする (10.3 節を参照)。

詳細は文献 18-20 を参照していただきたい。

図 6: (a) カットオフ半径 $r_c = 6.0$ a.u. の Al 原子の擬原子軌道 $\phi_i(\mathbf{r})$ (s 軌道)。(b) 擬原子軌道 $\phi_i(\mathbf{r})$ を求める際に 用いた擬ポテンシャルの局所成分。

図 7: Al 原子の擬ポテンシャルの (a) 局所成分と (b) 非局所成分の動径成分。

表 1: 擬原子軌道・擬ポテンシャルデータファイル名およびカットオフ半径 r_c とファイルに格納されている s、p、 d 軌道の軌道の数 m_x (x = s, p, d)

	擬原子軌道					擬ポテンシャル
	ファイル名	$r_{\rm c}$ [a.u.]	m_s	m_p	m_d	ファイル名
Н	h40_ldapw91.pao2	4.0	5	5	5	h_ldapw91.gncpp2
С	c40_ldapw91.pao2	4.0	5	5	5	c_ldapw91.gncpp2
Ν	n40_ldapw91.pao2	4.0	5	5	5	n_ldapw91.gncpp2
0	o40_ldapw91.pao2	4.0	5	5	5	o_ldapw91.gncpp2
	o55_ldapw91.pao2	5.5	5	5	5	
Al	al60_ldapw91.pao2	6.0	5	5	5	al_ldapw91.gncpp2
Si	si60_ldapw91.pao2	6.0	5	5	5	si_ldapw91.gncpp2
\mathbf{S}	s55_ldapw91.pao2	5.5	5	5	5	s_ldapw91.gncpp2
Cu	cu60_ldapw91.pao2	6.0	5	5	5	cu_ldapw91.gncpp2
Se	se60_ldapw91.pao2	6.0	3	3	3	se_ldapw91.gncpp2
Ag	ag60_ldapw91.pao2	6.0	5	5	5	ag_ldapw91.gncpp2
Te	te65_ldapw91.pao2	6.5	3	3	3	te_ldapw91.gncpp2
Au	au60_ldapw91.pao2	6.0	5	5	5	au_ldapw91.gncpp2
\mathbf{Pt}	pt60_ldapw91.pao2	6.0	3	3	3	pt_ldapw91.gncpp2

8 ディレクトリー構成

ASCOT のディレクトリー構成を以下に示す。

```
ascot/doc ...........ユーザーマニュアル格納ディレクトリー
/src ...........ソースファイル格納ディレクトリー
/bin ..........計算実行体格納ディレクトリー
/data ..........データファイル格納ディレクトリー
/samples...........サンプルデータ格納ディレクトリー
/work .........作業用ディレクトリー
```

ソースファイル格納ディレクトリー"src"にはソースファイルが格納されている。このディレクトリーで、"makefile" を使用環境にあわせて書き換えた上で、

% make

とすると、"makefile"内の計算実行体名の変更を行わない限り、計算実行体"ascot_v410"が作成される。さらに、

% make install

とすると計算実行体"ascot_v410"を計算実行体格納ディレクトリー"bin"にコピーする。

データファイル格納ディレクトリー"data"には計算実行時に必要な擬原子軌道・擬ポテンシャルおよびタイトバインディングパラメータのデータファイルがある。擬原子軌道・擬ポテンシャルデータファイルのリストを表1に示す。これらは CIAO [15] により作成された。その際交換相関汎関数として LDA-PW91 [21] を用いた。擬原子軌道の条件 [カットオフ半径およびファイルに格納されているs、p、d軌道の軌道の数 m_x (x = s, p, d)] も表1 も示されている。計算に使用する際、擬原子軌道の数をこの m_x を超えて指定することはできない (詳細は 9.1 節および 10.1節参照)。また、文献 18,19 に対するタイトバインディングパラメータのデータファイルは"rtbh_c_parameter.in"であり、文献 20 に対するそれは"gsp_c_parameter.in"である。

サンプルデータ格納ディレクトリー"samples"には例題として入力ファイルとその結果 (トランスミッションの データなど) が収められている。入力ファイルの書き方などは第9章を参照のこと。

9 入力ファイル

計算を行う際に必要な入力ファイルについて説明する。 各パラメータは役割ごとに分類され、それらは"*keyword*{...}*keyword*"によってまとめられて指定される。例えば、

```
general{
    dft__negf = negf #(dft | negf)
    ...
}general
```

のように項目" $keyword = general"内でいくつかのパラメータが設定される。各パラメータは上記の例 (dft_negf = negf) のように、"変数名"、"等号記号"、"値"の3つの要素を並べて指定される。このとき、各要素は空白で区切られている必要がある。"<math>\sharp$ "より右側は注釈となる。

以下で ASCOT の入力ファイルの例とパラメータについての説明(表 2-10)を示す。ここでは便宜的に複数の ファイルに分けているが、すべてを一つのファイルに指定することも可能である。

9.1 平衡系の電子状態計算

平衡系の電子状態計算(周期系および孤立系の境界条件の下での計算)を行う際の入力ファイルの例を以下に 示す。パラメータの説明は表 2-5 に示す。

```
general{
        dft__negf = dft
                               #{dft | negf}
        system_name = junction # necessary
}general
accuracy{
                          = 100.0 Ry
        energy_cutoff
                                                  # default=150Ry
                          = 500.0 K
                                                 # default=300K
        temperature
        scf_convergence
                         = 1.e-6 hartree
                                                 # default=0.000001hartree
        scf_criterion_type = density
                                                  # {fermi|orbital|total|density}, default=fermi
       num_max_iteration = 100
                                                  # default=100
        ksampling{
               method = mesh
                                                  # {gamma|mesh}, default=gamma
                mesh{
                       1
                  1
                          1
                               # nx nv nz
               }mesh
        }ksampling
                             = ldapw91
                                                  # {ldapz81|ldapw91}, default=ldapw91
        xctype
        element_data_path_pao = "../../../data/" # default="."
        element_data_path_vps = "../../../data/" # default="."
        num_element
                         = 4
        element_list{
            Au "au60_ldapw91.pao2"
                                         "au_ldapw91.gncpp2"
                                                                   s2p1d1
                "s55_ldapw91.pao2"
                                          "s_ldapw91.gncpp2"
                                                                   s2p2d2
            S
                "c40_ldapw91.pao2"
                                         "c_ldapw91.gncpp2"
            С
                                                                   s2p2
            Н
                                         "h_ldapw91.gncpp2"
                "h40_ldapw91.pao2"
                                                                   s2p2
        }element list
       calc_force = off
}accuracy
```

