

#### NIMSナノシミュレーションワークショップ2012

# PHASEの性能最適化

2012年10月29日 日本電気株式会社 加藤 季広

### はじめに

- PHASEは、様々なプラットフォームで高い性能が得られるよう、 性能最適化が適用されています
  - 対応プラットフォーム
    - Windows, PC-Linux (X86)
    - SR (POWER)
    - 京コンピュータ、FX10 (SPARC)
    - ・ 地球シミュレータ、NEC SXシリーズ
- ここでは、PHASEに適用されている性能最適化について、その概要を説明させていただきます

### 旧地球シミュレータ向け性能最適化

- ベクトル長(主に最内ループ長)がなるべく長くなるようにする MPIによる分散メモリ並列化と共有メモリ並列化(SMP)のハイブリッド並列を適用
  - 並列化軸が共通の場合もある
  - 波動関数の固有状態を分割
  - 波動関数のFFTは局所的に実行(非並列)
- ファイル入出力も並列化
- 大規模Si系(N=10,648個)を対象とする
  - 非局所ポテンシャルの射影演算子 N<sub>p</sub> = 42,592 = 4N
  - 波動関数の基底平面波 M = 792,555
  - ◆ 状態数 N<sub>e</sub> = 24,576 ≒ 2N
    - MPI/SMP並列化するのに十分な数
  - FFTメッシュ数 300x300x300

### 負荷の高い処理

# O(N<sup>2</sup>M)**の項**

- 非局所ポテンシャルと波動関数の積を作る  $V_{NL}|\Psi_{k\nu}\rangle = \sum_{i} \sum D_{nm}^{\varsigma(i)}|\beta_{n}^{I}\rangle\langle\beta_{m}^{I}|\Psi_{k\nu}\rangle$ 
  - 射影演算子と波動関数の内積を作る

$$\left\langle eta_{\scriptscriptstyle m}^{\scriptscriptstyle I} \middle| \Psi_{\scriptscriptstyle {\bf k} \scriptscriptstyle {\scriptstyle 
u}} \right\rangle \equiv f_{\scriptscriptstyle m {\bf k} \scriptscriptstyle {\scriptstyle 
u}}^{\scriptscriptstyle I}$$

• 非局所ポテンシャルと波動関数の積を完成する  $V_{NL}|\Psi_{kv}
angle = \sum_{r} \sum D_{nm}^{arsigma(I)} oldsymbol{eta}_{n}^{I} oldsymbol{f}_{mkv}^{I}$ 

$$V_{NL} | \Psi_{k\nu} \rangle = \sum_{I} \sum_{n,m} D_{nm}^{\varsigma(I)} | \beta_n^I \rangle f_{mk\nu}^I$$

波動関数の規格直交化(修正グラムシュミット法) ⟨Ψ<sub>k</sub>μ | S|Ψ<sub>k</sub>ν⟩ = δ<sub>μ</sub>ν

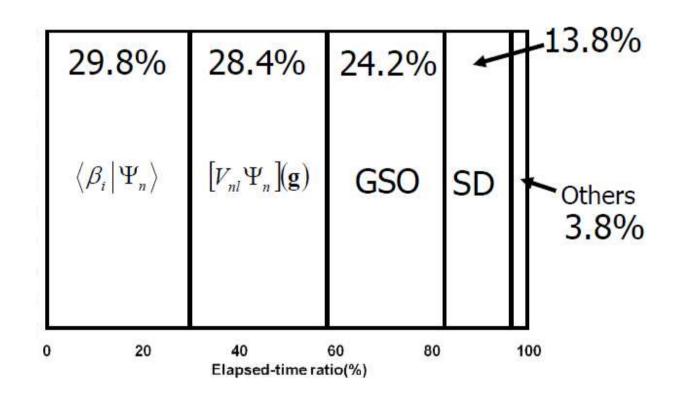
$$\langle \Psi_{\mathbf{k}\mu} | \mathbf{S} | \Psi_{\mathbf{k}\nu} \rangle = \delta_{\mu\nu}$$

Subspace-Diagonalization(波動関数のユニタリ変換)

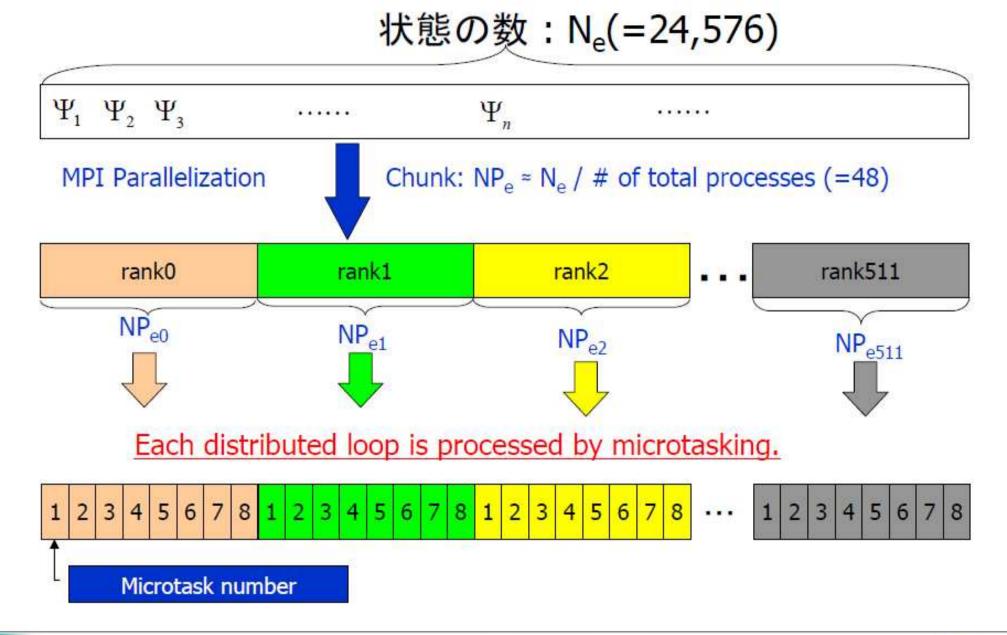
# O(NMlogM)**の項**

$$\left\langle \Psi_{\mathbf{k}\mu} \left| H \right| \Psi_{\mathbf{k}\nu} \right\rangle = \varepsilon_{\mathbf{k}\mu} \delta_{\mu\nu}$$

- 波動関数のFFT  $\Psi_{\mathbf{k}\nu}(\mathbf{G}) \xrightarrow{\mathrm{FFT}} \Psi_{\mathbf{k}\nu}(\mathbf{r})$ 
  - 局所ポテンシャルと波動関数の内積
  - 電荷密度分布の構成(欠損電荷に由来しない項)

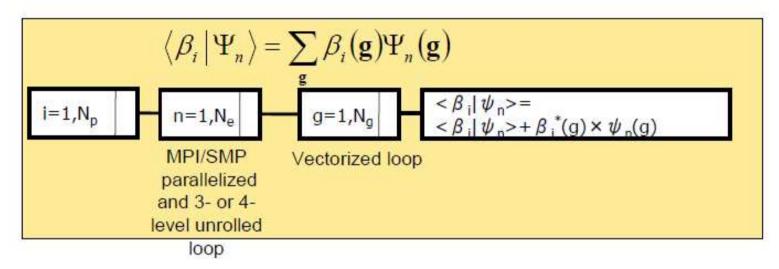

# O(NM)**の項**

● 電荷密度の欠損電荷に由来する項(hardpartと呼ぶ)

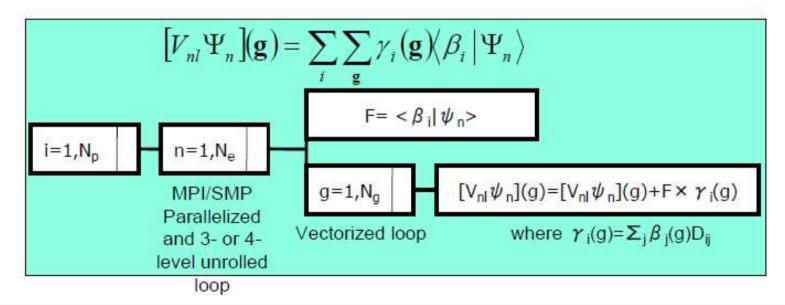

$$\rho_{H}(\mathbf{G}) = \sum_{I} \sum_{\tau \ell m} \sum_{\tau' \ell' m'} h_{\tau \ell m, \tau' \ell' m'}^{I} e^{-i\mathbf{G} \cdot \mathbf{R}_{I}} \sum_{\ell''} i^{-\ell''} Q_{\tau \ell \tau' \ell'}^{\varsigma(I), \ell''} (|\mathbf{G}|) d_{lm, l'm'}^{\ell''} Y_{\ell'' m'} (\hat{\mathbf{G}})$$

## Si 10,000原子系の負荷分布

- 射影演算子と波動関数の内積
- 非局所ポテンシャルと波動関数の積を完成する
- 波動関数の規格直交化(GSO)
- 部分対角化=Subspace-Diagonalization (SD)
- FFT等