<pre>mpin_polarization = off * (unlexp) unit = ang * (unlexp)</pre>	structure{							
<pre>mit</pre>	<pre>spin_polarization unit_cell{</pre>	=	off #	{on o	ff}, default=off			
<pre>vector(</pre>	unit	=	ang #	{au a	ng}			
<pre> 0.00000000000000000000000000000000</pre>	vector{		0		0			
<pre> 0.00000000000000000000000000000000000</pre>	0.0	00000000	000000 5	.86991	00000000 10.16699	900000000		
<pre>25:91564293108431 0.000000000000 0.00000000000000000000</pre>	0.0	00000000	000000 11	.73981	.00000000 0.00000	000000000		
<pre> Junct coll atcm_list[</pre>	26.9	91954293	108431 0	.00000	000000000 0.00000	000000000		
<pre>Junit_call stc</pre>	}vector							
<pre>stom_list: num_stop = 40 num_stop = 11 num_stop = 111 num_stop = 111 num_stop</pre>	<pre>Junit_cell</pre>							
<pre>num_letratom = * * * * * * * * * * * * * * * * * *</pre>	atom_list{		10					
<pre>http://tip/link.org/link.</pre>	num_atom	=	40					
<pre>limit = ng # (sularg)</pre>	num_right	atom =	11					
<pre>atoms{ turns 0</pre>	unit.	_acom =	ang #	{aula	ոջ}			
<pre> 1 Au 0.00000000000000 2.44750000000 2.541750000000 5.55000 5.5000 2 Au 0.000000000000 4.4024300000000 2.641750000000 5.55000 5.5000 4 Au 2.3385800000000 2.9349600000000 3.38990000000 5.55000 5.5000 6 Au 2.3385800000000 4.4024300000000 5.380730000000 5.55000 5.5000 8 Au 2.3383800000000 4.4024300000000 5.3807300000000 5.5000 5.5000 8 Au 2.3383800000000 4.4024300000000 4.23262400000000 5.5000 5.5000 10 Au 4.7927600000000 1.4674800000000 4.2362400000000 5.5000 5.5000 10 Au 4.7927600000000 4.4024000000000 4.2362400000000 5.5000 5.5000 10 Au 4.7927600000000 4.4024300000000 4.2362400000000 5.5000 5.5000 10 Au 4.7927600000000 4.4024300000000 4.2362400000000 5.5000 5.5000 10 Au 4.7927600000000 4.4024300000000 2.5417500000000 5.5000 10 Au 4.7927600000000 4.4024300000000 2.541750000000 5.5000 10 Au 7.1891400000000 4.4024300000000 5.3800730000000 5.5000 10 Au 7.13040285330 0.770651337057 3.384572176871 0.5000 0.5000 10 Au 1.1028948540441 5.0902616332659 3.389473314220 0.50000 10 Au 1.10289485804533 3.79651327394 3.386124780371 2.0000 2.0000 10 Au 1.3704293108431 1.4674800000000 5.83007 0.5000 10 Au 1.3704293108431 1.4674800000000 5.8300730000000 5.5000 10 Au 1.73340293108431 1.4674800000000 5.8300730000000 5.5000 10 Au 24.52316293108431 1.4674800000000 5.8307300000000 5.5000 10 Au 24.52316293108431 1.4674800000000 5.8307300000000 5.5000 10 Au 24.52316293108431 1.4674</pre>	atoms{		0					
<pre>2 Au 0.000000000000000 2.934960000000 5.94390000000 5.55000 5.5000 3 Au 0.00000000000 1.4674800000000 0.847250000000 5.55000 5.5000 5 Au 2.3983800000000 4.4024300000000 0.847250000000 5.55000 5.5000 7 Au 2.3983800000000 4.4024400000000 5.39730000000 5.55000 5.5000 9 Au 4.732760000000 1.4674800000000 4.2362400000000 5.55000 9 Au 4.732760000000 1.4674800000000 4.2362400000000 5.55000 10 Au 4.732760000000 1.4674800000000 2.541750000000 5.55000 10 Au 4.732760000000 4.4024300000000 2.541750000000 5.55000 5.5000 10 Au 4.732760000000 4.4024300000000 2.541750000000 5.55000 5.5000 10 Au 4.7327800000000 4.4024300000000 2.541750000000 5.55000 5.5000 10 Au 4.7327800000000 4.40243000000000 2.5417500000000 5.55000 5.5000 10 Au 4.7327400000000 4.40243000000000 2.541750000000 5.5000 2.4u 7.1891400000000 4.4024300000000 2.5417500000000 5.5000 5.5000 10 Au 5.9105000000 4.40243000000000 2.541750000000 5.5000 2.0000 2.0000 2.0000 2.0000 4.5 C 10.6466600108224 1.411806420783 3.3394673728716 2.0000 2.0000 0.0000 10 H 11.1028648640247 1.728731440768 3.3346473728716 2.0000 2.0000 10 H 11.1028648640241 5.0002616833659 3.33945731788716 2.0000 2.0000 10 H 11.1028648640243 0.7796512370857 3.384673718003 0.50000 0.5000 11 Au 1.102864840043 0.7996512370857 3.384673718603 0.50000 0.5000 11 H 11.102864840043 0.7996512370857 3.384673718603 0.50000 0.5000 11 H 11.102864840043 0.7996512370857 3.384673718603 0.50000 0.5000 11 H 11.102864840043 1.50002168332659 3.3994671314223 0.50000 0.5000 11 H 11.102864840043 1.4074800000000 4.2242400000000 5.50000 10 K 11 1.102864840043 1.40024300000000 5.63400000000 5.50000 10 K 11.1000 1.400000000 4.2242400000000 5.50000 10 K 11.10000 0.5000 10 K 11.10000 0.5000 10 K 11.1000000000 0.4224400000000 5.50000 10 K 11.38472310831 1.4674800000000 5.50000 10 K 11.38472310831 1.4674800000000 5.50000 10 K 12.126723310831 1.4674800000000 5.50000 5.5000 10 Au 2.521623108431 1.4674800000000 5.63490000000 5.50000 5.5000 5 Au 2.1267233108431 1.4674800000000 5.50000 5.5000 5 Au 2.1267233108431 1.4674800000000 5.630000</pre>	1 .	Au 0.0	000000000000000000000000000000000000000	000	1.46748000000000	2.54175000000000	5.50000	5.50000
<pre>3 Am 0.0000000000000 4.4024300000000 0.8472500000000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 7 Am 2.39638000000000 4.40243000000000 0.84725000000000 5.5</pre>	2 .	Au 0.0	000000000000000000000000000000000000000	000	2.93496000000000	5.08349000000000	5.50000	5.50000
<pre>4 Au 2.3963800000000 1.4674800000000 0.84725000000000 5.50000 5.50000 5.40000 5.50000 5.50000 6 Au 2.39638000000000 4.4024300000000 5.93073000000000 5.50000 5.50000 7 Au 2.39638000000000 1.4674900000000 5.93073000000000 5.50000 5.50000 9 Au 4.79276000000000 1.46749000000000 4.236400000000 5.50000 5.50000 10 Au 4.79276000000000 1.46749000000000 4.236400000000 5.50000 5.50000 11 Au 7.18914000000000 1.46749000000000 4.236400000000 5.50000 5.50000 11 Au 7.18914000000000 1.46749000000000 4.236400000000 5.50000 5.50000 11 Au 7.18914000000000 1.46749000000000 4.236400000000 5.50000 5.50000 13 Au 7.18914000000000 1.4674900000000 4.23644000000000 5.50000 5.50000 14 Au 7.18914000000000 2.54175000000000 5.50000 5.50000 15 C 10.956538586768 2.33897564380107 3.00000 3.0000 2 C 10.956538587684 2.33987564380107 3.00000 2.0000 4 S 9 1.829946024447 2.934568884602 3.3897564380107 3.00000 2.0000 4 C 11.6496600108237 1.7287313448780 3.3914673728711 2.00000 2.0000 4 C 11.6496600108237 1.72873194847803331 4277328711 2.00000 2.00000 4 C 13.0209224101726 1.1287391344078 3.3914673728711 2.00000 2.00000 4 C 13.0209224101726 1.728739134428 3.39651247803371 2.00000 2.00000 4 C 13.0209224101726 1.7287391348431 3.38651247803371 2.00000 2.00000 4 C 13.0209224101726 1.7287391348438 0.50000 0.50000 10 H 11.102896454633 0.77965812370567 3.3394071331423 0.50000 0.50000 11 H 11.102896454633 0.77965812370567 3.3394071331428 0.50000 0.50000 12 H 13.5676319258338 0.77965812370567 3.3394071331428 0.50000 0.50000 13 H 13.5676319258338 0.579628 3.33942721768931 0.50000 0.50000 13 H 13.5676319258338 0.579628 3.33945721768931 0.50000 0.50000 14 C 13.710888261447 2.9345988845818 3.3842924610862 2.00000 2.50000 15 S 15.4675328118431 1.4674800000000 5.50000 5.50000 5.50000 15 Au 22.127828108431 1.4674800000000 5.50000 5.50000 5.50000 5.50000 15 Au 17.33402283108431 2.9345600000000 5.5000</pre>	3 .	Au 0.0	00000000000	000	4.4024300000000	2.5417500000000	5.50000	5.50000
<pre>5 Au 2.3963800000000 2.934690000000 0.8472500000000 5.50000 0.50000 5.500</pre>	4	Au 2.3	9638000000	000	1.4674800000000	0.84725000000000	5.50000	5.50000
<pre>6 Au 2.39638000000000 4.4024300000000 5.84725000000000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 10 Au 4.73276000000000 1.46748000000000 4.23524000000000 5.50000 5.50000 5.50000 11 Au 4.73276000000000 1.46748000000000 4.23524000000000 5.50000</pre>	5 .	Au 2.3	9638000000	000	2.9349600000000	3.38899000000000	5.50000	5.50000
<pre> Au 2.3953800000000 4.4024400000000 5.393730000000 5.50000 5.5000 Au 4.7927600000000 1.4674800000000 4.23524000000000 5.50000 5.50000 IAu 4.7927600000000 1.4674800000000 4.23524000000000 5.50000 5.50000 IAu 7.1891400000000 4.4224300000000 4.23524000000000 5.50000 5.50000 IAu 7.1891400000000 2.934960000000 5.8434900000000 5.50000 5.50000 IAu 7.1891400000000 4.4224300000000 5.8434900000000 5.50000 5.50000 IAu 7.1891400000000 4.4224300000000 5.8434900000000 5.50000 5.50000 IAu 7.1891400000000 4.4224300000000 5.8434900000000 5.50000 5.50000 IAu 7.1891400000000 4.422430000000 5.8434900000000 5.50000 5.50000 IAu 7.1891400000000 4.422430000000 5.8434900000000 5.50000 2.00000 IAu 7.1891400000000 5.0934958845082 II.6496060108224 4.14118064210738 3.39146737287918 2.0000 2.00000 I.16496060108237 1.72873913480768 S.39146737287918 2.0000 2.00000 I.16496060108237 1.72873913480768 S.39146737287918 2.0000 2.00000 I.16496060108237 1.72873913480768 S.39146737287918 2.00000 2.00000 I.1 1.102994454044 1.41180649453 3.39146737287918 2.00000 2.00000 I.1 1.11111111111111111111111111111</pre>	6 .	Au 2.3	9638000000	000	4.4024300000000	0.84725000000000	5.50000	5.50000
<pre>b Au 4.792760000000 1.1467480000000 4.232400000000 5.5000 5.5000 5.5000 10 Au 4.7927600000000 4.4024300000000 1.6945000000000 5.5000 5.5000 5.5000 1 Au 7.1891400000000 2.934960000000 2.5417500000000 5.5000 5.5000 2 Au 7.1891400000000 2.934960000000 2.5417500000000 5.50000 5.5000 4 S 9.12994802447 2.934595846402 3.3876554380107 3.0000 3.0000 4 S 9.11.64960600102224 2.93496046402 3.3876554380107 3.0000 2.0000 5 C 10.95963958507695 2.9349604847 2.333675554380107 3.0000 2.0000 4 S 0 11.64960600102224 2.9344502480768 3.3946737288114 2.00000 2.0000 5 C 11.64960600102224 1.7287391480768 3.3946737288114 2.00000 2.0000 8 C 13.02092241017248 4.1411806420453 3.38651247803271 2.00000 2.0000 10 H 11.102964854043 5.0020615630269 3.33840713314228 0.50000 5.50000 13 H 13.56763192683338 0.779658112370857 3.33840713314228 0.50000 2.00000 13 H 13.56763192683338 0.779658112370857 3.3844071378120 0.50000 0.50000 15 S 15.48753293104431 2.934969804638 3.3842721768971 0.50000 2.00000 13 H 13.5675192683338 0.77965812370857 3.3844771768971 0.50000 2.00000 14 C 13.7108882614472 2.934958884518 3.38429254610896 2.00000 2.00000 15 S 15.48753293104431 2.934960000000 4.2422400000000 5.50000 5.50000 16 K 17.340229310431 1.4674800000000 2.6417500000000 5.50000 5.50000 17 Au 17.340229310431 1.4674800000000 2.4417500000000 5.50000 5.50000 14 Au 19.73040229310431 1.4674800000000 2.6417500000000 5.50000 5.50000 14 Au 19.7304029310431 2.934960000000 5.50000 5.50000 5.50000 5.50000 14 Au 19.7304029310431 2.9349600000000 5.5</pre>	()	Au 2.3	96380000000	000	4.40244000000000	5.93073000000000	5.50000	5.50000
<pre>1 A u 4, 7927600000000 2.8948600000000 1.894500000000 5.50000 5.50000 5.50000 1 A u 7,1891400000000 2.42324000000000 5.50000 5.50000 5.50000 2 A u 7,1891400000000 2.42324000000000 5.60349000000000 5.50000 5.50000 3 A u 7,1891400000000 2.44224300000000 5.6034900000000 5.50000 5.50000 4 S 9 .1829548024447 2.9345598846062 3.387565438017 3.00000 2.00000 4 S 5 0 10.5959639550765 2.9345508845724 3.3387565438017 3.00000 2.00000 7 C 11.6496000108224 4.14118064210738 3.39146737288114 2.00000 2.00000 8 C 13.02092241017245 4.14118064210738 3.39146737288114 2.00000 2.00000 9 C 13.02092241017245 4.14118064210738 3.39146737288114 2.00000 2.00000 10 H 11.1029848540441 5.09026165320857 3.39340713314220 0.0000 2.00000 11 H 11.102984854041 5.09026165320857 3.39340713314223 0.00000 2.00000 12 H 13.567631925833286 5.09026165318615 3.3845721765971 0.50000 0.50000 13 H 13.56763192583286 5.09026165318615 3.3845721765971 0.50000 0.50000 15 S 15.4875329310431 2.9345698454818 3.382233441228 0.50000 0.50000 15 S 15.4875329310431 1.4674800000000 4.23624000000000 5.50000 5.50000 15 A 17.3340229310431 1.4674800000000 4.23624000000000 5.50000 5.50000 16 A u 17.3340229310431 1.4674800000000 4.23624000000000 5.50000 5.50000 17 A u 17.3340229310431 1.4674800000000 4.23624000000000 5.50000 5.50000 18 A u 19.7304023310431 1.4674800000000 2.5417500000000 5.50000 5.50000 18 A u 19.7304023310431 1.4674800000000 2.5417500000000 5.50000 5.50000 19 A u 22.126782310431 1.4674800000000 2.5417500000000 5.50000 5.50000 10 A u 22.126782310431 1.4674800000000 2.5417500000000 5.50000 5.50000 10 A u 25.2126782310431 1.4674800000000 2.5417500000000 5.50000 5.50000 10 A u 25.2126782310431 1.4674800000000 2.5417500000000 5.50000 5.50000 10 A u 25.2126782310431 1.4674800000000 2.54175000000000 5.50000 5.50000 10 A u 25.2126782310431 1.467480000000</pre>	0 /	AU 2.5	90380000000	000	1.4674900000000	A 23624000000000	5.50000	5.50000
<pre>11 Am 4.7927600000000 4.4024300000000 4.2362400000000 5.5000 5.5000 2 Am 7.1891400000000 2.934960000000 2.5417500000000 5.5000 3 Am 7.1891400000000 4.4024300000000 2.5417500000000 5.5000 4 S 9.129054802447 2.934559844623 3.38975654380107 3.00000 2.0000 6 C 11.6496600108237 1.72873913482101 3.38916373287814 2.00000 2.0000 8 C 13.02092241017267 1.72873913482101 3.38661247803053 2.00000 2.0000 9 C 13.02092241017267 1.72873913482101 3.38661247803053 2.00000 2.0000 10 H 11.10280648540453 0.77965812370871 3.03346773378814 2.00000 2.0000 11 H 11.10280648540453 0.77965812370871 3.39346713314230 0.50000 5.5000 12 H 13.56763129258333 0.77965812370877 0.55000 5.50000 5.5000 15 S 15 46763129258333 0.77965812370877 0.55000 0.50000 15 S 15 4675329310431 2.9345988445818 3.38457271768971 0.50000 0.50000 15 S 15 4675329310431 2.934598845818 3.38457271768971 0.50000 0.50000 15 S 15 4675329310431 2.934598845818 3.38457271768971 0.55000 0.55000 15 S 15 44750329310431 1.4674800000000 4.2362400000000 5.50000 5.50000 16 Am 17.33402293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 17 Am 17.38402293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 18 Am 17.33402293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 16 Am 17.3402293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 16 Am 12.212678293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 18 Am 12.212678293108431 4.4024300000000 5.50000 5.50000 5.50000 18 Am 12.212678293108431 4.4024300000000 5.50000 5.50000 5.50000 18 Am 22.12678293108431 4.4024300000000 5.50000 5.50000 5.50000 18 Am 22.12678293108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 19 Am 22.5231623108431 4.4024300000000 5.50000 5.50000 5.50000 10 Am 22.12678293108431 4.4024300000000 5.50000 5.50000 5.50000 5 Am 22.12678293108431 4.4024300000000 5.50000 5.50000 5.50000 5 Am 22.12678293108431 4.4024300000000 5.50000 5.50000 5.50000 5 Am 22.12678293108431 4.4024300000000 5.50000 5.50000 5.50000 10 Am 22.5231623108431 4.4024300000000 5.50000 5.50000 5.50000 10 Am 22.5231623108431 4.4</pre>	10	Δu 4.7	92760000000	000	2 93496000000000	1 69450000000000	5 50000	5 50000
<pre> 1 Au 7.1891400000000 1.4674800000000 2.5417500000000 5.5000 5.5000 2 Au 7.1891400000000 4.402430000000 5.634900000000 5.5000 5.5000 3 Au 7.1891400000000 4.402430000000 5.63750000 5.5000 5 C 10.5560536850763 2.934595884574 3.336673752911 2.0000 2.0000 7 C 11.6496060108224 4.14118064210738 3.3914673728114 2.0000 2.0000 8 C 13.0209224101726 1.728739148210 3.38661247803053 2.0000 2.0000 10 H 11.028964854054 5.07765612370857 3.334671331420 0.55000 5.5000 11 H 11.1028964854054 5.07765612372657 3.334671331420 0.55000 0.5000 11 H 11.1028964854054 5.07765123272657 3.334671331420 0.55000 0.5000 12 H 13.5676319258336 5.0796512372657 3.334671331420 0.55000 0.5000 13 H 13.5676319258336 5.0796512372657 3.334271331423 0.55000 0.5000 14 C 13.7108882614472 2.934956884518 3.3845727176893 0.55000 0.5000 15 S 15.48753293108431 2.934950884518 3.3845727176893 0.55000 5.5000 16 Au 17.33402293108431 2.934950000000 4.286240000000 5.5000 5.5000 16 Au 17.33402293108431 2.934950000000 4.286240000000 5.5000 5.5000 16 Au 17.33402293108431 4.4024300000000 4.286240000000 5.5000 5.5000 18 Au 19.73040293108431 4.4024300000000 4.286240000000 5.5000 5.5000 18 Au 19.73040293108431 4.4024300000000 5.5000 5.50000 5.5000 18 Au 19.73040293108431 4.4024300000000 5.50000 5.50000 5.50000 5.5000 5.400 14 Au 22.12672293108431 4.4024300000000 5.50000 5.50000 5.50000 5.5000 5.400 14 Au 22.12672293108431 4.4024300000000 5.50000 5.50000 5.50000 5.5000 5.400 10 Au 24.5231623108431 1.4674800000000 5.50000 5.50000 5.50000 5.5000 5.5000 5.400 10 Au 24.5231623108431 1.4674800000000 5.50000 5.50000 5.50000 5.5000</pre>	11	Au 4.7	92760000000	000	4.40243000000000	4.23624000000000	5.50000	5.50000