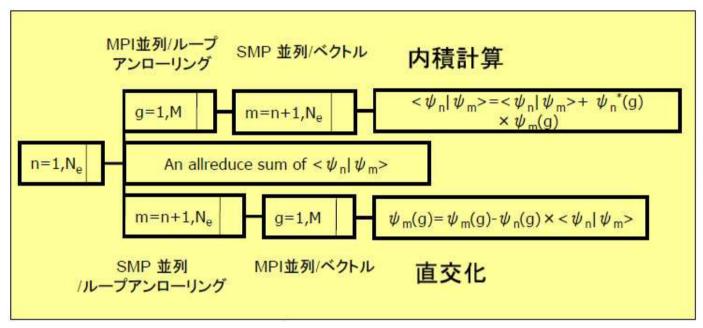


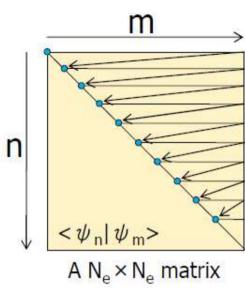

### 波動関数の各状態を分割



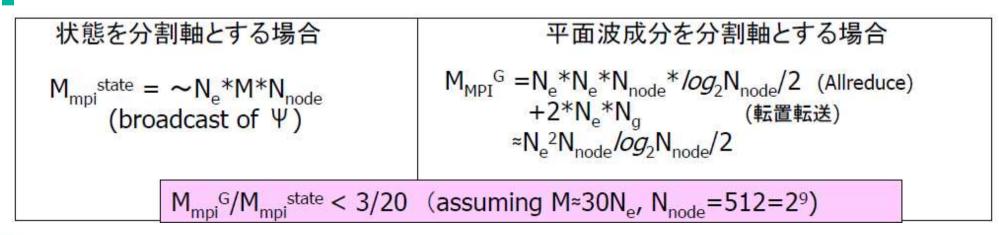

### 非局所ポテンシャルと波動関数の積

### 射影演算子と波動関数の内積





### 非局所ポテンシャルと波動関数の積を完成する

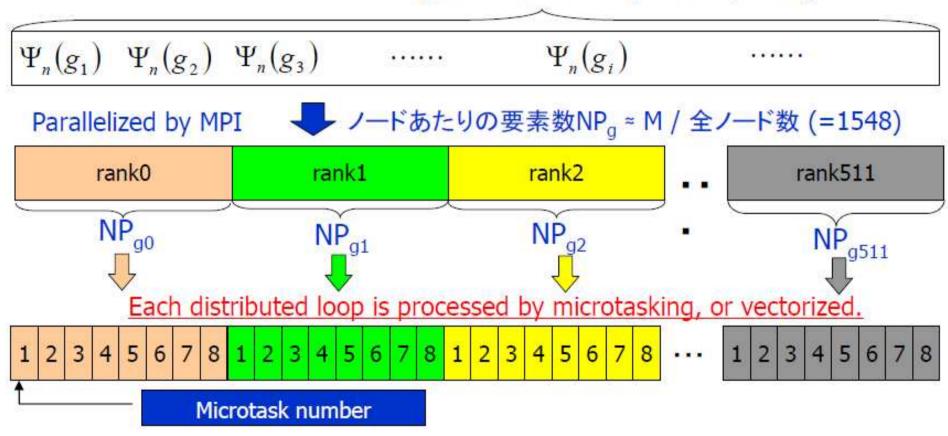



# 波動関数の規格直交化(GSO)

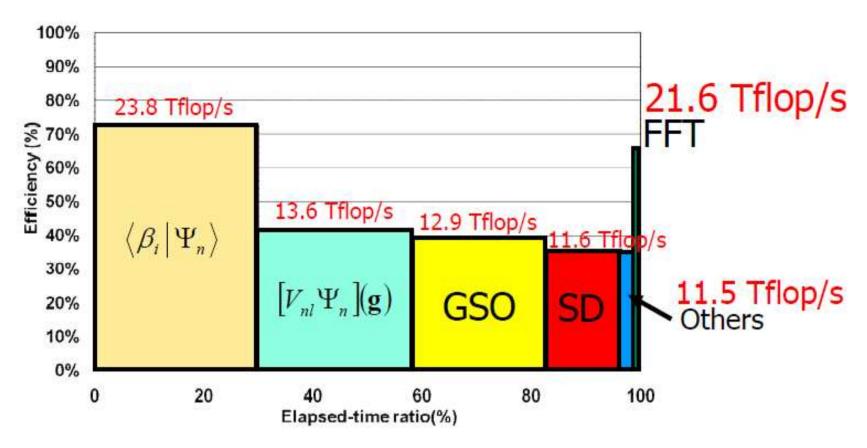
### アルゴリズム






### 通信量の比較




### 波動関数の成分(平面波)で分割

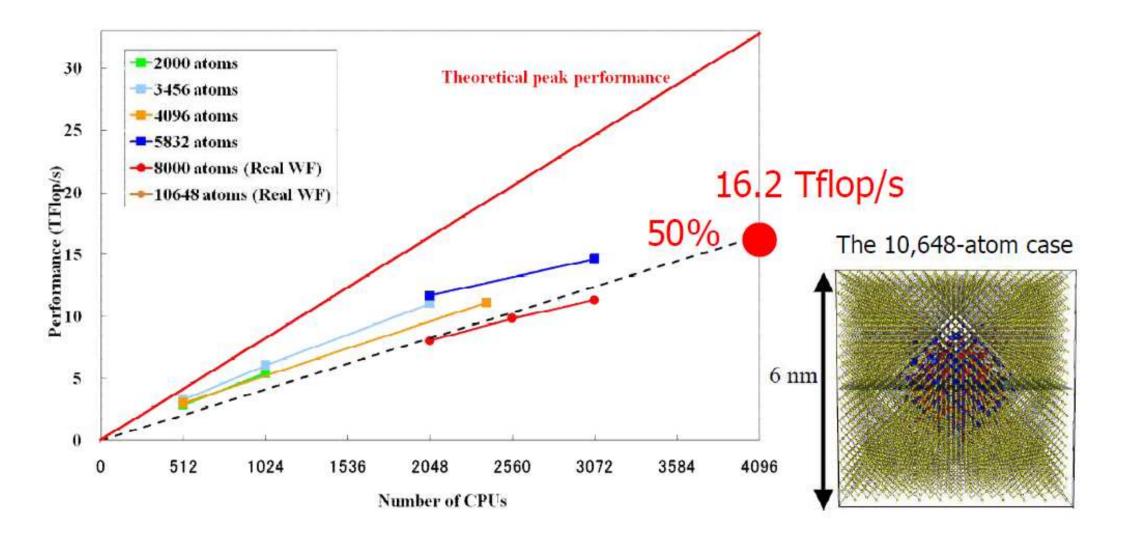
### 状態に関して分割された波動関数を転置転送して成分分割する

# of g vectors: M(=792,555)



### チューニングしたあとの効率




部分対角化(SD)は電子状態の収束性を加速するために用いる

● 部分行列の計算はGSOと同様成分をMPI分割軸とする

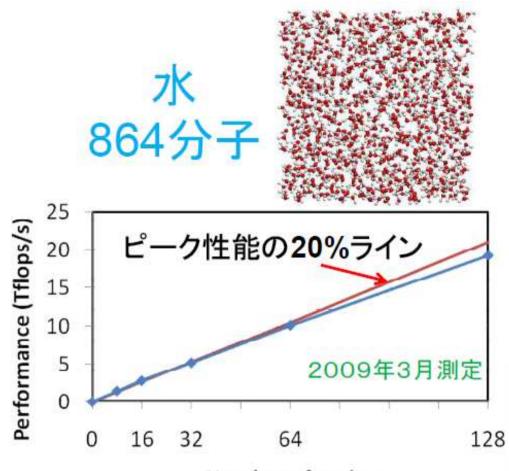
$$\langle \Psi_m | H_{KS} | \Psi_n \rangle = \sum_{\mathbf{g}} \Psi_m^*(\mathbf{g}) [H_{KS} \Psi_n](\mathbf{g})$$

行列の対角化はScaLAPACKサブルーチン(PDSYEVD or PZHEEVD)を用いる

### **Total Performances**



# 新地球シミュレータ(SX-9)向けの性能最適化


# 主な対象はO(N³)部分

- 非局所ポテンシャルと波動関数の積を作る部分(3重ループ)