<pre>2 Au 7.1891400000000 2.934960000000 5.033000000 5.50000 5.5000 3 Au 7.1891400000000 2.6417500000000 2.5617500000000 5.50000 5 C 10.959539580765 2.934959884672 3.33975654380107 3.0000 2.00000 7 C 11.64960600108237 1.72873913480768 3.39146737287914 2.0000 2.00000 7 C 11.64960600108237 1.72873913480768 3.39146737287914 2.0000 2.00000 9 C 13.0209224101724 4.1411804204353 3.336651247803271 2.0000 2.00000 10 H 11.1028964854053 0.779658123728757 3.38651247803271 2.0000 0.50000 10 H 11.1028964854053 0.779656123723877 3.33467737176871 0.5000 0.50000 11 H 11.1028964854053 0.779656123723877 3.38457271768971 0.5000 0.50000 12 H 13.5676512928328 0.779656123723877 3.38457271768971 0.5000 0.50000 14 C 13.7108882814472 2.9349598844583 3.38457271768971 0.50000 0.50000 15 S 15.47575293104431 1.4674800000000 4.236240000000 5.50000 5.50000 16 Au 17.33402293108431 1.4674800000000 4.2362400000000 5.5000 5.50000 17 Au 17.33402293108431 4.402430000000 4.2362400000000 5.5000 5.50000 18 Au 12.21267223108431 1.4674800000000 0.563000 5.50000 5.50000 18 Au 12.21267223108431 4.4024300000000 0.563490000000 5.50000 5.50000 3 Au 19.73040223108431 4.4024300000000 0.563490000000 5.50000 5.50000 2 Au 19.73040223108431 4.4024300000000 0.563000 5.50000 5.50000 3 Au 19.73040223108431 4.4024300000000 5.603490000000 5.50000 5.50000 3 Au 12.21267223108431 4.4024300000000 5.603490000000 5.50000 5.50000 5.50000 5 Au 22.1267223108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 5 Au 22.1267223108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 5 Au 22.1267223108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 5 Au 22.1267223108431 4.4024300000000 5.807300000000 5.50000 5.50000 5.50000 5 Au 22.1267223108431 4.4024300000000 5.807300000000 5.50000 5.50000 5.50000 5 Au 22.1267223108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 5 Au 22.1267223108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.5000 5.5000 5.50000 5.50000 5.50</pre>	1 .	Au 7.1	8914000000	000	1.4674800000000	2.54175000000000	5.50000	5.50000
<pre>3 Au 7.1891400000000 2.541750000000 5.5000 5.5000 2.0000 4 \$ \$ 9.182995402447 2.934958884602 3.3837565438107 3.0000 2.00000 5 C 10.95963958507695 2.934959884672 3.339368730502919 2.0000 2.00000 6 C 11.64960600108224 4.14118064210738 3.3916473728714 2.0000 2.00000 8 C 13.02092241017248 4.1411806420453 3.3914673728714 2.0000 2.00000 9 C 13.02092241017248 4.1411806420453 3.3861247803053 2.00000 2.00000 10 H 11.0289648540533 0.77965812370857 3.39340713314200 0.50000 0.50000 11 H 11.10289648540541 5.09026165320659 3.39340713314238 0.50000 0.55000 12 H 13.5676319288338 0.77965812370857 3.39340713314238 0.50000 0.55000 13 H 13.5676319288338 0.77965812370857 3.39340713314238 0.50000 0.55000 13 H 13.56763192883289 5.09026165320659 3.39340713314238 0.50000 0.55000 15 S 15.4875293108431 2.9349598845818 3.384229254610895 2.00000 2.00000 16 Au 17.33402293108431 2.9349598845818 3.384229254610896 0.55000 0.55000 16 Au 17.33402293108431 2.934960000000 4.2362400000000 5.50000 5.50000 5.50000 17 Au 17.3402293108431 4.4024300000000 1.694500000000 5.50000 5.50000 5.50000 0.50000 18 Au 17.33402293108431 4.4024300000000 1.694500000000 5.5000</pre>	2 .	Au 7.1	8914000000	000	2.93496000000000	5.08349000000000	5.50000	5.50000
<pre>4 S 9.16299540024647 2.934959884602 3.38976654380107 3.00000 3.00000 5 C 10.956395850765 2.9349598846702 3.39366736524910 2.00000 2.00000 7 C 11.64960600108224 4.14118064210738 3.39146737288114 2.00000 2.00000 9 C 13.02092241017267 1.72879313480768 3.39146737288114 2.00000 2.00000 9 C 13.02092241017267 1.72879313482101 3.38651247633721 2.00000 2.00000 10 H 11.102896485643041 5.09026165320659 3.39340713314238 0.50000 0.55000 11 H 11.1028964856305 0.77965812372957 3.3845721768901 0.55000 0.55000 12 H 13.56763192823326 5.09026165318615 3.3845721768903 0.55000 0.55000 15 S 15.46753293108431 2.9345988845838 3.384223364402 3.00000 2.00000 16 Au 17.33402293108431 1.4674800000000 4.2382400000000 5.55000 5.55000 16 Au 17.33402293108431 1.4674800000000 4.2382400000000 5.55000 5.55000 17 Au 19.73040228108431 2.934960000000 5.0834900000000 5.55000 5.55000 1 Au 19.73040228108431 2.934960000000 5.0834900000000 5.55000 5.55000 3 Au 19.73040228108431 2.9349600000000 5.0834900000000 5.55000 5.55000 3 Au 19.73040293108431 4.4024300000000 4.2382400000000 5.55000 5.55000 5 Au 22.12678293108431 4.4024300000000 3.08472500000000 5.5000 5.55000 5 Au 22.12678293108431 4.4024300000000 3.8889900000000 5.50000 5.55000 5.50000 6 Au 22.12678293108431 4.4024300000000 3.8889900000000 5.50000</pre>	3 .	Au 7.1	8914000000	000	4.4024300000000	2.54175000000000	5.50000	5.50000
<pre>5 C 10.95963958507695 2.9349598845724 3.39366730502919 2.00000 2.00000 6 C 11.64960600108237 1.72873913480768 3.3914673728714 2.0000 2.00000 7 C 11.64960600108237 1.72873913480768 3.39146737288114 2.0000 2.00000 9 C 13.02092241017248 4.14118064209453 3.3861247803053 2.00000 0.50000 10 H 11.10289648540441 5.09026165320659 3.39340713314200 0.50000 0.50000 11 H 11.10289648540441 5.09026165320659 3.39340713314230 0.55000 0.55000 12 H 13.56763192583269 5.09026165320659 3.39340713314230 0.55000 0.55000 13 H 13.56763192583269 5.09026165320651 3.38457271768971 0.56000 0.55000 14 C 13.710888261414 2.9349588454818 3.38422924610586 2.00000 2.00000 15 S 15.48753293108431 1.4674800000000 4.2362400000000 5.55000 5.55000 16 Au 17.33402293108431 2.9349600000000 1.694500000000 5.55000 5.55000 17 Au 17.33402293108431 2.9349600000000 1.694500000000 5.55000 5.55000 18 Au 17.33402293108431 2.9349600000000 5.6834900000000 5.55000 5.55000 18 Au 17.33402293108431 2.9349600000000 5.6834900000000 5.55000 5.55000 5 Au 22.12678293108431 1.4674800000000 5.842000 5.55000 5.55000 5.50000 6 Au 22.12678293108431 4.4024300000000 5.8427500000000 5.55000 5.55000 5 Au 22.12678293108431 4.4024300000000 5.8427500000000 5.55000 5.50000 7 Au 22.12678293108431 4.4024300000000 5.930730000000 5.55000 5.50000 8 Au 22.12678293108431 4.4674800000000 5.930730000000 5.55000 5.50000 9 Au 24.52316293108431 4.4674800000000 5.930730000000 5.55000 5.50000 9 Au 24.52316293108431 4.4674800000000 5.930730000000 5.50000 5.50000 9 Au 24.52316293108431 4.4674800000000 5.930730000000 5.50000 5.50000 9 Au 22.52316293108431 4.4674800000000 5.930730000000 5.50000 5.50000 9 Au 24.52316293108431 4.4674800000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 4.4024300000000 5.50000 5.5</pre>	4	S 9.1	82995480248	847	2.93495988846062	3.38975654380107	3.00000	3.00000
<pre>6 C 11.6496060016224 4.14118064210738 3.39146737287916 2.00000 2.00000 8 C 13.02092241017248 4.14118064209463 3.38651247803053 2.0000 2.00000 9 C 13.02092241017248 4.14118064209463 3.38651247803053 2.0000 0.55000 10 H 11.10229648540633 0.77965812370657 3.3394071331420 0.55000 0.55000 11 H 11.10229648540441 5.09028165320659 3.33940713314220 0.50000 0.55000 13 H 13.5676319258326 5.090281653126757 3.3845721768971 0.50000 0.55000 14 C 13.7108882614472 2.93495988458183 3.3845721768971 0.50000 0.55000 15 S 15.48753293108431 2.93495988458183 3.38427230844022 3.00000 3.0000 16 Au 17.33402293108431 2.93495988458183 3.38422230084022 3.00000 3.0000 17 Au 17.33402293108431 2.934950800000000 4.2362400000000 5.550000 5.55000 18 Au 19.73040293108431 4.4024300000000 4.2362400000000 5.550000 5.50000 2 Au 19.73040293108431 2.9349600000000 5.834900000000 5.550000 5.55000 3 Au 19.73040293108431 2.9349600000000 5.834900000000 5.550000 5.50000 4 Au 22.12678293108431 2.9349600000000 5.834900000000 5.550000 5.50000 5 Au 22.12678293108431 2.9349600000000 5.834900000000 5.550000 5.50000 6 Au 22.12678293108431 2.9349600000000 5.834900000000 5.550000 5.50000 7 Au 22.12678293108431 2.9349600000000 5.834900000000 5.50000 5.50000 6 Au 22.12678293108431 2.9349600000000 5.834900000000 5.50000 5.50000 7 Au 22.12678293108431 2.9349600000000 5.50000 5.50000 5.50000 6 Au 22.12678293108431 2.9349600000000 5.50000 5.50000 5.50000 8 Au 22.12678293108431 2.9349600000000 5.50000 5.50000 5.50000 9 Au 4.52316293108431 2.9349600000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 5.50000 5.50000 5.50000 9 Au 4.52316293108431 2.9349600000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 5.50000 5.50000 5.50000 9 Au 4.52316293108431 2.9349600000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 5.50000 5.50000 5.50000 5.50000 9 Au 4.52316293108431 2.9349600000000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 5.5</pre>	5	C 10.9	59639585076	695	2.93495988845724	3.39368730502919	2.00000	2.00000
<pre>7 C 11.64360600108237 1.7287913480768 3.3386737288114 2.00000 2.00000 9 C 13.02092241017267 1.7287913482101 3.38651247803271 2.00000 2.00000 10 H 11.10289648540533 0.77965812370857 3.38951247803271 2.00000 0.55000 11 H 11.10289648540541 5.09026165320659 3.39340713314228 0.50000 0.55000 12 H 13.5676319258338 0.77965812372957 3.3845721768971 0.50000 0.55000 13 H 13.567631925832869 5.09026165330651 3.3845721768971 0.50000 2.05000 14 C 13.71088882614472 2.9349598845818 3.38429254610896 2.00000 2.00000 15 S 15.46753293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 16 Au 17.33402293108431 1.46748000000000 4.2362400000000 5.50000 5.50000 17 Au 17.33402293108431 1.46748000000000 4.2362400000000 5.50000 5.50000 2 Au 19.73040293108431 4.40243000000000 5.510000 5.50000 5.50000 3 Au 19.73040293108431 4.4674800000000 0.25417500000000 5.50000 5.50000 3 Au 19.73040293108431 4.46748000000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4674800000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4674800000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4674800000000 0.8472500000000 5.50000 5.50000 17 Au 19.73040293108431 4.4024400000000 0.8472500000000 5.50000 5.50000 18 Au 22.12678293108431 4.4674800000000 5.50000 5.50000 5.50000 5 Au 22.12678293108431 4.4674800000000 5.50000 5.50000 5.50000 6 Au 22.12678293108431 4.4674800000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 4.4024400000000 5.9307300000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024400000000 5.9307300000000 5.50000 5.50000 11 Au 24.52316293108431 4.40244000000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 4.40244000000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 4.40244000000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 4.40243000000000 5.50000 5.5000</pre>	6	C 11.6	4960600108	224	4.14118064210738	3.39146737287916	2.00000	2.00000
<pre>8 C 13.0209224101/248 4.14118064209453 3.3865124703053 2.00000 2.00000 10 H 11.10289648540533 0.77965812370857 3.33840713314200 0.50000 0.50000 11 H 11.10289648540541 5.09026165320659 3.3934071331420 0.50000 0.50000 13 H 13.56763192583338 0.77965812372957 3.3845727176933 0.50000 0.50000 14 C 13.71088882614472 2.93495988845818 3.384272176933 0.50000 2.00000 15 S 15.48753293108431 2.93495988845818 3.38429254610896 2.00000 2.00000 16 Au 17.33402293108431 2.93495988458183 3.382223064022 3.00000 3.0000 17 Au 17.33402293108431 1.46748000000000 4.2362400000000 5.50000 5.50000 18 Au 17.33402293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 2 Au 19.73040293108431 4.4024300000000 2.5417500000000 5.50000 5.50000 3 Au 19.73040293108431 4.4024300000000 2.5417500000000 5.50000 5.50000 5 Au 22.12678293108431 4.4024300000000 3.3889900000000 5.50000 5.50000 5 Au 22.12678293108431 1.4674800000000 3.8389900000000 5.50000 5.50000 6 Au 22.12678293108431 1.4674800000000 5.834900000000 5.50000 5.50000 17 Au 27.3040293108431 4.4024300000000 3.8389900000000 5.50000 5.50000 18 Au 22.12678293108431 1.4674800000000 3.8389900000000 5.50000 5.50000 19 Au 24.52316293108431 1.4674800000000 5.834900000000 5.50000 5.50000 10 Au 24.52316293108431 1.4674800000000 3.8389900000000 5.50000 5.50000 10 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 1.4674800000000 5.80000 5.50000 5.50000 10 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 1.46748000000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 1.46748000000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 1.46748000000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 1.46748000000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 1.46748000000000 5.50000 5.50000 5.50000 5.50000 11 Au 24.52316293108431 1.46748000000000 5.50000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 2.93496000000000 5.50000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 2.40243000000000 4.23624000000000</pre>	7	C 11.6	4960600108	237	1.72873913480768	3.39146737288114	2.00000	2.00000
<pre>b b c 15.02092410140 1.1203944854053 0.7796581237057 3.39340713314220 0.50000 2.05000 11 H 11.10289648540541 5.09026165320659 3.39340713314238 0.50000 0.55000 12 H 13.56763192583369 5.09026165318615 3.38457271768971 0.50000 0.50000 13 H 13.56763192583269 5.09026165318615 3.38457271768973 0.50000 2.00000 16 C 13.7108882614472 2.9349598845818 3.38429254610896 2.00000 2.00000 16 Au 17.33402293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 16 Au 17.33402293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 18 Au 17.33402293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 18 Au 19.73040293108431 1.4674800000000 5.6347500000000 5.50000 5.50000 2 Au 19.73040293108431 1.4674800000000 2.5417500000000 5.50000 5.50000 3 Au 19.73040293108431 1.4674800000000 2.5417500000000 5.50000 5.50000 5 Au 22.12678293108431 1.4674800000000 0.8472500000000 5.50000 5.50000 5 Au 22.12678293108431 4.4024300000000 5.50000 5.50000 5.50000 5 Au 22.12678293108431 4.4024300000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 5.9307300000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 13 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 14 Au 24.52</pre>	8	C 13.0	20922410172	248	4.14118064209453	3.38651247803053	2.00000	2.00000
<pre>10 m 11:028964854041 5.090261653065 3.393407150120 0.5000 0.50000 12 H 13.66763192583289 5.09026165318615 3.38457271768931 0.50000 0.50000 13 H 13.66763192583289 5.09026165318615 3.38457271768931 0.50000 2.00000 14 C 13.7108882614472 2.9349598845818 3.38427221468931 0.50000 3.00000 16 Au 17.33402293108431 1.29349598845818 3.382233084022 3.00000 3.00000 17 Au 17.33402293108431 1.46748000000000 4.2362400000000 5.50000 5.50000 17 Au 17.33402293108431 1.46748000000000 2.5417500000000 5.50000 5.50000 18 Au 19.73040293108431 1.46748000000000 5.6384900000000 5.50000 5.50000 2 Au 19.73040293108431 1.46748000000000 5.650000 5.50000 5.50000 3 Au 19.73040293108431 1.46748000000000 5.5617500000000 5.50000 5.50000 4 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 5 Au 22.12678293108431 4.4024300000000 5.50000 5.50000 5.50000 6 Au 22.12678293108431 4.4024400000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 1.46748000000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 5.6000 5.50000 11 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 14 Au 25316293108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 5.6000 5.50000 5.50000 5.50000 5.50000 5.6000 5.50000 5.50000 5.50000 5.50000 5.50000 14 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 5.6000 5.50000 5.50000 5.50000 5.50000 5.50000 5.50000 14 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 5.50000 14 Au 24.52316293108431 4.402430000</pre>	9 10	U 13.0	20922410172	201 533	0 77965812370857	3.30051247003271	2.00000	2.00000
<pre>11</pre>	10	H 11 1	0289648540	441	5 09026165320659	3 39340713314200	0.50000	0.50000
<pre>13 H 13.56763192583269 5.09026165318615 3.38457271769030 0.50000 0.50000 14 C 13.7108882614472 2.9349598845818 3.38429254610896 2.00000 2.00000 15 S 15.4875293108431 2.9349598845818 3.38429254610896 2.00000 5.50000 16 Au 17.33402293108431 1.4674800000000 4.23624000000000 5.50000 5.50000 17 Au 17.33402293108431 1.4674800000000 4.23624000000000 5.50000 5.50000 1 Au 19.73040293108431 1.4674800000000 2.5417500000000 5.50000 5.50000 1 Au 19.73040293108431 1.4674800000000 2.5417500000000 5.50000 5.50000 3 Au 19.73040293108431 1.4674800000000 2.5417500000000 5.50000 5.50000 4 Au 22.12678293108431 1.4674800000000 0.8472500000000 5.50000 5.50000 4 Au 22.12678293108431 1.4674800000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 1.4674800000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 1.4674800000000 0.8472500000000 5.50000 5.50000 0 Au 22.12678293108431 1.4674800000000 5.50000 5.50000 5.50000 0 Au 22.12678293108431 1.4674800000000 5.50000 5.50000 5.50000 1 Au 22.12678293108431 1.4674800000000 5.50000 5.50000 5.50000 0 Au 24.52316293108431 1.4674800000000 5.50000 5.50000 5.50000 1 Au 24.52316293108431 1.4674800000000 5.50000 5.50000 5.50000 0 Au 24.52316293108431 1.4674800000000 5.50000 5.50000 5.50000 1 Au 24.52316293108431 1.4674800000000 5.50000 5.50000 5.50000 0 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 1 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 0 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 1 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 1 Au 24.52316293108431 4.4024300000000 5.50000 5.50000 5.50000 0 Jatoms Jatom_list Jatom_list</pre>	12	H 13.5	67631925833	338	0.77965812372957	3.38457271768971	0.50000	0.50000
<pre>14 C 13.71088882614472 2.93495988845818 3.38429254610896 2.00000 2.00000 15 S 15.46753293108431 2.9349588845818 3.38222330844022 3.00000 16 Au 17.33402293108431 2.93495080000000 4.2362400000000 5.50000 5.50000 17 Au 17.33402293108431 2.9349600000000 4.2362400000000 5.50000 5.50000 1 Au 19.73040293108431 2.9349600000000 2.5417500000000 5.50000 5.50000 2 Au 19.73040293108431 2.9349600000000 2.5417500000000 5.50000 5.50000 3 Au 19.73040293108431 2.9349600000000 2.5417500000000 5.50000 5.50000 4 Au 22.12678293108431 2.934960000000 0.8472500000000 5.50000 5.50000 5 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024300000000 5.3889900000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674800000000 5.9307300000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674800000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 14 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 14 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 15.5000 14 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 15.5000 14 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 15.5000 15.5000 10 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 14 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 15.5000 14 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 15.5000 14 default=0.30 pulay_start = 0.01 # default=0.30 pulay_start = 10 # default=0.30 pulay_start = 10 # default=0.30 pulay_start = 10 # default=4 play_history = 7 # default=4 play_history = 7 # default=900 enery_cutoff = 2500.0 Ry # default=900 enery_cutoff =</pre>	13	H 13.5	67631925832	269	5.09026165318615	3.38457271769030	0.50000	0.50000
<pre>15 S 15.4875329310431 2.9349598845838 3.38822330844022 3.0000 3.00000 16 Au 17.33402293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 17 Au 17.33402293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 2 Au 19.73040293108431 4.4024300000000 2.5417500000000 5.50000 5.50000 3 Au 19.73040293108431 4.4024300000000 2.5417500000000 5.50000 5.50000 3 Au 19.73040293108431 4.4024300000000 2.5417500000000 5.50000 5.50000 3 Au 19.73040293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 5 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024400000000 5.950000 5.50000 5.50000 8 Au 22.12678293108431 4.4024400000000 5.9307300000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674800000000 5.9307300000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674800000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674800000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 9 Au 24.52316293108431 2.934960000000 4.2362400000000 5.50000 5.50000 9 Au 24.52316293108431 2.9349600000000 4.2362400000000 5.50000 5.50000 9 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 9 Au 4 default=0.30 mixing_weight = 0.01 # default=2.30 mix</pre>	14	C 13.7	10888826144	472	2.93495988845818	3.38429254610896	2.00000	2.00000
<pre>16 Au 17.33402293108431 1.4674800000000 4.2362400000000 5.50000 5.5000 17 Au 17.33402293108431 2.934960000000 1.694500000000 5.50000 5.5000 18 Au 17.33402293108431 4.4024300000000 2.5417500000000 5.50000 5.5000 2 Au 19.73040293108431 2.9349600000000 2.5417500000000 5.50000 5.50000 3 Au 19.73040293108431 4.4024300000000 2.5417500000000 5.50000 5.50000 4 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 5 Au 22.12678293108431 2.9349600000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 7 Au 22.12678293108431 4.402400000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024300000000 5.9307300000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674900000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674900000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 14 au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 14 au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 5.50000 14 au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 5.50000 14 au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 5.50000 5.50000 5.500 5.5000 5.500</pre>	15	S 15.4	87532931084	431	2.93495988845838	3.38822330844022	3.00000	3.00000
<pre>17 Au 17.33402293108431 2.9349600000000 1.694500000000 5.50000 5.50000 18 Au 17.33402293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 2 Au 19.73040293108431 1.4674800000000 5.0834900000000 5.50000 5.50000 3 Au 19.73040293108431 4.4024300000000 2.5417500000000 5.50000 5.50000 4 Au 22.12678293108431 1.4674800000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 8 Au 22.12678293108431 4.4024400000000 0.8472500000000 5.50000 5.50000 8 Au 22.12678293108431 4.4024400000000 5.9307300000000 5.50000 5.50000 10 Au 24.52316293108431 1.467480000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 1.467480000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 14 u 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 14 u 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 2 Automs } atom_list] at</pre>	16	Au 17.3	34022931084	431	1.4674800000000	4.2362400000000	5.50000	5.50000
<pre>18 Au 17.33402293108431 4.4024300000000 4.2362400000000 5.50000 1 Au 19.73040293108431 1.4674800000000 2.5417500000000 5.50000 3 Au 19.73040293108431 4.4024300000000 2.5417500000000 5.50000 5 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 6 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5 Au 22.12678293108431 4.402430000000 0.8472500000000 5.50000 5 Au 22.12678293108431 4.40244000000000 5.9307300000000 5.50000 5 Au 22.12678293108431 1.4674800000000 5.9307300000000 5.50000 8 Au 22.12678293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 2.934960000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 14 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 15 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 16 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 17 Au 22.12678293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 19 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 16 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 18 Au 21.57829108431 4.4024300000000 4.2362400000000 5.50000 5.50000 19 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 4.5000000000 5.50000 5.50000 5.50000 10 Au 4.5000000000 5.50000 5.50000 5.50000 10 Au 4.5000000000 5.50000 5.50000 5.50000 10 Au 4.50000000000 5.50000 5.500000000000000</pre>	17	Au 17.3	34022931084	431	2.9349600000000	1.69450000000000	5.50000	5.50000
<pre>1 Au 19.73040293108431 1.4674800000000 2.54175000000000 5.50000 5.50000 2 Au 19.73040293108431 4.4024300000000 2.54175000000000 5.50000 5.50000 4 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024300000000 0.8472500000000 5.50000 5.50000 7 Au 22.12678293108431 4.4024400000000 0.8472500000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674900000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 3 toms }atoms }atom_list }structure charge_mixing{ mixing_weight = 0.10</pre>	18	Au 17.3	34022931084	431	4.4024300000000	4.2362400000000	5.50000	5.50000
<pre>2 Au 19.73040293108431 2.9349600000000 5.5034900000000 5.50000 5.50000 3 Au 19.73040293108431 1.4674800000000 2.54175000000000 5.50000 5.50000 5 Au 22.12678293108431 1.4674800000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024300000000 5.9307300000000 5.50000 5.50000 7 Au 22.12678293108431 1.467490000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.467490000000 4.23624000000000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 }atoms }atoms }atom_list }atom_list }atom_list atom_int{ num_k = 900</pre>	1 .	Au 19.7	30402931084	431	1.4674800000000	2.54175000000000	5.50000	5.50000
<pre>A Au 22.12678293108431 1.4674800000000 0.8472500000000 5.50000 5.50000 5 Au 22.12678293108431 2.9349600000000 0.8472500000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024400000000 0.8472500000000 5.50000 5.50000 7 Au 22.12678293108431 4.4024400000000 5.9307300000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674800000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 2.934960000000 4.2362400000000 5.50000 5.50000 3 tu 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 3 tu 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 3 tu 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 3 tu 4 tu 4.40243000000000 4.23624000000000 5.50000 5.50000 5.50000 3 tu 4 tu 4.4024300000000 4.2362400000000 5.50000 5.50000 3 tu 4 tu 4.4024300000000 4.23624000000000 5.50000 5.50000 5.50000 3 tu 4 tu 4.40243000000000 4.2362400000000 5.50000 5.50000 3 tu 4 tu 4.40243000000000 4.2362400000000 5.50000 5.50000 3 tu 4 tu 4.52516231623108431 4.40243000000000 4.2362400000000 5.50000 3 tu 4 tu 4.52516231623108431 4.40243000000000 4.236240000000000000000 3 tu 4 tu 4.525162310843</pre>	2 1	AU 19.7. Au 10.7	30402931084	431 431	2.9349600000000	5.08349000000000 2.54175000000000	5.50000	5.50000
<pre>5 Au 22.12678293108431 2.9349600000000 3.3889900000000 5.50000 5.50000 6 Au 22.12678293108431 4.4024300000000 5.8307300000000 5.50000 5.50000 7 Au 22.12678293108431 4.4024400000000 5.9307300000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674900000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674900000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 3 Atoms }atom_list }atom_list }atom_list charge_mixing{ mixing_weight = 0.10 # default=0.30 mixing_weight = 0.01 # default=0.30 mixing_weight = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry </pre>	3 1	AU 19.7	2678293108	431 //31	4.40243000000000	2.54175000000000 0.84725000000000	5.50000	5.50000
<pre>6 Au 22.12678293108431 4.402430000000 0.8472500000000 5.5000 5.5000 7 Au 22.12678293108431 4.4024400000000 5.9307300000000 5.50000 5.50000 8 Au 22.12678293108431 1.4674900000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674900000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 3 atoms }atom_list }atom_list }structure charge_mixing{ mixing_weight = 0.10</pre>		Au 22.1	26782931084	431	2.93496000000000	3.388990000000000	5.50000	5.50000
<pre>7 Au 22.12678293108431 4.4024400000000 5.9307300000000 5.50000 8 Au 22.12678293108431 1.4674900000000 5.9307300000000 5.50000 9 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 10 Au 24.52316293108431 2.9349600000000 1.6945000000000 5.50000 5.50000 }atoms }atoms }atom_list }structure charge_mixing{ mixing_weight = pulay # {simple pulay anderson}, default=simple mixing_weight_simple = 0.01 # default=0.30 mixing_weight_simple = 0.01 # default=4 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=2500.0 Ry</pre>	6	Au 22.1	26782931084	431	4.40243000000000	0.84725000000000	5.50000	5.50000
<pre>8 Au 22.12678293108431 1.4674900000000 5.9307300000000 5.50000 5.50000 9 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 1.694500000000 5.50000 5.50000 }atoms }atoms }atom_list }structure charge_mixing{ mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=0.30 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 rererererererererererererererer</pre>	7	Au 22.1	26782931084	431	4.40244000000000	5.93073000000000	5.50000	5.50000
<pre>9 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000 10 Au 24.52316293108431 2.9349600000000 1.6945000000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.23624000000000 5.50000 5.50000 }atoms }atoms }atom_list }structure charge_mixing{ mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=0.30 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry </pre>	8 .	Au 22.1	26782931084	431	1.46749000000000	5.93073000000000	5.50000	5.50000
<pre>10 Au 24.52316293108431 2.9349600000000 1.6945000000000 5.50000 5.50000 11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 5.50000 }atoms }atoms }atom_list }structure charge_mixing{ mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=0.30 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	9 .	Au 24.5	23162931084	431	1.4674800000000	4.2362400000000	5.50000	5.50000
<pre>11 Au 24.52316293108431 4.4024300000000 4.2362400000000 5.50000 }atoms }atom_list }structure charge_mixing{ mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=4 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	10	Au 24.5	23162931084	431	2.93496000000000	1.69450000000000	5.50000	5.50000
<pre>}atoms }atom_list }structure charge_mixing{ mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=4 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	11 .	Au 24.5	23162931084	431	4.4024300000000	4.2362400000000	5.50000	5.50000
<pre>}atom_list }structure charge_mixing{ mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=4 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry </pre>	}atoms							
<pre>structure charge_mixing{ mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=0.30 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	}atom_list							
<pre>charge_mixing{ mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=0.30 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	}structure							
<pre>charge_mixing mixing_methods = pulay # {simple pulay anderson}, default=simple mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=0.30 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	charge mixing							
<pre>mixing_weight = 0.10 # default=0.30 mixing_weight_simple = 0.01 # default=0.30 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	mixing methods	= חוו	lav #-	{simpl	elnulavlanderson}	default=simple		
<pre>mixing_weight_simple = 0.01 # default=0.30 pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	mixing weight	= 0.	-, " 10 # d	defaul	t=0.30	21mpro		
<pre>pulay_start = 10 # default=4 pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	mixing_weight_sim	ple = 0.0	01 # 0	defaul	t=0.30			
<pre>pulay_history = 7 # default=4 }charge_mixing atom_int{ num_k = 900 # default=900 num_r = 900 # default=900 energy_cutoff = 2500.0 Ry # default=2500.0 Ry</pre>	pulay_start	= 10	# (defaul	t=4			
<pre>}charge_mixing atom_int{ num_k = 900</pre>	pulay_history	= 7	# (defaul	.t=4			
atom_int{ num_k = 900	<pre>}charge_mixing</pre>							
atom_inti num_k = 900	a transfer to the							
num_r = 900		900	# dofault	+=000				
energy_cutoff = 2500.0 Ry # default= 2500.0 Ry	$\frac{11}{11} \frac{11}{11} 11$	900	# default	t=900				
	energy_cutoff = 2	500.0 Rv	# default	t=2500	.0 Ry			

```
}atom_int
file in{
                   = ""
                              # "filename", default=""
        matrices
}file_in
file_out{
                     = finalstep # {finalstep|everystep|never}, default=never
        save at
        field_format = cube  # {cube|dx}, default=cube
density_scf = off  # {on|off}, default=off
                     # ton|off}, default=off
= on  # {on|off}, default=off
= on  # {on|off}
        density_scf = off
matrices = on
        matrices
        f_negf
}file_out
postprocessing{
        band{
                 sw_band = off
                 unit_cell{
                       unit = ang
                       vector{
                               0.000000000000 5.8699100000000 10.1669900000000
                              0.00000000000011.73981000000000.00000000000026.919542931084310.00000000000000.000000000000
                       }vector
                 }unit_cell
                 num_band_path = 1
                 band_path{
                       0.000 0.000 0.000 0.500 0.000 0.000
                                                                         32
                 }band_path
        }band
        dos{
                 sw_dos = off
                 method = gaussian
                 gaussian_broadening = 0.1 eV
                 e_range{
                      501 -20.0 +20.0 eV
                 }e_range
                 ksampling{
                      1 1 1
                 ksampling
        dos
        mo{
                 sw_mo = on
                 m_bandnum = ho_lumo
                                       # {band_num|ho_lumo}, default=ho_lumo
                 band_range{
                      -5 +5
                 }band_range
                 num_k_points = 1
                 k_points{
                     0.0 0.0 0.0
                 }k_points
        }mo
}postprocessing
```