  - ・ 射影演算子と波動関数の内積  $\langle \beta_m^I | \Psi_{k\nu} \rangle \equiv f_{mk\nu}^I$
  - 非局所ポテンシャルと波動関数の積  $V_{\rm NL}|\Psi_{{f k}
    u}
    angle = \sum_{I} \sum_{n,m} D_{nm}^{arsigma(I)} |eta_n^I
    angle f_{m{f k}
    u}^I$

### BLAS**化**

- ●オリジナルのループ構造
  - 内側2重ループで実装: 行列ベクトル積(Level2 BLAS)
- ループ分割を行ってデータを蓄積し、行列積の形に最適化
  - 修正後の実装: 行列積(Level3 BLAS)
  - 核心部でDGEMMを使用
- 最内ループをブロッキング
  - ブロックサイズを工夫し、メモリ使用量を削減
- FFT(交換相関ポテンシャルを計算する部分)を並列化

### 新地球シミュレータにおけるPHASEの性能(性能最適化前)



Number of nodes

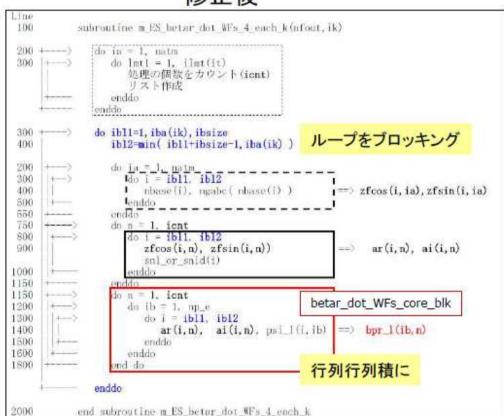
#### ●プログラムチューニング

計算コアのBLASサブルーチン置換により 2~3倍程度の性能向上が期待できる。



地球シミュレータ(ES2)

| 計算プロセッサ<br>のピーク性能 | 102.4Gflop<br>s | 総プロセッサ数 | 1280          |
|-------------------|-----------------|---------|---------------|
| 計算ノードのピー<br>ク性能   | 819.2Gflop<br>s | 総計算ノード数 | 160           |
| 計算ノードの主<br>記憶容量   | 128GByte        | ピーク性能   | 131Tflop<br>s |
| 計算ノードの<br>CPU数    | 8               | 主記憶容量   | 20TByte       |


### 射影演算子と波動関数の内積

$$\left\langle \beta_{m}^{I} \middle| \Psi_{\mathbf{k}\nu} \right\rangle \equiv f_{m\mathbf{k}\nu}^{I}$$

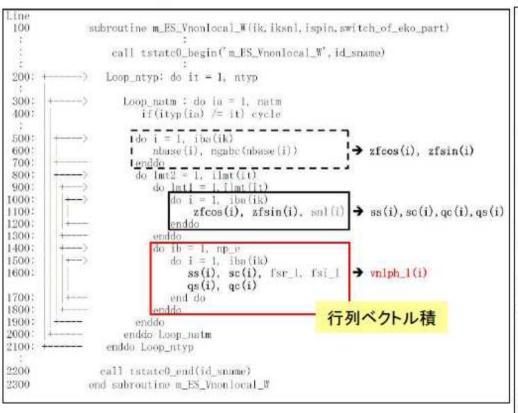
#### オリジナルのループ構造

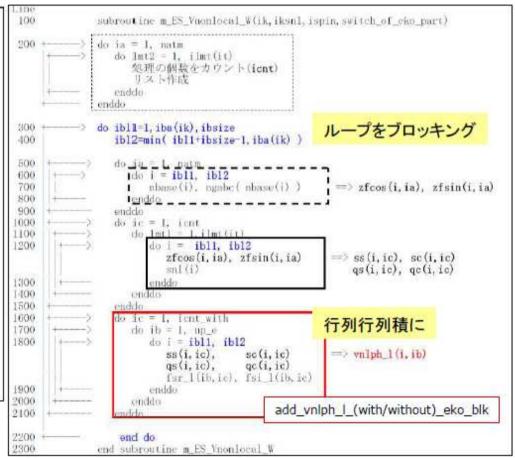
#### 100 subroutine m ES betar dot WFs 4 each k(nfout, ik) call tstatc0\_begin('betar\_dot\_WFs',id\_sname) 200 +do ia = I, natm 300 i do i = 1, iba(ik) 400 nbase(i), ngabc(nbase(i)) ⇒ zfcos(i), zfsin(i) 500 700 do ImtI = 1, ilmt(it) 800 do i = 1, iba(ik)zfcos(i), zfsin(i), snl or snld(i) > ar(i), ai(i) 900 000 enddo 1200 do ib = 1, np\_e 1300 do i = 2, iha(ik)ar(i), ai(i), psi\_1(i, ib) → bpr\_l(ib, lmtal) 1400 1500 enddo 1600 enddo 行列ベクトル積 1700 enddo 1800 end do 1900 call tstatc0\_end(id\_sname) 2000 end subroutine m ES betar dot WFs 4 each k

#### 修正後



### 射影演算子と波動関数の内積:核心部

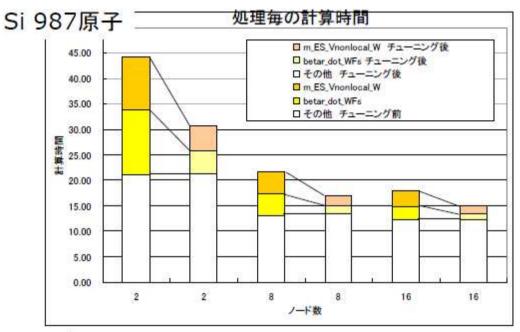

```
subroutine betar dot WFs core blk(ibsize, icnt1, tran1, psi 1)
   integer,intent(in) :: ibsize, icnt1
   logical, intent(in) :: tran1
   real(kind=DP),intent(in), dimension(kg1,np e,ista k:iend k,kimg) :: psi | ! MPI
   integer
            :: j, ib, i
   integer :: icsize
   real(kind=DP) :: alpha, beta
   if(kimg == 1) then
   icsize = ibl2-ibl1+1
     alpha= 1.d0; beta= 1.d0
     call DGEMM ('T', 'N', np e,icnt1,icsize, alpha,psi l(ibl1,1,ik,1),kg1, wk ar1,ibsize, beta,bp tmp1,LD11)
     call DGEMM ('T', 'N', np e,icnt1,icsize, alpha,psi l(ibl1,1,ik,1),kg1, wk ai1,ibsize, beta,bp tmp2,LD21)
    else if(kimg == 2) then
     icsize = ibl2-ibl1+1
     alpha= 1.d0; beta= 1.d0
     call DGEMM ('T', 'N', np e,icnt1,icsize, alpha,psi l(ibl1,1,ik,1),kg1, wk ar1,ibsize, beta,bp tmp1,LD11)
     alpha=-1.d0; beta= 1.d0
     call DGEMM ('T', 'N', np e,icnt1,icsize, alpha,psi l(ibl1,1,ik,2),kg1, wk ai1,ibsize, beta,bp tmp1,LD11)
     alpha= 1.d0; beta= 1.d0
     call DGEMM ('T', 'N', np e,icnt1,icsize, alpha,psi l(ibl1,1,ik,1),kg1, wk ai1,ibsize, beta,bp tmp2,LD21)
     alpha= 1.d0; beta= 1.d0
     call DGEMM ('T', 'N', np e,icnt1,icsize, alpha,psi l(ibl1,1,ik,2),kg1, wk ar1,ibsize, beta,bp tmp2,LD21)
    end if
  end subroutine betar dot WFs core blk
```