9.2 密度汎関数理論に基づいた伝導特性解析

伝導計算のメイン入力ファイルの例を以下に示す。パラメータの説明は表6および表7に示す。

general{		
dftnegf	= negf	#{dft negf}
model_type	= scf_calc	#{rtb_h gsp input scf_calc}
calc_type	= trans	<pre>#{trans iv scf_only off}</pre>
output_G	= diagonal	#{diagonal all}
output_T	= diagonal	#{diagonal tr all}
}general		

file{		
<pre># tb_cordinate # tb_parameter # input_junc # input_left # input_right scf_file self_e_file</pre>	<pre>= cordinate.in = "//data/rtbh_c_p = "/junction/junctio = "/electrode/electr = condition_scf.in = none</pre>	arameter.in" n.matrices.dat" ode.matrices.dat" ode.matrices.dat" #{'file name' none}
}file		
<pre>gra_energy{ mesh_number start_energy end_energy im_energy }gra_energy</pre>	= 128 = -10.0000 = 0.0000 = 0.000001	# eV # eV # eV
<pre>#iv_energy{ # mesh_number # im_energy #}iv_energy</pre>	= 500 = 0.1	# eV
<pre>surface_green_func{ method max_number criterion }surface_green_func</pre>	= 1 = 40 = 0.00001	#{1 2}
<pre># band & DOS electrode_left{ s_band s_electrod_DOS k_point_mesh }electrode_left</pre>	= on = on = 32	#{on off} #{on off}
<pre># band & DOS electrode_right{ s_band s_electrod_DOS k_point_mesh }electrode_right</pre>	= off = off = 32	#{on off} #{on off}

メイン入力ファイル内の"file{scf_file}"で指定されたファイルの例を以下に示す。パラメータの説明は表 8 および 9 に示す。

```
negf_scf_general{
                                = f_DM
= none
                                                      #{f_DM | f_density}
#
    calc_start
                                                    #{exist | none}
    read_self_file
     calc_force = off
}negf_scf_general
negf_scf_file{
    input_hs_junc = "../junction/junction.matrices.dat"
input_pr_junc = "../junction/junction.vd.data"
input_junc_cond = "../junction/junction.in.data"
#
    input_hs_left = "../electrode/electrode.matrices.dat"
input_pr_left = "../electrode/electrode.vd.data"
#
    input_hs_right = "../electrode/electrode.matrices.dat"
input_pr_right = "../electrode/electrode.vd.data"
#
    outputt_hs_junc = "matrix/abred_matrices.dat"
output_pr_junc = scf.vd.data
```

```
#
                = "sel/sel_scf.in"
   self_e_file
}negf_scf_file
negf_scf_accuracy{
  scf_convergence
                     = 0.01
  num_max_iteration
                     = 10000
# ksampling = gamma
}negf_scf_accuracy
negf_scf_mixing{
  mixing_methods
                     = pulay_dm
                                       #{simple | pulay_dm | anderson_dm}
  mixing_dm_weight = 0.01
  mixing_dm_s_weight = 0.01
  pulay_mix_history = 7
  pulay_mix_start
                     = 10
}negf_scf_mixing
negf_scf_energy_m1{
                                       # eV
  min_energy_pos
                      = 5.
  m_v_min_energy_pos = relative
                                       #{real | relative}
  block_cond0{
     im_energy
                     = 0.63
                                       # eV
                     = 5
     mesh_num_min
                     = 40
     mesh_num_ima
     mesh_num_ef
                      = 15
     mesh_method_ef = linear
                                       #{linear | log}
  }block_cond0
}negf_scf_energy_m1
#negf_scf_bias{
#
   switch
                      = off
                                        #{on | off}
                      = 0.d0
                                        # [V]
   v_left
#
#
  v_right
                      = 0.d0
                                        # [V]
   cdm_mesh_num
                      = 5
#
                      = 0.0001
                                        # [eV]
# cdm_im_energy
#}negf_scf_bias
#negf_spin_rot{
                       = off
# switch_left
#
   switch_right
                      = off
#
   boundary_g_num
                      = 0
                      = 1
# boundary_g_den
#}negf_spin_rot
```

9.3 タイトバインディング法を用いた炭素系の伝導特性解析

メイン入力ファイル内の"file{tb_cordinate}"で指定されたファイルの例を以下に示す。パラメータの説明は表 10 に示す。

<pre>tb_buffer_size{ left_region junc_region right_region }tb_buffer_size</pre>	= 1 = 1 = 1		
th distance{			
between 1 c	= 0 00000		# Ang
between_1_0	- 0.00000		# Ang
Detween_c_1	= 0.00000		# Alig
}tb_distance			
<pre>tb_junc_region{ unit_vector{</pre>			
13.58	818 0.00000	0.00000	
0.00	000 13.58818	0.0000	
0.00		4 26000	
0.00	0.00000	4.20000	

}unit_vector coordinate_system = cartesian # {cartesian|pucv} = 3 atom_number atom_list{ 0.00000 1 C 0.000000 0.000000 2 C 0.000000 0.000000 3 C 0.000000 0.000000 1.420000 0.000000 0.000000 2.840000 }atom_list }tb_junc_region tb_left_region{ unit_vector{ 13.58818 0.00000 0.00000 13.58818 0.00000 0.00000 0.00000 0.00000 4.26000 }unit_vector coordinate_system = cartesian # {cartesian|pucv} atom_number = 3 atom_list{ С 0.000000 0.000000 0.000000 1 2 C 0.000000 0.000000 1.420000 3 C 0.000000 0.000000 2.840000 }atom_list }tb_left_region tb_right_region{ unit_vector{ 13.58818 0.00000 0.00000 0.00000 13.58818 0.00000 0.00000 4.26000 0.00000 }unit_vector coordinate_system = cartesian # {cartesian|pucv} = 3 atom_number atom_list{ 1 C 2 C 0.000000 0.000000 0.000000 0.000000 0.000000 1.420000 3 С 0.000000 0.000000 2.840000 }atom_list }tb_right_region

9. 入力ファイル

表 2: 平衡系の電子状態計算のための入力ファイルで使用されるパラメータの説明・その1

識別子	説明
general{	計算の制御
dftnegf	電極などの電子状態の計算を行う場合は"dft"
system_name	名前
}general	
accuracy{	計算の精度に関するパラメータ
energy_cutoff	エネルギーカットオフ
	"値 (単位)"と指定。"単位" = a.u., eV, hartree, rydberg (def: rydberg)。
temperature	電子温度
	"値 (単位)"と指定。"単位" = a.u., eV, K (def: K)。
scf_convergence	収束判定の基準値
	"値 (単位)"と指定。"単位" = a.u., eV, hartree, rydberg (def: hartree)。
scf_criterion_type	収束判定の方法
	density: 一電子あたりの電子密度の変動
	total: 一原子あたりの全エネルギー
num_max_iteration	最大反復回数。(def: 100)
ksampling{	波数 k の指定
method	指定方法
	"gamma"(Г 点)
	"mesh"(後述の"mesh{}mesh"でメッシュ数を指定)
$\operatorname{mesh}\{$	メッシュ数を $(n_a \ n_b \ n_c)$ と指定。 $ ext{def:} (1,1,1)$
}mesh	
}ksampling	
xctype	交換相関汎関数の種類。 (def: ldapw91)
	ldapw91: LDA の PW91 型の交換相関汎関数 [21]
	ldapz81: LDA の PZ81 型の交換相関汎関数 [22]
element_data_path_pao	擬原子軌道データファイルが格納されているディレクトリーへのパス
$element_data_path_vps$	擬ポテンシャルデータファイルが格納されているディレクトリーへのパス
num_element	element_list で指定される元素の種類の数
$element_list{$	元素のデータファイルなどの指定
	一行で元素ごとに"元素名 PAO_file VPS_file PAO_mode"と指定
	PAO_file: 擬原子軌道データファイル名
	VPS_file: 擬ポテンシャルデータファイル名
	PAO_mode: "s2p2d1"などと指定 [14]
}element_list	この数は表 1 に示した m_x の数を超えてはならない
calc_force	力の計算の実行。
	off/on/(opt) (opt: 構造最適化計算の実行)
opt_force_convergence	構造最適化計算 (calc_force = opt) における収束判定の基準値
	"値 (単位)"と指定。"単位" = a.u., hartree/bohr (def: 1.0e-3 hartree/bohr)。
opt_num_max_iteration	構造最適化計算 (calc_force = opt) における最大反復回数。(def: 1)
}accuracy	

表 3: 平衡系の電子状態計算のための入力ファイルで使用されるパラメータの説明・その 2

識別子	説明
structure{	系の構造に関するパラメータ
spin_polarization	スピン分極の有無
	off/on
unit_cell{	単位胞の指定
unit	後述の単位胞の基本ベクトルの単位。"ang"(def) or "au"
vector{	単位胞の基本ベクトル (上から順に、 \mathbf{a} 、 \mathbf{b} 、 \mathbf{c})
}vector	
}unit_cell	
atom_list{	結晶構造の指定
num_atom	系に含まれる原子の総数
num_left_atom	左電極とみなす原子の数
num_right_atom	右電極とみなす原子の数
unit	後述の原子の座標の単位。"ang" (def) or "au"
atoms{	原子ごとに一行でデータを指定
	"番号 原子種 x 座標 y 座標 z 座標 Q_{up} Q_{dw} $(\mathrm{fixed/free})$ "と指定
	$Q_{up}:Q_{dw}$ は初期価電子分布の上下スピンの比率
}atoms	fixed/free は構造最適化計算において原子座標の固定・非固定の指定
}atom_list	
}structure	
charge_mixing{	密度行列の更新法に関するパラメータ
mixing_methods	密度行列の更新法
	simple: 計算された密度行列と現ステップの初期値との線形和
	pulay: pulay 法 [23]
	anderson: anderson法 [24]
mixing_weight	密度行列の更新の割合。(def: 0.3)
mixing_weight_simple	simple法で用いる密度行列の更新の割合。(def: 0.3)
pulay_start	pulay で使用するステップ数。(def: 4)
pulay_history	pulay を開始するステップ数。(def: 4)
}charge_mixing	
atom_int{	重なり積分などの計算精度に関するパラメータ
num_k	1次元積分の逆空間のメッシュ数
num_r	1次元積分の実空間のメッシュ数
energy_cutoff	1次元積分のカットオフ
	"値 (単位)"と指定。"単位" = a.u., eV, hartree, rydberg (def: rydberg)。
}atom_int	

表 4: 平衡系の電子状態計算のための入力ファイルで使用されるパラメータの説明・その3

識別子	説明
file_in{	継続計算のための入力ファイルに関するパラメータ
matrices	継続計算用の密度行列などの行列要素ファイル
	原子の番号"_**"は指定しない。
}file_in	
file_out{	計算結果の出力ファイルに関するパラメータ
save_at	計算結果の保存のタイミング
	finalstep: SCF ループ終了後
	everystep: SCF ループの各ループ
	never: 出力なし
matrices	ハミルトニアン,密度行列などの行列要素の保存(継続計算および NEGF 計算で使用)
	off/on、原子の数だけファイルが作成される。
f_negf	伝導計算のためのファイルの作成(NEGF 計算で使用)
	off/on
density_scf	電荷密度の保存
	off/on
density_val	孤立原子の電荷密度の保存
	off/on
$density_pcc$	部分内殻補正の保存
	off/on
potential_ext	外場ポテンシャルの保存
	off/on
potential_har	ハートリーポテンシャルの保存
	off/on
potential_exc	交換相関ポテンシャルの保存
	off/on
potential_tot	全ポテンシャルの保存
	off/on
field_format	保存ファイル形式
	cube: Gaussian CUBE 形式
}file_out	