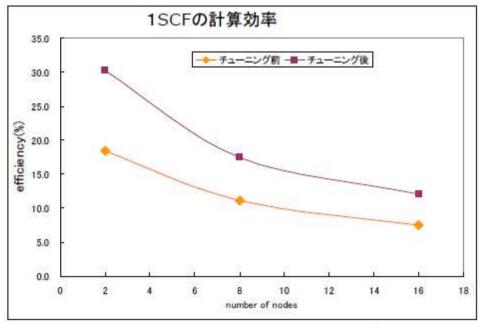

### 非局所ポテンシャルと波動関数の積

$$V_{\rm NL} | \Psi_{\bf k\nu} \rangle = \sum_{I} \sum_{n,m} D_{nm}^{\varsigma(I)} | \beta_n^I \rangle f_{m{\bf k}\nu}^I$$

#### オリジナルのループ構造

#### 修正後




### 非局所ポテンシャルと波動関数の積:核心部

```
subroutine add vnlph | without eko blk(ibsize,ibl1,ibl2,icnt without,vnlph)
  integer, intent(in) :: ibsize, ibl1, ibl2, icnt without
  real(kind=DP), intent(inout), dimension(kg1,np e,kimg) :: vnlph
            :: ic, ib, i
  integer
  integer
           :: icsize
  real(kind=DP) :: alpha, beta
  if(kima == 1) then
  else if(kima == 2) then
    icsize=ibl2-ibl1+1
    alpha= 1.d0; beta= 1.d0
    call DGEMM__('N','T', icsize,np_e,icnt, alpha,wk_sc,ibsize, fsr_tmp,np_e, beta,vnlph(ibl1,1,1),kg1)
    alpha=-1.d0; beta= 1.d0
    call DGEMM__('N','T', icsize,np_e,icnt, alpha,wk_ss,ibsize, fsi_tmp,np_e, beta,vnlph(ibl1,1,1),kg1)
    alpha= 1.d0: beta= 1.d0
    call DGEMM ('N','T', icsize,np e,icnt, alpha,wk sc,ibsize, fsi tmp,np e, beta,vnlph(ibl1,1,2),kg1)
    alpha= 1.d0; beta= 1.d0
    call DGEMM ('N','T', icsize,np_e,icnt, alpha,wk_ss,ibsize, fsr_tmp,np_e, beta,vnlph(ibl1,1,2),kg1)
    end if
  end if
 end subroutine add vnlph 1 without eko blk
```

# 性能最適化の効果(1/2)





| <b>~</b> : | -   | 0   | 0   | 0   | -    | 7 |
|------------|-----|-----|-----|-----|------|---|
| _          | - 1 | ( ) | ( ) | ( ) | ш    | 7 |
|            |     | •   | •   | •   | 1717 |   |