表 5: 平衡系の電子状態計算のための入力ファイルで使用されるパラメータの説明・その4

識別子	説明
postprocessing{	バンド分散、状態密度、分子軌道の計算に関するパラメータ
band{	バンド分散計算に関する指定
sw_band	バンド分散の計算を行うかのスイッチ
unit_cell{	バンド分散の計算における単位胞の指定
unit	後述の単位胞の基本ベクトルの単位。"ang"(def) or "au"
vector{	単位胞の基本ベクトル (上から順に、 \mathbf{a} 、 \mathbf{b} 、 \mathbf{c})
}vector	
}unit_cell	
num_band_path	band_path{}band_path で指定のバンドを計算する k 点の経路の数
$band_path{$	バンド分散を計算する k 点の経路と k 点数
	"始点の逆格子ベクトルに対する内部座標
	終点の逆格子ベクトルに対する内部座標 k 点数"と指定
}band_path	
}band	
dos{	状態密度計算に関する指定
sw_dos	状態密度の計算を行うかのスイッチ
method	状態密度の計算手法 (gaussian/tetrahedron) の指定
$gaussian_broadening$	gaussian 法で用いる broadening 幅。"値 (単位)"と指定 (def: 0.1 eV)。
	"単位" = a.u., eV, hartree, rydberg
e_range{	状態密度の計算をするエネルギーの数と範囲を指定
	"エネルギーの数 エネルギーの最小値 最大値 (単位)"と指定
	(def: 101 -10 10 eV)。"単位" = a.u., eV, hartree, rydberg
}e_range	
$ksampling{$	波数 k の指定。メッシュ数を $(n_a \hspace{0.2cm} n_b \hspace{0.2cm} n_c)$ と指定。
	無指定の場合は accuracy{ksampling{}ksampling}accuracy の値
}ksampling	
}dos	
mo{	分子軌道計算に関する指定
sw_mo	分子軌道の計算を行うかのスイッチ
m_bandnum	保存する分子軌道のレベル番号の指定方法
	band_num: レベル番号をレベルの底から数える
	ho_lumo: レベル番号をフェルミ準位を基準にして数える (def)
band_range{	保存する分子軌道のレベル番号の範囲を" $N_{ m min}$ $N_{ m max}$ "のように指定
}band_range	
unit	分子軌道の計算で用いる後述の単位胞の基本ベクトルの単位。
	"ang" (def) or "au"
vector{	分子軌道の計算で用いる単位胞の基本ベクトル (上から順に、 \mathbf{a} 、 \mathbf{b} 、 \mathbf{c})
}vector	
num_k_points	計算する分子軌道のサンプリング k 点の数
k_points{	計算する分子軌道の各サンプリング k 点の逆格子ベクトル
	k_a k_b k_c のように内部座標として指定。
}k_points	
}mo	
}postprocessing	

識別子		説明				
g	eneral{	 計算の制御				
	dftnegf	伝導特性の解析を行う場合は"negf"				
	model_type	ハミルトニアンの与え方				
		scf_calc: SCF 計算				
		input: ASCOT による周期境界条件下での計算などで決定したハミルトニアン				
		rtb_h: 現実的タイトバインディングモデル [18,19]				
		gsp: GSP 型タイトバインディングモデル [20]				
	calc_type	求める量の設定				
		trans: "gra_energy"で指定されたエネルギーでのトランスミッションを計算				
		iv: 電流値を計算 (バイアスの値は"file{scf_file}"で指定したファイル内で設定)				
		scf_only: 開放系における電子状態のみを計算				
		off: 電極の電子状態計算のみを実行				
	$output_G$	グリーン関数の出力レベル				
		diagonal: 対角成分のみ				
		all: 全成分				
	$output_T$	トランスミッション行列の出力レベル				
		diagonal: 対角成分のみ				
		tr: トランスミッション行列の全成分				
		all: トランスミッション行列の全成分、Γおよび遅延グリーン関数				
	$band_calc_type$	固有値の計算方法 ("electrode_left/electrode_right{s_band}=on"の時に有効)				
		general: 対称行列を用いない計算				
		symmetry: 対称行列を用いた計算				
}	general					
fi	le{	計算に用いるファイル名を指定				
	scf_file	SCF 計算に必要な条件が書かれたファイル名 (このファイルを指定してもよい)				
		"general{model_type}=scf_accel/scf_abred"の時に有効				
	$input_junc$	外部で決定した中央部のハミルトニアンを収めたファイル名				
		"general{model_type}=input"の時に有効。原子の番号"_**"は指定しない。				
	$input_left$	外部で決定した左電極のハミルトニアンを収めたファイル名				
		"general{model_type}=input"の時に有効。原子の番号"_**"は指定しない。				
	$input_right$	外部で決定した右電極のハミルトニアンを収めたファイル名				
		"general{model_type}=input"の時に有効。原子の番号"_**"は指定しない。				
tb_cordinate 原子座		原子座標を設定しているファイル名 (このファイルを指定してもよい)				
		"general{model_type}=rtb_h/gsp"の時に有効				
	$tb_parameter$	タイトバインディング法のパラメータファイル				
		"general{model_type}=rtb_h/gsp"の時に有効				
		def: "//data/rtbh_c_parameter.in" or "//data/gsp_c_parameter.in"				
}!	file					

表 6: メイン入力ファイルで使用されるパラメータの説明・その1

表 7:	メイン入	、カファイ	ルで使用される	パラメータ	7の説明・	その 2
------	------	-------	---------	-------	-------	------

識別子	説明				
gra_energy{	トランスミッションを計算するエネルギー範囲を指定				
mesh_number	分割数				
start_energy	始点のエネルギー値(単位 eV)				
end_energy	終点のエネルギー値(単位 eV)				
im_energy	虚部の値 (単位 eV)				
}gra_energy					
iv_energy{	file{scf_file} で指定されたバイアスの下での電流値を計算する際の条件				
mesh_number	積分のメッシュ数				
im_energy	虚部の値 (単位 eV)				
}iv_energy					
gra_ksampling{	トランスミッションを計算する波数 k の指定				
point	メッシュ数を $(n_a \ n_b)$ と指定。 $def: (1,1)$ 。"gamma"のときは Γ 点で計算				
}gra_ksampling					
surface_green_func{	表面グリーン関数の計算条件				
method	計算方法の指定				
	1: 文献 12 の方法				
	2: 文献 13 の方法				
max_number	反復回数の最大値				
criterion	収束条件(単位 1/eV)				
}surface_green_func					
electrode_left{	左電極の電子状態計算				
s_band	伝導方向のバンド計算の実行				
	off/on				
s_electrod_DOS	状態密度計算の実行				
	off/on				
k_point_mesh	電子状態計算で用いる伝導方向の k_z -点のメッシュ数				
}electrode_left					
electrode_right{	右電極の電子状態計算				
s_band	伝導方向のバンド計算の実行				
	off/on				
s_electrod_DOS	状態密度計算の実行				
	off/on				
k_point_mesh	電子状態計算で用いる伝導方向の k_z -点のメッシュ数				
}electrode_right					

表 8: メイン入力ファイル内で指定されたファイル""file $\{scf_file\}$ "で使用されるパラメータの説明・その 1

識別子	説明	
$negf_scf_general{}$	SCF 計 算の 制御	
calc_start	計算の出発点となるデータ	
	f_DM: "negf_scf_file{input_hs_junc}"に収められた密度行列	
	f_density: "negf_scf_file{input_pr_junc}"に収められた電荷密度	
read_self_file	電荷密度計算時の自己エネルギーが収められたファイルの有無	
	exist: "negf_scf_file{self_e_file}"で指定されたファイルが存在する場合	
	none: "negf_scf_file{self_e_file}"で指定されたファイルが作成される	
fft_type	フーリエ変換の計算方法	
	dft: 離散フーリエ変換	
	f_2_ft: 2 成分高速フーリエ変換	
	fft: 高速フーリエ変換(n=2, 3, 5, 7)	
method_charge_sum	電荷密度の計算の積分経路の指定	
	square: 図2参照。	
poisson_mathod	ハートリーポテンシャルの計算方法	
	ft: フーリエ変換を用いた方法	
	gr: グリーン関数を用いた方法 [25]	
poisson_K_value	Kの値 ("poisson_mathod=gr"の時に有効。文献 25 参照)	
calc_force 力の計算の実行		
	off/(on)	
$egf_scf_general$		
$negf_scf_file{$	SCF 計算に用いるファイル名を指定	
input_hs_junc	中央部の密度行列およびハミルトニアンの初期値を収めたファイル名	
	原子の番号"_**"は指定しない。	
input_pr_junc	ポテンシャル、電荷密度の初期値を収めたファイル名	
$input_junc_cond$	散乱領域の計算時に用いた計算条件を収めたファイル名	
	散乱領域の計算時に作成される	
$input_hs_left$	左電極のハミルトニアンを収めたファイル名	
	原子の番号"_**"は指定しない。	
input_pr_left	左電極のポテンシャル(境界条件)、電荷密度を収めたファイル名	
input_hs_right	右電極のハミルトニアンを収めたファイル名	
	原子の番号"_**"は指定しない。	
input_pr_right	右電極のポテンシャル(境界条件)、電荷密度を収めたファイル名	
output_hs_junc	計算された密度行列およびハミルトニアンを収めるファイル名	
	原子の番号"_**"が付加されたファイルが原子の数だけ作成される。	
output_pr_junc	計算されたポテンシャル、電荷密度を収めるファイル名	
self_e_file	電荷密度計算時の積分系路上の自己エネルギーを収めた/収めるファイル名	
}negf_scf_file		
negf_scf_accuracy{	SCF 計算の制御	
scf_convergence	収束判定の基準値(密度行列の残差により判定)	
num_max_iteration	反復回数の最大値	
ksampling	k 点メッシュ数を $(n_a \hspace{0.2cm} n_b)$ と指定。" gamma "のときは Γ 点で計算	
	指定がない場合は電極の電子状態を計算した際のメッシュ数を用いる	
}negf_scf_accuracy		

表 9: メイン入力ファイル内で指定されたファイル""file{scf_file}"で使用されるパラメータの説明・その 2

識別子	説明
negf_scf_mixing{	反復計算時の密度行列の更新法の指定
mixing_methods	密度行列の更新法
	simple_dm: 計算された密度行列と現ステップの初期値との線形和
	pulay_dm: pulay 法 [23]
	anderson_dm: anderson 法 [24]
mixing_dm_weight	密度行列の更新の割合。(def: 0.1)
mixing_dm_s_weight	simple 法で用いる密度行列の更新の割合。(def: 0.01)
pulay_start	pulay で使用するステップ数。(def: 4)
pulay_history	pulay を開始するステップ数。(def: 10)
}negf_scf_mixing	
negf_scf_energy_m1{	"negf_scf_general{method_charge_sum}=square"の時の積分経路の指定、図 2。
min_energy_pos	図 2 の E _{min} の設定
	" $\mathrm{m_v_min_energy_pos=relative}$ "の時: バンド端からの相対値 $\Delta\omega_a$ を指定
	"m_v_min_energy_pos=real"の時: E _{min} の値を指定
m_v_min_energy_pos	"min_energy_pos"の値の意味。
	"relative": バンド端からの相対値
	"real": 絶対値
block_cond0{	図 2 の経路の設定
im_energy	積分経路の虚部。図 2 の δ
mesh_num_min	メッシュ数。図 2 の N_1
mesh_num_ima	メッシュ数。図 2 の N_2
mesh_num_ef	メッシュ数。図 2 の N_3
mesh_method_ef	μ 上の経路の分割方法
	linear: 線形メッシュで分割
	log: 対数メッシュで分割
}block_cond0	
}negf_scf_energy_m1	
negf_scf_bias{	バイアス指定 (0 V の計算の際は省略可)
switch	on: V(="v_left"-"v_right") における計算
	off: 0 V の計算
v_left	左電極にかけるバイアス値 (単位 V)
v_right	右電極にかけるバイアス値 (単位 V)
cdm_mesh_num	バイアスウィンドウ内の積分経路のエネルギーのメッシュ数。図 3 の N_b
cdm_im_energy	バイアスウィンドウ内の積分経路のエネルギーの虚部 (単位 eV)。図 3 の $Im \omega$
cdm_om_del_energy	実軸直上の積分経路の増加分 (単位 ${ m eV}$)。図 ${ m 3}$ の ${ m \Delta}$
}negf_scf_bias	
negf_spin_rot{	スピンの向きの初期条件(省略可)
switch_left	左電極側のスピンのマジョリティとマイノリティを逆転
switch_right	右電極側のスピンのマジョリティとマイノリティを逆転
boundary_g_num	反転の境界の割合を左から $rac{B}{A}$ と与えた時の B (整数)
boundary_g_den	反転の境界の割合を左から $rac{B}{A}$ と与えた時の A (整数)
}negf_spin_rot	

表 10: メイン入力ファイル内で指定されたファイル"file{tb_cordinate}"で使用されるパラメータの説明

識別子	説明
tb_buffer_size{	各領域の単位胞を並べる個数
left_region	レフト領域の個数
junc_region	散乱領域の個数
right_region	ライト領域の個数
}tb_buffer_size	
tb_distance{	各領域間の距離の指定(単位 Å)
between_l_c	レフト領域と散乱領域との間の距離
between_c_r	ライト領域と散乱領域との間の距離
}tb_distance	
tb_junc_region{	散乱領域の構造などの設定
unit_vector	単位胞の基本ベクトルの設定(単位 Å)
	上から順に、a、b、c
	左から順に、 x 座標、 y 座標、 z 座標
coordinate_system	座標系の指定
	cartesian: "atom_list"で指定される座標を実座標値で指定
	pucv: 内部座標値で指定
atom_number	セル内の原子数
atom_list	原子座標の設定
	"coordinate_system=cartesian": 座標を実座標値で指定(単位 Å)
	"coordinate_system=pucv":内部座標値 (0から1までの数値)で指定
	左から順に、番号、原子種、 x 座標、 y 座標、 z 座標
}tb_junc_region	
tb_left_region{/tb_right_region{	レフト/ライト領域の構造などの設定
unit_vector	単位胞の基本ベクトルの設定(単位 Å)
	上から順に、a、b、c
	左から順に、 x 座標、 y 座標、 z 座標
coordinate_system	座標系の指定
	cartesian: "atom_list"で指定される座標を実座標値で指定
	pucv: 内部座標値で指定
atom_number	セル内の原子数
atom_list	原子座標の設定
	"coordinate_system=cartesian": 座標を実座標値で指定(単位 Å)
	"coordinate_system=pucv": 内部座標値 (0から1までの数値) で指定
	左から順に、畨号、原子植、 x 座標、 y 座標、 z 座標
}tb_left_region/}tb_right_region	

図 8: ベンゼンジチオール分子架橋系の結晶構造。濃色の原子がレフト領域、ライト領域として扱われる Au 原子 を表す。

10 計算例

ここでいくつかの計算例を示す。計算実行体格納ディレクトリー"bin"に第8章に記した計算実行体"ascot_v410" が、データファイル格納ディレクトリー"data"に擬原子軌道などのデータファイルがあるものとする。また、サン プルデータ格納ディレクトリー"samples"にあるディレクトリーをそのまま作業用ディレクトリー"work"にコピー して使用するものとする。

10.1 ベンゼンジチオール分子架橋系

まず、図 8 に示す 1 次元 Au 細線の電極間にベンゼンジチオール分子 (C₆H₄S₂) が架橋された系の伝導特性を求める。これはディレクトリー"samples/BDT_1d"にある例題である。このディレクトリーには 3 つのディレクトリー ("trans"、"junction"、"electrode") がある。ディレクトリー"junction"では図 5 の Procedure 1-2 の計算を、ディレクトリー"electrode"では図 5 の Procedure 1-1 の計算を行う。これらの計算の後に、ディレクトリー"trans" において図 5 の Procedure 2 および 3 の計算を行う。入力ファイル内のデータの説明は第 9 章にあるので、ここでは作成時の注意点と結果について述べることにする。

10.1.1 Procedure 1-2

最初にディレクトリー"junction"における、散乱領域の周期境界条件下での電子状態計算(通常のバンド計算) について述べる。Procedure 2の計算の初期値を求めるために実行される。