| 100                                 | 0000     | UI尔士 Inodeの結果 |            |               |                 | 4nodeの結果 |            |               |          |
|-------------------------------------|----------|---------------|------------|---------------|-----------------|----------|------------|---------------|----------|
|                                     |          | MFLOPS        | efficiency | V.OP<br>RATIO | AVER. V.<br>LEN | MFLOPS   | efficiency | V.OP<br>RATIO | AVER. V. |
| betar_dot                           | dgemm    | 61,007.1      | 59.6       | 99.37         | 197.5           | 49,544.8 | 48.4       | 99.28         | 166      |
|                                     | "-micro1 | 60,964.5      | 59.5       | 99.37         | 197.5           | 49,482.2 | 48.3       | 99,28         | 166      |
|                                     | "-micro2 | 61,005.3      | 59.6       | 99.37         | 197.5           | 49,560.2 | 48.4       | 99.28         | 166      |
|                                     | "-micro3 | 61,005.4      | 59.6       | 99.37         | 197.5           | 49,551.3 | 48.4       | 99.28         | 166      |
|                                     | "micro4  | 61,027.6      | 59.6       | 99.37         | 197.5           | 49,558.9 | 48.4       | 99.28         | 166      |
| "micro5 6<br>"micro6 6<br>"micro7 6 | 60,999.1 | 59.6          | 99.37      | 197.5         | 49,563.8        | 48.4     | 99.28      | 166           |          |
|                                     | "-micro6 | 61,007.7      | 59.6       | 99.37         | 197.5           | 49,556.2 | 48.4       | 99.28         | 166      |
|                                     | 61,021.2 | 59.6          | 99.37      | 197.5         | 49,548.6        | 48.4     | 99.28      | 166           |          |
|                                     | 61,025.8 | 59.6          | 99.37      | 197.5         | 49,537.0        | 48.4     | 99.28      | 166           |          |
| "                                   | dgemm    | 75,361.4      | 73.6       | 99.41         | 249.6           | 75,051.1 | 73.3       | 99.39         | 249.5    |
|                                     | "-micro1 | 75,319.8      | 73.6       | 99.41         | 249.6           | 74,922.4 | 73.2       | 99.39         | 249.5    |
|                                     | "micro2  | 75,386.2      | 73.6       | 99.41         | 249.6           | 75,085.0 | 73.3       | 99.39         | 249.5    |
|                                     | "-micro3 | 75,353.2      | 73.6       | 99.41         | 249.6           | 75,103.4 | 73.3       | 99.39         | 249.5    |
|                                     | "-micro4 | 75,369.1      | 73.6       | 99.41         | 249.6           | 75,027.8 | 73.3       | 99.39         | 249.5    |
|                                     | "micro5  | 75,359.2      | 73.6       | 99.41         | 249.6           | 75,062.5 | 73.3       | 99.39         | 249.5    |
|                                     | "-micro6 | 75,341.3      | 73.6       | 99.41         | 249.6           | 75,065.4 | 73.3       | 99.39         | 249.5    |
|                                     | "-micro7 | 75,388.4      | 73.6       | 99,41         | 249.6           | 75,086.1 | 73.3       | 99.39         | 249.5    |
|                                     | "-micro8 | 75,373.8      | 73.6       | 99.41         | 249.6           | 75,056.9 | 73.3       | 99.39         | 249.5    |

Si 2744原子

| 14原子      |         | 4nodeの結果 |            |               |                 |  |  |
|-----------|---------|----------|------------|---------------|-----------------|--|--|
|           |         | MFLOPS   | efficiency | V.OP<br>RATIO | AVER, V.<br>LEN |  |  |
| betar_dot | dgemm_  | 72,384.7 | 70.7       | 99.52         | 249.4           |  |  |
| H 6       | "micro1 | 72,214.5 | 70.5       | 99.52         | 249.4           |  |  |
|           | "micro2 | 72,409.5 | 70.7       | 99.52         | 249.4           |  |  |
| l .       | "micro3 | 72,411.5 | 70.7       | 99.52         | 249.4           |  |  |
|           | "micro4 | 72,399.8 | 70.7       | 99.52         | 249.4           |  |  |
|           | "micro5 | 72,398.1 | 70.7       | 99.52         | 249.4           |  |  |
|           | "micro6 | 72,417.9 | 70.7       | 99.52         | 249.4           |  |  |
|           | "micro7 | 72,411.4 | 70.7       | 99.52         | 249.4           |  |  |
|           | "micro8 | 72,415.4 | 70.7       | 99.52         | 249.4           |  |  |
| Vnonlocal | dgemm_  | 79,872.2 | 78.0       | 99.42         | 249.9           |  |  |
|           | "micro1 | 79,676.0 | 77.8       | 99.42         | 249.9           |  |  |
|           | "micro2 | 79,880.2 | 78.0       | 99.42         | 249.9           |  |  |
|           | "micro3 | 79,891.6 | 78.0       | 99.42         | 249.9           |  |  |
|           | "micro4 | 79,875.2 | 78.0       | 99.42         | 249.9           |  |  |
|           | "micro5 | 79,909.2 | 78.0       | 99.42         | 249.9           |  |  |
|           | "micro6 | 79,898.2 | 78.0       | 99.42         | 249.9           |  |  |
|           | "micro7 | 79,913.0 | 78.0       | 99.42         | 249.9           |  |  |
|           | "micro8 | 79,934.6 | 78.1       | 99.42         | 249.9           |  |  |