入力ファイル

計算条件は"condition_jun.in"で設定される。 周期系に対する電子状態計算を行うので

```
general{
```

```
dft__negf = dft
```

```
}general
```

と設定する。

"accuracy{...}accuracy"内の element_data_path_pao および element_data_path_vps でディレクトリー"data"の 相対位置などを設定する。このディレクトリー"junction"の階層を変えて実行する場合は書き換える必要がある。

この計算で用いられる擬原子軌道の数などを表 11 に示す。これは次のような意味を持つ。r_c はカットオフ半径 を表し、孤立 Au 原子の場合電子の波動関数は 6.0 a.u. よりも外にしみ出していない。n_s は s 軌道に対する軌道 表 11: 計算に用いられた擬原子軌道のカットオフ半径 r_c とs、p および d 軌道の軌道の数 $(n_s, n_p$ および $n_d)$ 。

	$r_{\rm c}$ [a.u.]	n_s	n_p	n_d
Au	6.0	2	1	1
\mathbf{S}	5.5	2	2	2
\mathbf{C}	4.0	2	2	
Η	4.0	2	2	

として節を持たないものと節を一つもつものの2つを用いることを意味する (図6参照)。 $n_p \ge n_d$ も同様である。 これを入力ファイルの"accuracy{element_list{...}element_list}accuracy"内の"*PAO_mode*"に"s(n_s)p(n_p)d(n_d)"と指定する。例えば

```
accuracy{
```

```
. . .
num_element
                  = 4
element_list{
    Au "au60_ldapw91.pao2"
                                   "au_ldapw91.gncpp2"
                                                             s2p1d1
                                    "s_ldapw91.gncpp2"
        "s55_ldapw91.pao2"
                                                             s2p2d2
     S
         "c40_ldapw91.pao2"
                                    "c_ldapw91.gncpp2"
     С
                                                             s2p2
     Η
         "h40_ldapw91.pao2"
                                    "h_ldapw91.gncpp2"
                                                             s2p2
}element_list
```

}accuracy

である。これらの値 (n_s, n_p, n_d) を大きくとることによって精度よい計算を行うことができる。ただし、表 1 に 示した m_x の値を超えて指定することはできない。

"structure{atom_list{...}atom_list}structure"内に散乱領域の原子構造を設定する。この例では散乱領域に 40 原 子あり、その座標などを

structure{

		• • •						
unit_cell{								
unit		= ar	ıg	# {au ang}				
vecto	or{							
	0.000	00000000	0000	5.869910000	00000	10.1669900	0000000	
	0.000	00000000	0000	11.739810000	00000	0.000000	0000000	
	26.919	954293108	3431	0.00000000	00000	0.000000	0000000	
}vect	or							
<pre>}unit_cell</pre>								
atom_list{								
num_atom	=	40						
num_left_at	om =	11						
num_right_a	atom =	11						
unit	=	ang	# {au	ang}				
atoms{								
1 Au 0.	0000000	0000000	1.467	4800000000	2.54175	000000000	5.50000	5.50000
2 Au 0.	0000000	0000000	2.934	9600000000	5.08349	000000000	5.50000	5.50000
3 Au 0.	0000000	0000000	4.402	4300000000	2.54175	000000000	5.50000	5.50000

```
9 Au 24.52316293108431 1.4674800000000 4.2362400000000 5.50000 5.50000
10 Au 24.52316293108431 2.9349600000000 1.6945000000000 5.50000 5.50000
11 Au 24.52316293108431 4.4024300000000 4.23624000000000 5.50000 5.50000
}atoms
}atom_list
}structure
```

と指定する。伝導方向は c 軸方向に設定される。これらの原子は c 軸方向に順番に並んでいる (この例では x 座標 が小さい順番に並んでいる) 必要がある。このうち左右の数個の原子は電極の構造を含む。この例では電極の単位 胞の数 (11 個) の原子がそれにあたる。また、番号に意味は無い。

最後に、後の伝導計算 (Procedure 2 & 3) のために

```
file_out{
```

matrices = on # {on|off}, default=off
f_negf = on # {on|off}, default=off

}file_out

としておく。

計算の実行

この計算は、"%計算実行体 入力ファイル名"と指定することで実行される。例えば

% mpirun -np 1 ../../bin/ascot_v410 condition_jun.in

とする。従来版 [ver. 3] ではこの部分の計算は並列化されていなかったが、ver. 4 では並列計算が可能となった。 ただし、原子数(この例では 40)を超えて並列化しても意味はないので注意のこと。

計算の入力条件・途中経過・出力ファイルの一覧は"g.output_0001"に出力される。計算の収束状況を見るためには、例えば

% grep "#d" g.output_0001

. . .

と入力した結果

#d####	33	0.000004219407	0.00000046859 ####d#
#d####	34	0.000003295381	0.00000024383 ####d#
#d####	35	0.000001760556	0.00000035380 ####d#
#d####	36	0.000001072984	0.0000001309 ####d#
#d####	37	0.00000657707	0.0000002224 ####d#

を見ればよい。最初の整数は反復回数、その後の数値が密度行列およびトータルエネルギーの残差値を表す。密 度行列の残差値が、入力ファイルに指定した収束判定の基準値を満たすと反復計算のループの外に出る。

出力ファイル

出力ファイルの一覧は"g.output_0001"に書かれている。入力ファイルに指定したものは"g.output_0001"の最初に、それ以外のものは最後に書かれている。

作成された"junction.in.data"、"junction.matrices.dat_**"、"junction.vd.data"がこの後の伝導特性の計算に 必要となるデータファイルである。"junction.in.data"には原子座標など伝導計算に引き渡す入力データが格納さ れている。そして、"junction.matrices.dat_**"("**"は原子の番号)には、重なり積分、ハミルトニアンの運動 エネルギーからの寄与、そして、計算されたハミルトニアンおよび密度行列が、"junction.vd.data"には散乱領域 の計算されたポテンシャルおよび電荷密度が格納されている。

10.1.2 Procedure 1-1

次にディレクトリー"electrode"において、レフト・ライト領域の電子状態の計算を行う。この例では左右の電 極が同じなので、以下の作業で同時に求めることができる。

入力ファイル

計算条件は"condition_ele.in"で設定される。伝導計算のために Procedure 1-2の入力条件と整合性をとらなけれ ばならない箇所がある。

"structure{atom_list{...}atom_list}structure"内にレフト・ライト領域の原子構造を3倍の周期分を、例のよう に設定する。この例では原子数が33原子あり、その座標などを

structure{

		• • •				
atom_list{						
num_atom	=	33				
num_left_atom	=	11				
num_right_ator	n =	11				
unit	=	ang #	{au ang}			
atoms{						
-	Au	0.00000	1.46748	2.54175	5.50000	5.50000
2	2 Au	0.00000	2.93496	5.08349	5.50000	5.50000
:	3 Au	0.00000	4.40243	2.54175	5.50000	5.50000
9) Au	19.17104	1.46748	4.23624	5.50000	5.50000
10) Au	19.17104	2.93496	1.69450	5.50000	5.50000
1:	Au	19.17104	4.40243	4.23624	5.50000	5.50000
2						

```
}atoms
```

}atom_list

```
}structure
```

と指定する。この際、左側の原子 11 個はディレクトリー"junction"における計算で用いられた原子位置と一致している必要がある。同様に右側の原子 11 個も単位胞の端からの相対位置がディレクトリー"junction"における計算で用いられたものと一致していなければならない。

それから、エネルギーカットオフの値が一致していること、つまり

accuracy{

energy_cutoff = 100.0 Ry

. . .

}accuracy

という指定が一致していることが望ましい。この値によってポテンシャルなどを与える実空間上のメッシュ点が 決定され、この点がそろっていることが望ましいためである。(メッシュ点の数が異なっている場合は、Procedure 2の計算の際、補間したハートリーポテンシャルのデータを用いてポアソン方程式を解くことになる。) 10. 計算例

計算の実行および出力ファイル

例えば、

% mpirun -np 1 ../../bin/ascot_v410 condition_ele.in

によって計算が実行される。計算の過程に関することは Procedure 1-2 と同じである。

作成された"electrode.matrices.dat_**"、"electrode.vd.data" がこの後の計算に必要となるデータファイルである。"electrode.matrices.dat_**"("**"は原子の番号)に、電極の重なり積分およびハミルトニアンなどが、"electrode.vd.data"には散乱領域のハートリーポテンシャルを求める際の境界条件が格納されている。また、電極のフェルミエネルギーは"energy.dat"に

Fermi energy Ef = -0.1749835994674862 [au]; -4.7615478897698109 [eV] ...

のように与えられている。

10.1.3 Procedure 2 & 3

ディレクトリー"trans"おける、半無限電極につながった散乱領域の電子状態と対象としている系の伝導特性の 求め方を述べる。

入力ファイル

計算の基本的な条件は"condition.in"で設定される。 開放系における電子状態の計算と伝導特性を求めるので

general{

dft__negf = negf

}general

. . .

と設定する。

散乱領域の密度行列の初期値やレフト・ライト領域のハミルトニアンなどが収められているファイルの指定は、"condition.in"内の

```
file{
   scf_file = condition_scf.in
   ...
}file
```

で指定されるファイル (condition_scf.in) 内で、

10. 計算例

と行う。Procedure 1 で作成されたファイルには原子の番号"_**"が付加されているが、それを書く必要はない。 またこのディレクトリー"trans"はディレクトリー"junction"と並列におかれていなければならない。これは擬 原子軌道などのデータファイルを Procedure 1-2 で指定された通りのものを用いるためである。もし階層を変える のであれば、

```
negf_scf_file{
    ...
    input_junc_cond = "../junction/junction.in.data"
    ...
}negf_scf_file
```

で指定される"../junction/junction.in.data"内の擬原子軌道などのデータファイルを指定している箇所を書き変える必要がある。

計算の実行

この計算は、これまでと同様に"%計算実行体 入力ファイル名"と指定することで実行される。例えば

% mpirun -np 1 ../../bin/ascot_v410 condition.in

とする。

計算の入力条件・途中経過・出力ファイルの一覧は"g.output_0001"に出力される。計算の収束状況を見るためには、例えば

% grep "#d" g.output_0001

. . .

と入力した結果

#dm###	27	0.0001804107235049	0.612713	###dm#
#dm###	28	0.0001689786921160	0.612670	###dm#
#dm###	29	0.0001303360474633	0.674306	###dm#
#dm###	30	0.0001115951872376	0.674338	###dm#
#dm###	31	0.0000647522892521	0.637914	###dm#

を見ればよい。これらの数値は反復回数、密度行列の収束残差値、最大残差値を与える成分の値を表す。密度行列の残差値が、入力ファイルに指定した収束判定の基準値を満たすと反復計算のループの外に出る。

出力ファイル

出力ファイルの一覧は"g.output_0001"に書かれている。入力ファイルに指定したものは"g.output_0001"の最初に、それ以外のものは最後に書かれている。

トランスミッションの結果は"trans.dat"に

+ total ++ total -0.99609375000000D+01 0.747525613761253D+00 -0.98828125000000D+01 0.847597747561413D+00 -0.98046875000000D+01 0.353095545122651D+00 -0.97265625000000D+01 0.258960514318159D-01 -0.96484375000000D+01 0.145848780283926D+00

というように出力されている。第一列は電子の入射エネルギー(単位: eV)、第二列にはそのエネルギーに対する トランスミッションの値である。この結果は図9の通りである。

図 9: ベンゼンジチオール分子架橋系のトランスミッション。点線は電極のフェルミエネルギーを表す。

図 10: Au(111) 表面に挟まれたベンゼンジチオール分子架橋系の結晶構造。濃色の原子がレフト領域、ライト領域として扱われる Au 原子を表す。

10.2 Au(111) 表面に挟まれたベンゼンジチオール分子

ここでは、図 10 に示す Au(111) 表面間にベンゼンジチオール分子 ($C_6H_4S_2$) が架橋された系の伝導特性を求める。ここでは、複数波数 k を用いた、ディレクトリー"samples/BDT_k"にある例題について述べる。このディレクトリーには 3 つのディレクトリー ("trans"、"junction"、"electrode") がある。前節の例題と同様、ディレクトリー"junction"では図 5 の Procedure 1-2 の計算を、ディレクトリー"electrode"では図 5 の Procedure 1-1 の計算を行う。これらの計算の後に、ディレクトリー"trans"において図 5 の Procedure 2 および 3 の計算を行う。

10.2.1 Procedure 1-2

最初にディレクトリー"junction"における、散乱領域の周期境界条件下での電子状態計算(通常のバンド計算) について述べる。

入力ファイル
 計算の条件は"condition_jun.in"で設定される。
 前節と異なる点は、波数 k のメッシュ数を与える

10. 計算例

と設定されていることである。伝導方向は c 軸方向に設定されているので、その方向は"1"としている。

計算の実行

この計算は、前節同様、"%計算実行体 入力ファイル名"と指定することで実行される。例えば

% mpirun -np 1 ../../bin/ascot_v410 condition_jun.in

とする。

計算の収束状況を見るためには、例えば

% grep "#d" g.output_0001

と入力した結果

• • •			
#d####	34	0.000010538882	0.00000696180 ####d#
#d####	35	0.000002668768	0.00000142573 ####d#
#d####	36	0.000002184714	0.00000053698 ####d#
#d####	37	0.000001806330	0.00000081582 ####d#
#d####	38	0.00000409442	0.00000056937 ####d#

を見ればよい。最初の整数は反復回数、その後の数値が密度行列およびトータルエネルギーの残差値を表す。密 度行列の残差値が、入力ファイルに指定した収束判定の基準値を満たすと反復計算のループの外に出る。

出力ファイル

出力ファイルは前節に示した Γ 点計算のものと同じである。入力ファイルに指定したものは"g.output_0001"の 最初に、それ以外のものは最後に書かれている。

作成された"junction.in.data"、"junction.matrices.dat_**"、"junction.vd.data" がこの後の伝導特性の計算に 必要となるデータファイルである。"junction.in.data"には原子座標など伝導計算に引き渡す入力データが格納さ れている。そして、"junction.matrices.dat_**"("**"は原子の番号)には、重なり積分、ハミルトニアンの運動 エネルギーからの寄与、そして、計算されたハミルトニアンおよび密度行列が、"junction.vd.data"には散乱領域 の計算されたポテンシャルおよび電荷密度が格納されている。

10.2.2 Procedure 1-1

次にディレクトリー"electrode"において、レフト・ライト領域の電子状態の計算について述べる。

10. 計算例

```
入力ファイル
```

計算の条件は"condition_ele.in"で設定される。 Procedure 1-2 と同様、波数 k のメッシュ数は

```
accuracy{
```

}accuracy

と設定する。伝導方向は c 軸方向に設定されているので、その方向は"1"としている。この波数 k のメッシュ数が 次の伝導計算 Procedure 2 における k 点のデフォルトになる。

計算の実行および出力ファイル

例えば、

% mpirun -np 1 ../../bin/ascot_v410 condition_ele.in

によって計算が実行される。作成された"electrode.matrices.dat_**"、"electrode.vd.data"がこの後の計算に必要 となるデータファイルである。"electrode.matrices.dat_**"("**"は原子の番号)には、電極の重なり積分および ハミルトニアンなどが、"electrode.vd.data"には散乱領域のハートリーポテンシャルを求める際の境界条件が格納 されている。電極のフェルミエネルギーは"energy.dat"に

Fermi energy Ef = -0.1430799945057132 [au]; -3.8934062848189632 [eV] ...