dgemm部分は、ピーク性能の48.4%~78.0%の効率

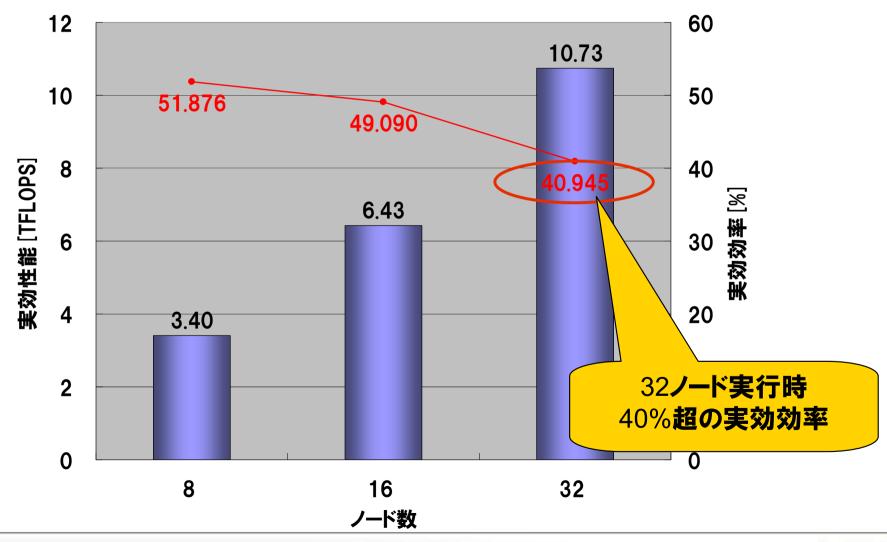
# 性能最適化の効果(2/2)

### Si 4,096**原子**

演算効率、ベクトル演算率

|                              | 8ノード64プロセッサ | 32ノード256プロセッサ |
|------------------------------|-------------|---------------|
| Real Time (sec)              | 1919.19     | 879.56        |
| User Time (sec)              | 11934.91    | 3602.78       |
| System Time (sec)            | 20.26       | 15.18         |
| Vector Time (sec)            | 10637.37    | 2808.98       |
| Instruction Count            | 5.9246E+12  | 1.6365E+12    |
| Vector Instruction Count     | 2.7200E+12  | 7.0450E+11    |
| Vector Element Count         | 6.7654E+14  | 1.7505E+14    |
| FLOP Count                   | 4.2828E+14  | 1.1035E+14    |
| MOPS                         | 56953.95    | 48847.47      |
| MFLOPS                       | 35884.51    | 30628.76      |
| Performance (%)              | 35.04       | 29.91         |
| Average Vector Length        | 248.73      | 248.48        |
| Vector Operation Ratio (%)   | 99.53       | 99.47         |
| Memory size used (MB)        | 55744.00    | 17536.00      |
| Global Memory size used (MB) | 128.00      | 128.00        |
| MIPS                         | 496.41      | 454.24        |
| Instruction Cache miss (sec) | 6.91        | 6.64          |
| Operand Cache miss (sec)     | 139.58      | 129.12        |
| Bank Conflict Time           |             | 30000 300000  |
| CPU Port Conf.               | 954.83      | 358.43        |
| Memory Net. Conf.            | 4607.40     | 1219.75       |

▶ チューニング前は、約20%(水864分子)


#### 並列化率と最大利用可能ノード数

| プロセッサ数n<br>プロセッサ数m               | 2-102 Hz St                  | 64 実行時間Tn(秒)<br>256 実行時間Tm(秒) |  |  |  |
|----------------------------------|------------------------------|-------------------------------|--|--|--|
| 並列化率 α<br>最大利用プロセッサ数<br>最大利用ノード数 | 99.402301%<br>168.31<br>21.0 |                               |  |  |  |

### 最適化の効果(2011年の測定結果)

### Si 4096原子における主要処理部分(SCFループ)の性能

■ 実効効率は40%を超える



### おわりに

- PHASEに適用された性能最適化について、最適化内容の概要と効果を見ていただきました
  - これらの最適化の多くは、地球シミュレータ以外のプラット フォームでも有効です
- その後も、様々な最適化を適用し性能向上に努めています
  - 各種ソルバについてもDGEMM化を適用
  - MPI並列化の促進
  - 並列ライブラリ(ScaLAPACK)の利用促進
  - 各種プラットフォーム(京、PCクラスタ、地球シミュレータ)向けの性能最適化
- 今後も最適化を促進し、効率の良い運用が可能となるよう努 めてまいります

### NECのHPCアプリケーション高度化サービス

### アイディアを成果に結びつけるお手伝い

詳しくは弊社Webページ
 http://www.nec.co.jp/solution/hpc/app\_service/index.html

 をご参照ください





### 機能強化サービス

アプリケーションの「機能」を新規開発または強化するサービス メニュー群です

### 性能強化サービス

アプリケーションの本質的な機能はそのままに、「性能」を強化することにフォーカスしたサービスメニュー群です

### 実行支援サービス

アプリケーションの「実行」に関する様々なお悩みを解決する サービスメニュー群です



# NECグループビジョン2017

# 人と地球にやさしい情報社会を イノベーションで実現する グローバルリーディングカンパニー



# Empowered by Innovation