のように与えられている。

10.2.3 Procedure 2 & 3

ディレクトリー"trans"おける、半無限電極につながった散乱領域の電子状態と対象としている系の伝導特性の 求め方を述べる。この際、電子状態計算と伝導特性 (トランスミッションや *I-V* 曲線)を求める計算とで、波数 *k* のメッシュ数を指定する箇所が異なるので注意していただきたい。

入力ファイル

計算の基本的な条件は"condition.in"で設定される。 開放系における電子状態の計算で用いる波数 k のメッシュ数は、"condition.in"内の

```
file{
   scf_file = condition_scf.in
   ...
}file
```

で指定されるファイル (condition_scf.in) 内で、

ksampling = 3 3
}negf_scf_accuracy

のように設定する。この値が設定されていない場合は、電極の電子状態を計算した際 (Procedure 1-1) に用いた メッシュ数が用いられる。サンプルファイルでは

```
negf_scf_accuracy{
    ...
# ksampling = 3 3
}negf_scf_accuracy
```

のようにコメントされているので、Procedure 1-1 で用いた3×3のメッシュ点が用いられる。

伝導特性 (トランスミッションや *I-V* 曲線) を求める計算で用いる波数 *k* のメッシュ数は、"condition.in"にお いて

```
gra_ksampling{
    point = 3 3
}gra_ksampling
```

と設定する。この値が設定されていない場合は、Γ 点のみの計算が実行される。

計算の実行

この計算は、これまでと同様に"%計算実行体 入力ファイル名"と指定することで実行される。例えば

% mpirun -np 1 ../../bin/ascot_v410 condition.in

とする。

計算の入力条件・途中経過・出力ファイルの一覧は"g.output_0001"に出力される。計算の収束状況を見るためには、例えば

% grep "#d" g.output_0001

と入力した結果

•••				
#dm###	23	0.0002312543720825	0.643358	###dm#
#dm###	24	0.0002140328657161	0.643385	###dm#
#dm###	25	0.0001111535784278	0.643385	###dm#
#dm###	26	0.0001040903881458	0.643378	###dm#
#dm###	27	0.0000341970029053	-0.025856	###dm#

を見ればよい。密度行列の残差値が入力ファイルに指定した収束判定の基準値を満たすと反復計算のループの外に出る。

出力ファイル

出力ファイルの一覧は"g.output_0001"に書かれている。入力ファイルに指定したものは"g.output_0001"の最初に、それ以外のものは最後に書かれている。

トランスミッションの結果は"trans.dat"に

+	total	
+	+++++++++++++++++++++++++++++++++++++++	*****
	-0.99609375000000D+01	0.335895346702474D+00
	-0.98828125000000D+01	0.239591764680092D+00
	-0.98046875000000D+01	0.209540605115762D+00
	-0.97265625000000D+01	0.743111979248885D+00
	-0.96484375000000D+01	0.277828088851503D+00

というように出力されている。第一列は電子の入射エネルギー (単位: eV)、第二列にはそのエネルギーに対する ユニットセルあたりのトランスミッションの値である。この結果は図 11 の通りである。また、このデータの下に 各 k 点に対するトランスミッションの結果も

```
+ n_k=
           1
1 -0.99609375000000D+01 0.451823960192751D+00
  1 -0.98828125000000D+01 0.398921394047098D+00
 1 -0.98046875000000D+01 0.389665626667364D+00
 1 -0.97265625000000D+01 0.380584357741680D+00
  1 -0.96484375000000D+01 0.456434061258166D+00
. . .
9
+ n_k=
-0.99609375000000D+01 0.371542019682907D+00
 9
 9 -0.98828125000000D+01 0.290176355731555D+00
 9 -0.98046875000000D+01 0.187154641526410D+00
 9 -0.97265625000000D+01 0.990055146544450D+00
 9 -0.96484375000000D+01 0.338886714343308D+00
. . .
```

のように出力されている。この"n_k"の値と波数 k との対応は"g.output_0001"に

•••					
>>>>>	·>>>>>>>	››››››››››››››››››››››››››››››››››››››	<<<<<<<<<<<	<<<<<<	<<<
>>>>>	·>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	K-sampling :	3 3	<<
>>	1	0.000000000000000000000000000000000000	0.0000000000	0000D+00	<<
>>	2	0.125874373766704D+00	-0.72673531495	6322D-01	<<
>>	3	0.251748747533409D+00	-0.14534706299	1264D+00	<<
>>	4	0.000000000000000000000000000000000000	0.14534706299	1264D+00	<<
>>	5	0.125874373766704D+00	0.72673531495	6321D-01	<<
>>	6	0.251748747533409D+00	-0.16653345369	3773D-15	<<
>>	7	0.000000000000000000000000000000000000	0.29069412598	2529D+00	<<
>>	8	0.125874373766704D+00	0.21802059448	6896D+00	<<
>>	9	0.251748747533409D+00	0.14534706299	1264D+00	<<

10. 計算例

図 11: Au(111) 表面に挟まれたベンゼンジチオール分子架橋系のトランスミッション。実線(破線)は波数として 3×3 のメッシュ点(Γ 点のみ)を指定したときの計算結果である。電極のフェルミエネルギーを 0 [eV] として いる。

のように k_y および k_z が示されている。また、"trans2.dat"には各エネルギーにおけるトランスミッションの波数 依存性が

+++++++++++++++++++++++++++++++++++++++					
+ w =	+ w = -3.8671875000000				
+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++++		
1	0.0000D+00	0.0000D+00	0.571279943931029D+00		
2	0.12587D+00	-0.72674D-01	0.504929155087744D+00		
3	0.25175D+00	-0.14535D+00	0.504928725934798D+00		
4	0.0000D+00	0.14535D+00	0.354399098872950D+00		
5	0.12587D+00	0.72674D-01	0.504931414039382D+00		
6	0.25175D+00	-0.16653D-15	0.377255930119214D+00		
7	0.0000D+00	0.29069D+00	0.354400235441617D+00		
8	0.12587D+00	0.21802D+00	0.377255930112745D+00		
9	0.25175D+00	0.14535D+00	0.504931843192593D+00		
+++++++++++++++++++++++++++++++++++++++					
+ w = -3.78906250000000					

のように出力されている。第一列はkの番号、第二(三)列には $k_y(k_z)$ 、第四列にはそのエネルギーに対する トランスミッションの値である。

図 12: C_{60} 内包カーボンナノチューブの結晶構造。濃色の原子がレフト領域、ライト領域として扱われる C 原子 を表す。

10.3 C₆₀内包カーボンナノチューブ

図 12 に示す C₆₀ 内包カーボンナノチューブの伝導特性を求める。これはディレクトリー"samples/C_NT"にあ る例題である。文献 18,19 で提案されたタイトバインディングパラメータを用いて計算する。タイトバインディン グパラメータを用いた計算では Procedure 1 および Procedure 2 は省略される。

この系に対する結果の詳細は文献1にある。

10.3.1 Procedure 3

入力ファイル

基本的な条件は"condition.in"で設定される。 文献 18,19 で提案されたタイトバインディングパラメータを用いて伝導特性を求めるので

general{
 dft__negf = negf
 model_type = rtb_h
 ...

}general

と設定する。この計算では必ずパラメータのデータファイル"rtbh_c_parameter.in"を用いる。このデータファイルは

```
file{
    ...
    tb_parameter = "../../data/rtbh_c_parameter.in"
    ...
```

}file

と指定される。ファイルの指定が行わなければデフォルトとして"../../data/rtbh_c_parameter.in"が設定されるので、この例の通りのディレクトリーの階層で計算を実行する時は省略が可能である。

結晶構造は

```
file{
   tb_cordinate = cordinate.in
    ...
}file
```

で指定されるファイル (cordinate.in) 内で、図 12 に示す領域に分けて設定される。例えば

tb_junc_region-	{				
atom_list{					
			•••		
	158	С	3.397610	5.883531	7.383733
	159	С	2.099490	6.461566	7.383733
	160	С	1.413208	6.645490	8.614355
	161	C1	1.174050	0.381472	7.628316
	162	C1	0.725603	-0.998707	7.628316
	163	C1	-0.725603	-0.998707	7.628316
<pre>}atom_list</pre>					
}tb_junc_region	n				
tb_left_region	{				
}tb_left_region	n				
tb_right_region	n{				

}tb_right_region

である。原子の記号として"C"と表記されたものはナノチューブの C 原子を、"C1"と表記されたものは内包された C₆₀の C 原子を表す。伝導方向は c 軸方向に設定されている。

計算の実行

この計算は、これまでと同様に"%計算実行体 入力ファイル名"と指定することで実行される。例えば

% mpirun -np 1 ../../bin/ascot_v410 condition.in

とする。計算の入力条件・途中経過・出力ファイルの一覧は"g.output_0001"に出力される。

出力ファイル

出力ファイルの一覧は"g.output_0001"に書かれている。入力ファイルに指定したものは"g.output_0001"の最初に、それ以外のものは最後に書かれている。

ライト領域のバンド構造の結果は"ev_r.dat"に

10. 計算例

図 13: C₆₀ 内包カーボンナノチューブのバンド図。点線は電極のフェルミエネルギーを表す。

0 -19.3951534174472 0 -19.3951534171021

というように出力されている。最初の" cp_r"はライト領域のフェルミエネルギー (単位: eV) が出力されている。 そして第一列は k_z を表す番号、第二列にはそれに対するエネルギーレベル (単位: eV) である。その結果は図 13 の通りである。レフト領域のバンド構造は" ev_l.dat" に同様に格納される。

トランスミッションの結果は"trans.dat"に

+ .	total	
++	+++++++++++++++++++++++++++++++++++++++	.++++++++++++++++++++++++++++++++++++++
	0.500000000000000000000000000000000000	0.199997818598244D+01
	0.15000000000000D-01	0.199997819758579D+01
	0.2500000000000D-01	0.199997820836010D+01
	0.35000000000000D-01	0.199997821829501D+01
	0.4500000000000D-01	0.199997822737115D+01
	0.5500000000000D-01	0.199997823556062D+01

というように出力されている。第一列は電子の入射エネルギー(単位: eV)、第二列にはそのエネルギーに対する トランスミッションの値である。その結果は図 14 の通りである。

"cordinate.in"に指定した全炭素原子に対する状態密度は"em_gf.dat"に

図 14: C₆₀ 内包カーボンナノチューブのトランスミッション。点線は電極のフェルミエネルギーを表す。

図 15: C₆₀内包カーボンナノチューブの状態密度。点線は電極のフェルミエネルギーを表す。

0.131375763484579D-02
0.131315870490883D-02
0.131261158030394D-02
0.131211793801151D-02

というように出力されている。第一列は電子の入射エネルギー (単位: eV)、第二列にはそのエネルギーに対する 状態密度 (単位: 1/eV) の値である。その結果は図 15 の通りである。

参考文献

[1] H. Kondo, H. Kino and T. Ohno: Phys. Rev. B 71 (2005) 115413.

. . .

- [2] H. Kondo, J. Nara, H. Kino and T. Ohno: Jpn. J. Appl. Phys. 47 (2008) 4792.
- [3] H. Kondo, H. Kino, J. Nara, T. Ozaki and T. Ohno: Phys. Rev. B 73 (2006) 235323.

- [4] H. Kondo, H. Kino and T. Ohno: Thin Solid Films 464-465 (2004) 342.
- [5] W.T. Geng, H. Kondo, J. Nara, and T. Ohno: Phys. Rev. B 72 (2005) 125421.
- [6] H. Kondo, J. Nara, H. Kino and T. Ohno: J. Chem. Phys. 128 (2008) 064701.
- [7] W.T. Geng, M. Oda, J. Nara, H. Kondo, and T. Ohno: J. Phys. Chem. B 112, 2795 (2008).
- [8] H. Kondo, H. Kino, J. Nara and T. Ohno: Appl. Surf. Sci. 254 (2008) 7985.
- [9] H. Kondo, J. Nara, H. Kino and T. Ohno: J. Phys.: Condens. Matter 21, 064220 (2009).
- [10] H. Kondo, J. Nara and T. Ohno: Phys. Rev. B 81 (2010) 085318.
- [11] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, 1995.
- [12] M. P. López Sancho, J. M. López Sancho, and J. Rubio: J. Phys. F 14 (1984) 1205.
- [13] M. P. López Sancho, J. M. López Sancho, and J. Rubio: J. Phys. F 15 (1985) 951.
- [14] T. Ozaki: Phys. Rev. B 67 (2003) 155108.
- [15] The pseudo atomic orbitals are generated using the CIAO code, which is developed within the RSS21 project supported by MEXT of the Japanese government. See the website http://www.rss21.iis.utokyo.ac.jp/en/index.html.
- [16] N. Troullier and J. L. Martins: Phys. Rev. B 43 (1991) 1993.
- [17] L. Kleinman and D. M. Bylander: Phys. Rev. Lett. 48 (1982) 1425.
- [18] S. Okada and S. Saito: J. Phys. Soc. Jpn. 64 (1995) 2100.
- [19] N. Hamada, M. Yamaji, S. Okada, S. Saito: Proc. of International Symposium on Nanonetwork Materials: Fullerens, Nanotubes, and Related Systems, eds., S. Saito, T. Ando, Y. Iwasa, K. Kikuchi, M. Kobayashi, and Y. Saito, pp. 201, January 2001, Kamakura (American Institute of Physics, New York, 2001).
- [20] C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho: J. Phys.: Condens. Matter. 4 (1989) 6047.
- [21] J. P. Perdew and Y. Wang: Phys. Rev. B 45 (1992) 13244.
- [22] J. P. Perdew and A. Zunger: Phys. Rev. B 23 (1981) 5048.
- [23] G. Kresse and J. Furthmüller: Phys. Rev. B 54 (1996) 11169.
- [24] D. G. Anderson, J. Assoc. Computing Machinery, 12 (1965) 547.
- [25] K. Hirose and M. Tsukada: Phys. Rev. B 51 (1995) 5278.